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Preface

The Eighth International Workshop on Applied Parallel Computing (PARA 2006)
was held in Ume̊a, Sweden, June 18–21, 2006. The workshop was organized by
the High Performance Computing Center North (HPC2N) and the Department
of Computing Science at Ume̊a University. The general theme for PARA 2006
was “State of the Art in Scientific and Parallel Computing.” Topics covered at
PARA 2006 included basic algorithms and software for scientific, parallel and
grid computing, tools and environments for developing high-performance com-
puting applications, as well as a broad spectrum of applications from science and
engineering.

The workshop included 7 plenary keynote presentations, 15 invited minisym-
posia organized in 30 sessions, and 16 sessions of contributed talks. The min-
isymposia and the contributed talks were held in five to six parallel sessions. The
main workshop program was preceded by two half-day tutorials. In total, 205
presentations were held at PARA 2006, by speakers representing 28 countries.
Extended abstracts for all presentations were made available at the PARA 2006
Web site (www.hpc2n.umu.se/para06).

The reviewing process was performed in two stages for evaluation of original-
ity, appropriateness, and significance. In the first stage, extended abstracts were
reviewed for selection of contributions to be presented at the workshop. In the
second stage the full papers submitted after the workshop were reviewed. In to-
tal, 120 papers were selected for publication in this peer-reviewed post-conference
proceedings.

A number of people contributed in different regards to the organization and
the accomplishment of PARA 2006. First of all the Local Organization Com-
mittee did a greatly appreciated and enthusiastic job. We also acknowledge
the following people for the assistance and support during the workshop days:
Yvonne Löwstedt and Anne-Lie Persson; Niklas Edmundsson, Roger Oscarsson,
and Mattias Wadenstein. A special thanks goes to the PARA 2006 secretary,
Lena Hellman, to Anders Backman and Björn Torkelsson for designing and man-
aging the PARA 2006 Web site including the electronic paper submission system,
powered by Commence, and to Mats Nylén and Mikael Rännar for their profes-
sional assistance in compiling and editing the PARA 2006 program, the booklet
of extended abstracts, and the final proceedings. PARA 2006 would not have
been possible without the personal involvement of all these fine people. We also
greatly acknowledge all minisymposia organizers, the review coordinators and
all the referees for their evaluations in the second review stage, which included
several rounds and resulted in these professionally peer-reviewed post-workshop
proceedings. Finally, we would also like to thank the sponsoring institutions for
their generous financial support.



VI Preface

Since 1996 the international PARA conferences have become biennial and are
organized by one of the Nordic countries. The three first workshops including
PARA 1996 and the last PARA 2004 were held in Lyngby, Denmark. The other
three, besides this one, were held in Ume̊a, Sweden (PARA 1998), in Bergen,
Norway (PARA 2000), and in Espoo, Finland (PARA 2002). The PARA 2008
workshop will take place in Trondheim, Norway, May 13–16, 2008.

March 2007 Bo K̊agström
Erik Elmroth

Jack Dongarra
Jerzy Wasniewski



In Memoriam and Dedication

Every day we are reminded of the perishables of life and that our individual
lives are only a gift for a finite time. Unfortunately, at PARA 2006 this was no
exception. Our colleague Amelia De Vivo, Università degli Studi della Basilicata,
Italy, passed away during the conference on June 21, 2006 in Ume̊a, Sweden.
Another of our colleagues, Olav Beckmann, Imperial College London, UK died
on November 9, 2006; this workshop was the last professional engagement of his
career. As a token of our friendship and admiration of Amelia De Vivo and Olav
Beckmann, we dedicate the PARA 2006 conference proceedings to them, from
all PARA 2006 participants and with our regards to their families.
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Kjell Rönnmark
Jennifer Scott
Sameer Shende
Oxana Smirnova
Hans Stockinger
Jerzy Wasniewski
Jan Westerholm
Felix Wolf
Anders Ynnerman



X Organization

Sponsoring Institutions

The Swedish Research Council (VR) via the Swedish National Infrastructure for
Computing (SNIC).

Ume̊a University via the Vice-Chancellor, the High Performance Computing
Center North (HPC2N), and the Department of Computing Science.



PARA 2006 Tutorials

Python in High-Performance Computing
Organizers and Lecturers: Xing Cai, Hans Petter Langtangen, and Kent-Andre
Mardal, Simula Research Laboratory and Oslo University, Norway

Introduction to Object-Oriented Modeling and Simulation with
Modelica
Organizers and Lecturers: Peter Fritzson and Anders Sandahl, Linköping Uni-
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Jeanette T̊angrot

Paul R. Woodward
Markus Blatt
Bruno Carpentieri
Xing Cai
Hiroshi Okuda
Kent-Andre Mardal
Christophe Prud’homme
Eugene V. Shilnikov
Fredrik Bengzon

Contributed Papers

Juan A. Acebrón
Torsten Adolph
Nikolaos M. Missirlis
Scott B. Baden
Michael Spevak
Jorge Andrade
Amy Krause
Krzysztof Benedyczak
Jan Kwiatkowski
Gabriele Pierantoni
Olaf Schneider
Marilton S. de Aguiar
Tamito Kajiyama
Dries Kimpe
Carmen B. Navarrete
Gerhard Zumbusch
Jan Westerholm
Cevdet Aykanat
Kamen Yotov
Pascal Hénon
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José Penadés



XX Table of Contents

High-Performance Graph Algorithms from Parallel Sparse Matrices . . . . . 260
John R. Gilbert, Steve Reinhardt, and Viral B. Shah

A Python Module for PDE-Based Numerical Modelling . . . . . . . . . . . . . . . 270
Lutz Gross, Ben Cumming, Ken Steube, and Dion Weatherley

COMODI: Architecture for a Component-Based Scientific Computing
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Zsolt I. Lázár, Lehel I. Kovács, and Zoltán Máthé
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Using Non-canonical Array Layouts in Dense Matrix Operations . . . . . . 580
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XXIV Table of Contents

Design, Construction and Use of the FISH Server . . . . . . . . . . . . . . . . . . . . 647
Jeanette T̊angrot, Lixiao Wang, Bo K̊agström, and Uwe H. Sauer

Scientific Visualization and HPC Applications

Scientific Visualization and HPC Applications: Minisymposium
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

Matt Cooper and Anders Ynnerman

Interactive Volume Visualization of Fluid Flow Simulation Data . . . . . . . 659
Paul R. Woodward, David H. Porter, James Greensky,
Alex J. Larson, Michael Knox, James Hanson,
Niranjay Ravindran, and Tyler Fuchs

Software Tools for Parallel CFD Applications

Software Tools for Parallel CFD Applications: Minisymposium
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Xing Cai and Hans Petter Langtangen

The Iterative Solver Template Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Markus Blatt and Peter Bastian

EulFS : A Parallel CFD Code for the Simulation of Euler and
Navier-Stokes Problems on Unstructured Grids . . . . . . . . . . . . . . . . . . . . . . 676

Aldo Bonfiglioli, Bruno Carpentieri, and Masha Sosonkina

Making Hybrid Tsunami Simulators in a Parallel Software
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Xing Cai and Hans Petter Langtangen

HPC-MW: A Problem Solving Environment for Developing Parallel
FEM Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Satoshi Ito and Hiroshi Okuda

SyFi - An Element Matrix Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Kent-Andre Mardal

Life: Overview of a Unified C++ Implementation of the Finite and
Spectral Element Methods in 1D, 2D and 3D . . . . . . . . . . . . . . . . . . . . . . . . 712

Christophe Prud’homme

Parallel Program Complex for 3D Unsteady Flow Simulation . . . . . . . . . . 722
Eugene V. Shilnikov



Table of Contents XXV

Multi-scale Physics

Multi-scale Physics: Minisymposium Abstract . . . . . . . . . . . . . . . . . . . . . . . 732
Mats G. Larson

Simulation of Multiphysics Problems Using Adaptive Finite Elements . . . 733
Fredrik Bengzon, August Johansson, Mats G. Larson, and
Robert Söderlund
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Michael Spevak, René Heinzl, Philipp Schwaha, and
Siegfried Selberherr

Grid Computing

Applications of Grid Computing in Genetics and Proteomics . . . . . . . . . . 791
Jorge Andrade, Malin Andersen, Lisa Berglund, and Jacob Odeberg

Grid Enabling Your Data Resources with OGSA-DAI . . . . . . . . . . . . . . . . . 799
Mario Antonioletti, Malcolm Atkinson, Neil P. Chue Hong,
Bartosz Dobrzelecki, Alastair C. Hume, Mike Jackson,
Kostas Karasavvas, Amy Krause, Jennifer M. Schopf,
Tom Sugden, and Elias Theocharopoulos



XXVI Table of Contents

UniGrids Streaming Framework: Enabling Streaming for the New
Generation of Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

Krzysztof Benedyczak, Aleksander Nowiński,
Krzysztof Nowiński, and Piotr Ba�la

Dynamic Clusters Available Under Clusterix Grid . . . . . . . . . . . . . . . . . . . . 819
Jan Kwiatkowski, Marcin Pawlik, Gerard Frankowski,
Kazimierz Balos, Roman Wyrzykowski, and Konrad Karczewski

Agent-Based Societies for the Sharing, Brokerage and Allocation of
Grid Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

Gabriele Pierantoni, Brian Coghlan, and Eamonn Kenny

OpusIB – Grid Enabled Opteron Cluster with InfiniBand
Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Olaf Schneider, Frank Schmitz, Ivan Kondov, and Thomas Brandel

Extending the HPC-ICTM Geographical Categorization Model for Grid
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

Rafael K.S. Silva, Marilton S. de Aguiar,
César A.F. De Rose, and Graçaliz P. Dimuro
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Abstract. Power consumption and heat dissipation issues are pushing
the microprocessors industry towards multicore design patterns. Given
the cubic dependence between core frequency and power consumption,
multicore technologies leverage the idea that doubling the number of
cores and halving the cores frequency gives roughly the same performance
reducing the power consumption by a factor of four. With the number of
cores on multicore chips expected to reach tens in a few years, efficient im-
plementations of numerical libraries using shared memory programming
models is of high interest. The current message passing paradigm used
in ScaLAPACK and elsewhere introduces unnecessary memory overhead
and memory copy operations, which degrade performance, along with
the making it harder to schedule operations that could be done in paral-
lel. Limiting the use of shared memory to fork-join parallelism (perhaps
with OpenMP) or to its use within the BLAS does not address all these
issues.

1 Introduction

The idea that computational modeling and simulation represents a new branch
of scientific methodology, alongside theory and experimentation, was introduced
about two decades ago. It has since come to symbolize the enthusiasm and sense
of importance that people in our community feel for the work they are doing. But
when we try to assess how much progress we have made and where things stand
along the developmental path for this new “third pillar of science,” recalling
some history about the development of the other pillars can help keep things in
perspective. For example, we can trace the systematic use of experiment back
to Galileo in the early seventeenth century. Yet for all the incredible successes
it enjoyed over its first three centuries, and the considerable contributions from
many outstanding scientists such as G. Mendel or C. R. Darwin, the experimental
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method arguably did not fully mature until the elements of good experimental
design and practice were finally analyzed and described in detail by R. A. Fisher
and others in the first half of the twentieth century. In that light, it seems clear
that while Computational Science has had many remarkable youthful successes,
it is still at a very early stage in its growth.

Many of us today who want to hasten that growth believe that the most
progressive steps in that direction require much more community focus on the
vital core of Computational Science: software and the mathematical models and
algorithms it encodes. Of course the general and widespread obsession with hard-
ware is understandable, especially given exponential increases in processor per-
formance, the constant evolution of processor architectures and supercomputer
designs, and the natural fascination that people have for big, fast machines. But
when it comes to advancing the cause of computational modeling and simula-
tion as a new part of the scientific method, there is no doubt that the complex
software “ecosystem” it requires must take its place on the center stage.

At the application level the science has to be captured in mathematical mod-
els, which in turn are expressed algorithmically and ultimately encoded as soft-
ware. Accordingly, on typical projects the majority of the funding goes to support
this translation process that starts with scientific ideas and ends with executable
software, and which over its course requires intimate collaboration among do-
main scientists (physicists, chemists, biologists, etc), computer scientists and
applied mathematicians. This process also relies on a large infrastructure of
mathematical libraries, protocols and system software that has taken years to
build up and that must be maintained, ported, and enhanced for many years
to come if the value of the application codes that depend on it are to be pre-
served and extended. The software that encapsulates all this effort, energy, and
thought, routinely outlasts (usually by years, sometimes by decades) the hard-
ware it was originally designed to run on, as well as the individuals who designed
and developed it.

Thus the life of Computational Science revolves around a multifaceted soft-
ware ecosystem. But today there is (and should be) a real concern that this
ecosystem of Computational Science, with all its complexities, is not ready for
the major challenges that will soon confront the field. Domain scientists now
want to create much larger, multi-dimensional applications in which a variety
of previously independent models are coupled together, or even fully integrated.
They hope to be able to run these applications on Petascale systems with tens
of thousands of processors, to extract all the performance that these platforms
can deliver, to recover automatically from the processor failures that regularly
occur at this scale, and to do all this without sacrificing good programmability.
This vision of what Computational Science wants to become contains numerous
unsolved and exciting problems for the software research community. Unfortu-
nately, it also highlights aspects of the current software environment that are
either immature or under funded or both [3].
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2 The Challenges of Multicore

It is difficult to overestimate the magnitude of the discontinuity that the high
performance computing (HPC) community is about to experience because of
the emergence of the next generation of multi-core and heterogeneous processor
designs [4]. For at least two decades, HPC programmers have taken for granted
that each successive generation of microprocessors would, either immediately or
after minor adjustments, make their old software run substantially faster. But
three main factors are converging to bring this “free ride” to an end. First, sys-
tem builders have encountered intractable physical barriers – too much heat, too
much power consumption, and too much leaking voltage – to further increases
in clock speeds. Second, physical limits on the number and bandwidth of pins
on a single chip means that the gap between processor performance and mem-
ory performance, which was already bad, will get increasingly worse. Finally,
the design trade-offs being made to address the previous two factors will render
commodity processors, absent any further augmentation, inadequate for the pur-
poses of tera- and peta-scale systems for advanced applications. This daunting
combination of obstacles has forced the designers of new multi-core and hybrid
systems, searching for more computing power, to explore architectures that soft-
ware built on the old model are unable to effectively exploit without radical
modification [5].

But despite the rapidly approaching obsolescence of familiar programming
paradigms, there is currently no well understood alternative in whose viability
the community can be confident. The essence of the problem is the dramatic
increase in complexity that software developers will have to confront. Dual-core
machines are already common, and the number of cores is expected to roughly
double with each processor generation. But contrary to the assumptions of the
old model, programmers will not be able to consider these cores independently
(i.e. multi-core is not “the new SMP”) because they share on-chip resources in
ways that separate processors do not. This situation is made even more com-
plicated by the other non-standard components that future architectures are
expected to deploy, including mixing different types of cores, hardware acceler-
ators, and memory systems. Finally, the proliferation of widely divergent design
ideas shows that the question of how to best combine all these new resources and
components is largely unsettled. When combined, these changes produce a pic-
ture of a future in which programmers must overcome software design problems
that are vastly more complex and challenging than in the past in order to take
advantage of the much higher degrees of concurrency and greater computing
power that new architectures will offer.

The work that we currently pursue is the initial phase of a larger project
in Parallel Linear Algebra for Scalable Multi-Core Architectures(PLASMA) that
aims to address this critical and highly disruptive situation. While PLASMA’s
ultimate goal is to create software frameworks that enable programmers to sim-
plify the process of developing applications that can achieve both high perfor-
mance and portability across a range of new architectures, the current high levels
of disorder and uncertainty in the field processor design make it premature to
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attack this goal directly. More experimentation is needed with these new designs
in order to see how prior techniques can be made useful by recombination or
creative application and to discover what novel approaches can be developed
into making our programming models sufficiently flexible and adaptive for the
new regime.

Preliminary work we have already done on available multi-core and hetero-
geneous systems, such as the IBM CELL processor, shows that techniques for
increasing parallelism and exploiting heterogeneity can dramatically accelerate
application performance on these types of systems. Other researchers have al-
ready begun to utilize these results. Under this early PLASMA project, we are
leveraging our initial work in the following three-pronged research effort:

– Experiment with techniques – Building on the model of large grain data flow
analysis, we are exploring techniques that exploit dynamic and adaptive out-
of-order execution patterns on multi-core and heterogeneous systems. Early
experiences with matrix factorization techniques have already led us to the
idea of dynamic look-ahead, and our preliminary experiments show that this
technique can yield great improvements in performance.

– Develop prototypes – We are testing the most promising techniques through
highly optimized (though neither flexible nor portable and thus not general
enough) implementations that we, and other researchers in the community,
can use to study their limits and gain insight into potential problems. These
prototypes are also enabling us to assess how well suited these approaches
are to dynamic adaptation and automated tuning.

– Provide a design draft for the PLASMA framework – An initial design plan
for PLASMA frameworks for multi-core and hybrid architectures is being
developed and, in combination with PLASMA software prototypes, will be
distributed for community feedback.

Though it is clear that the impact of the multi-core revolution will be ubiq-
uitous, we believe that, in developing a programming model for this radically
different environment, there are clear advantages to focusing on Linear Algebra
(LA) in general and Dense Linear Algebra (DLA) in particular, as PLASMA
does. For one thing, DLA libraries are critically important to Computational
Science across an enormous spectrum of disciplines and applications, so a pro-
gramming framework of the type we envision for PLASMA will certainly be
indispensable and needs to be achieved as quickly as possible. But DLA also has
strategic advantages as a research vehicle, because the methods and algorithms
that underlie it have been so thoroughly studied and are so well understood.
This background understanding will allow us to devise techniques that maxi-
mally exploit the resources of the microprocessor platforms under study.

As a third point, we claim that the techniques developed for LA are general
enough to be utilized in other software libraries. In this respect, the research
performed on the PLASMA project is expected to be beneficial for other libraries.
Historically this has been the case with LAPACK and its use of the BLAS.
Nowadays several libraries outside the LA discipline have followed the LAPACK
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example and their performance heavily relies on the BLAS. The inverse is not
true, and we can not find such a generality in other disciplines.

2.1 Main Factors Driving the Multi-core Discontinuity

Among the various factors that are driving the momentous changes now occur-
ring in the design of microprocessors and high end systems, three stand out as
especially notable: 1) the number of transistors on the chip will continue to dou-
ble roughly every 18 months, but the speed of processor clocks will not continue
to proportionally increase; 2) the number and bandwidth of pins on CPUs are
reaching their limits and 3) there will be a strong drift toward hybrid installations
for petascale (and larger) systems. The first two involve fundamental physical
limitations that nothing currently on the horizon is likely to overcome. The third
is a consequence of the first two, combined with the economic necessity of us-
ing many thousands of CPUs to scale up to petascale and larger systems. Each
of these factors has a somewhat different effect on the design space for future
programming:

1. More transistors and slower clocks means multi-core designs and more par-
allelism required – The modus operandi of traditional processor design –
increase the transistor density, speed up the clock rate, raise the voltage –
has now been blocked by a stubborn set of physical barriers – too much heat
produced, too much power consumed, too much voltage leaked. Multi-core
designs are a natural response to this situation. By putting multiple proces-
sor cores on a single die, architects can continue to increase the number of
gates on the chip without increasing the power densities. But since excess
heat production means that frequencies can not have a sustained increase,
deep-and-narrow pipeline models will tend to recede as shallow-and-wide
pipeline designs become the norm. Moreover, despite obvious similarities,
multi-core processors are not equivalent to multiple-CPUs or to SMPs. Mul-
tiple cores on the same chip can share various caches (including TLB!) and
they certainly share the bus. Extracting performance from this configuration
of resources means that programmers must exploit increased thread-level
parallelism (TLP) and efficient mechanisms for inter-processor communica-
tion and synchronization to manage resources effectively. The complexity of
parallel processing will no longer be hidden in hardware by a combination of
increased instruction level parallelism (ILP) and deep-and-narrow pipeline
techniques, as it was with superscalar designs. It will have to be addressed
in software.

2. Thicker “memory wall” means that communication efficiency will be even
more essential – The pins that connect the processor to main memory have
become a strangle point, with both the rate of pin growth and the band-
width per pin slowing down, if not flattening out. Thus the processor to
memory performance gap, which is already approaching a thousand cycles,
is expected to grow, by 50% per year according to some estimates. At the
same time, the number of cores on a single chip is expected to continue to
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double every 18 months, and since limitations on space will keep the cache
resources from growing as quickly, cache per core ratio will continue to go
down. Problems of memory bandwidth, memory latency, and cache fragmen-
tation will, therefore, tend to get worse.

3. Limitations of commodity processors will further increase heterogeneity and
system complexity – Experience has shown that tera- and petascale systems
must, for the sake of economic viability, use commodity off-the-shelf (COTS)
processors as their foundation. Unfortunately, the trade-offs that are being
(and will continue to be) made in the architecture of these general purpose
multi-core processors are unlikely to deliver the capabilities that leading
edge research applications require, even if the software is suitably modi-
fied. Consequently, in addition to all the different kinds of multithreading
that multi-core systems may utilize – at the core-level, socket-level, board-
level, and distributed memory level – they are also likely to incorporate
some constellation of special purpose processing elements. Examples include
hardware accelerators, GPUs, off-load engines (TOEs), FPGAs, and commu-
nication processors (NIC-processing, RDMA). Since the competing designs
(and design lines) that vendors are offering are already diverging, and mixed
hardware configurations (e.g. Los Alamos Roadrunner, Cray BlackWidow)
are already appearing, the hope of finding a common target architecture
around which to develop future programming models seems at this point to
be largely forlorn.

We believe that these major trends will define, in large part at least, the
design space for scientific software in the coming decade. But while it may be
important for planning purposes to describe them in the abstract, to appreciate
what they mean in practice, and therefore what their strategic significance may
be for the development of new programming models, one has to look at how their
effects play out in concrete cases. Below we describe our early experience with
these new architectures, both how they render traditional, cornerstone numerical
libraries obsolete, and how innovative techniques can exploit their parallelism
and heterogeneity to address these problems.

2.2 Free Ride Is over for HPC Software: Case of
LAPACK/ScaLAPACK

One good way to appreciate the impact and significance of the multi-core revo-
lution is to examine its effect on software packages that are comprehensive and
widely used. The LAPACK/ScaLAPACK libraries fit that description. These li-
braries, which embody much of our work in the adaptation of block partitioned
algorithms to parallel linear algebra software design, have served the HPC and
Computational Science community remarkably well for twenty years. Both LA-
PACK and ScaLAPACK apply the idea of blocking in a consistent way to a wide
range of algorithms in linear algebra (LA), including linear systems, least square
problems, singular value decomposition, eigenvalue decomposition, etc., for prob-
lems with dense and banded coefficient matrices. ScaLAPACK also addresses the
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much harder problem of implementing these routines on top of distributed mem-
ory architectures. Yet it manages to keep close correspondence to LAPACK in
the way the code is structured or organized. The design of these packages has
had a major impact on how mathematical software has been written and used
successfully during that time. Yet when you look at how these foundational li-
braries can be expected to fair on large-scale multi-core systems, it becomes clear
that we are on the verge of a transformation in software design at least as potent
as the change engendered a decade ago by message passing architectures, when
the community had to rethink and rewrite many of its algorithms, libraries, and
applications.

Historically, LA methods have put a strong emphasis on weak scaling or
isoscaling of algorithms, where speed is achieved when the number of processors
is increased while the problem size per processor is kept constant, effectively
increasing the overall problem size. This measure tells us when we can exploit
parallelism to solve larger problems. In this approach, increasing speed of a sin-
gle processing element should decrease the time to solution. But in the emerging
era of multiprocessors, although the number of processing elements (i.e., cores)
in systems will grow rapidly (exponentially, at least for a few generations), the
computational power of individual processing units is likely to be reduced. Many
problems in scientific computing reach their scaling limits on a certain number
of processors determined by the ratio of computation/communication. With the
speed of individual cores in the system on a decline, those problems will require
increased time to solution on the next generation of architectures. In order to
address the issue, emphasis has to be shifted from weak to strong scaling, where
speed is achieved when the number of processors is increased while the overall
problem size is kept constant, which effectively decreases the problem size per
processor. In other words we need to seek more parallelism in algorithms and
push their existing scaling limitations by investigating parallelization at a much
finer levels of granularity.

The standard approach to parallelization of numerical linear algebra algo-
rithms for both shared and distributed memory systems, utilized by the LA-
PACK/ScaLAPACK libraries, is to rely on a parallel implementation of BLAS -
threaded BLAS for shared memory systems and PBLAS for distributed memory
systems. Historically, this approach made the job of writing hundreds of rou-
tines in a consistent and accessible manner doable. But although this approach
solves numerous complexity problems, it also enforces a very rigid and inflexible
software structure, where, at the level of LA, the algorithms are expressed in a
serial way. This obviously inhibits the opportunity to exploit inherently parallel
algorithms at finer granularity. This is shown by the fact that the traditional
method is successful mainly in extracting parallelism from Level 3 BLAS; in the
case of most of the Level 1 and 2 BLAS, however, it usually fails to achieve
speedups and often results in slowdowns. It relies on the fact that, for large
enough problems, the O(n3) cost of Level 3 BLAS dominates the computation
and renders the remaining operations negligible. The problem with encapsulat-
ing parallelization in the BLAS/PBLAS in this way is that it requires a heavy



8 A. Buttari et al.

synchronization model on a shared memory system and a heavily synchronous
and blocking form of collective communication on distributed memory systems
with message passing. This paradigm will break down on the next generation
architectures, because it relies on coarse grained parallelization and emphasizes
weak scaling, rather than strong scaling.

2.3 Preliminary Work: Exploiting Parallelism on Multi-core

We used the forgoing analysis of the problems of LAPACK/ScaLAPACK on
multi-core systems as the basis of some preliminary tests of techniques for do-
ing fast and efficient LA on multi-core. LA operations are usually performed
as a sequence of smaller tasks; it is possible to represent the execution flow of
an operation as a Directed Acyclic Graph (DAG) where the nodes represent
the sub-tasks and the edges represent the dependencies among them. What-
ever the execution order of the sub-tasks is, the result will be correct as long
as these dependencies are not violated. This concept has been used in the past
to define “look-ahead” techniques that have been extensively applied to the LU
factorization . Such methods can be used to remedy the problem of synchroniza-
tions introduced by non-parallelizable tasks by overlapping their execution with
the execution of more efficient ones [1]. Although the traditional technique of
look-ahead usually provides only a static definition of the execution flow that is
hardwired in the source code, the idea of out-of-order execution it embodies can
be extended to broader range of cases, where the execution flow is determined at
run time in a fully dynamic fashion. With this dynamic approach, the subtasks
that contribute to the result of the operation can be scheduled dynamically de-
pending on the availability of resources and on the constraints defined by the
dependencies among them (i.e., edges in the DAG).

Our recent work shows how the one-sided factorizations, LU, QR and Cholesky
can benefit from the application of this technique [2]. Block formulations of these
three factorizations, as well as many other one-sided transformations, follow a
common scheme. In a single step of each algorithm, first operations are applied
to a single block of rows or columns, referred to as the panel, then the result
is applied to the remaining portion of the matrix. The panel operations are
usually implemented with Level 1 and 2 BLAS and, in most cases, achieve the
best performance when executed on a single processor or a small subset of all
the processors used for the factorization.

It is well known that matrix factorizations have left-looking and right-looking
formulations. The transition between the two can be done by automatic code
transformations, although this requires more powerful methods than simple de-
pendency analysis. In particular, the technique of look-ahead can be used to sig-
nificantly improve the performance of matrix factorizations by performing panel
factorizations in parallel with the update to the remaining submatrix from a
previous step of the algorithm. The look-ahead can be of arbitrary depth, as
was shown, for example, in the High Performance LINPACK benchmark (HPL).
The look-ahead simply alters the order of operations in the factorization. A great
number of permutations is legal, as long as algorithmic dependencies are not vi-
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Fig. 1. Pseudo-code showing the execution flow for the LU factorization. The same
execution scheme applies to the other one-sided transformations Cholesky and QR.

olated. From this point of view, right-looking and left-looking formulations of
a matrix factorization are on two opposite ends of a wide spectrum of possible
execution paths, with the look-ahead providing a transition between them. If the
straight right-looking formulation is regarded as one with the look-ahead of zero,
then the left-looking formulation is equivalent to the right looking formulation
with the maximum possible look-ahead for a given problem.

Applying the idea of dynamic execution flow definition to LU factorization
leads to the implementation of the left-looking variant of the algorithm, where
the panel factorizations are performed as soon as possible, with the modification
that if the panel factorization introduces a stall, then an update to a block of
columns (or rows) of the right submatrix is performed instead. The updating
continues only until next panel factorization is possible. Figure 1 (above) shows
the simplified code that defines the execution flow. Here the steps of checking
dependencies and making a transition are merged into the step of fetching the
next task (the fetch_task() subroutine), where the choice of transition is made
dynamically at run-time depending on the progress of the execution.

Experimental results show how the dynamic workflow technique is capable of
improving the overall performance while providing an extremely high level of
portability. Figure 2 shows that by applying dynamic task scheduling to the QR
factorization, it is possible to out perform a standard LAPACK implementation
with threaded BLAS.

3 The Future

Advancing to the next stage of growth for computational simulation and mod-
eling will require us to solve basic research problems in Computer Science and
Applied Mathematics at the same time as we create and promulgate a new
paradigm for the development of scientific software. To make progress on both
fronts simultaneously will require a level of sustained, interdisciplinary collab-
oration among the core research communities that, in the past, has only been
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Fig. 2. Comparison of parallelization techniques for QR factorization (Two dual core
Intel 3.0GHz Woodcrest processors (four cores total), GOTO BLAS 1.05, blocksize
NB=64)

achieved by forming and supporting research centers dedicated to such a com-
mon purpose. We believe that the time has come for the leaders of the Com-
putational Science movement to focus their energies on creating such software
research centers to carry out this indispensable part of the mission.
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Abstract. New releases of the widely used LAPACK and ScaLAPACK
numerical linear algebra libraries are planned. Based on an on-going
user survey (www.netlib.org/lapack-dev) and research by many people,
we are proposing the following improvements: Faster algorithms, includ-
ing better numerical methods, memory hierarchy optimizations, paral-
lelism, and automatic performance tuning to accommodate new archi-
tectures; More accurate algorithms, including better numerical methods,
and use of extra precision; Expanded functionality, including updating
and downdating, new eigenproblems, etc. and putting more of LAPACK
into ScaLAPACK; Improved ease of use, e.g., via friendlier interfaces in
multiple languages. To accomplish these goals we are also relying on bet-
ter software engineering techniques and contributions from collaborators
at many institutions.

1 Introduction and Motivation

LAPACK and ScaLAPACK are widely used software libraries for numerical lin-
ear algebra. There have been over 68M web hits at www.netlib.org for the asso-
ciated libraries LAPACK, ScaLAPACK, CLAPACK and LAPACK95. LAPACK
and ScaLAPACK are used to solve leading edge science problems and they have
been adopted by many vendors and software providers as the basis for their own
libraries, including AMD, Apple (under Mac OS X), Cray, Fujitsu, HP, IBM,
Intel, NEC, SGI, several Linux distributions (such as Debian), NAG, IMSL, the
MathWorks (producers of MATLAB), Interactive Supercomputing, and PGI.
Future improvements in these libraries will therefore have a large impact on
users.

The ScaLAPACK and LAPACK development is mostly driven by algorithm
research, the result of the user/vendor survey, the demands and opportunities
of new architectures and programming languages, and the enthusiastic partici-
pation of the research community in developing and offering improved versions
of existing Sca/LAPACK codes [51].
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Brief outline of the paper: Section 2 discusses challenges in making current
algorithms run efficiently, scalably, and reliably on future architectures. Section 3
discusses two kinds of improved algorithms: faster ones and more accurate ones.
Since it is hard to improve both simultaneously, we choose to include a new faster
algorithm if it is about as accurate as previous algorithms, and we include a new
more accurate algorithm if it is at least about as fast as the previous algorithms.
Section 4 describes new linear algebra functionality that will be included in new
Sca/LAPACK releases. Section 5 describes our proposed software structure for
Sca/LAPACK. Section 6 describes initial performance results.

2 Challenges of Future Architectures

Parallel computing is becoming ubiquitous at all scales of computation. It is
no longer just exemplified by the TOP 500 list of the fastest computers in the
world. In a few years typical laptops are predicted to have 64 cores per multicore
processor chip, and up to 256 hardware threads per chip. So unless all algorithms
(not just numerical linear algebra!) can exploit this parallelism, they will cease
to speed up, and in fact slow down compared to machine peak.

Furthermore, the gap between processor speed and memory speed continues
to grow exponentially: processor speeds are improving at 59% per year, main
memory bandwidth at only 23%, and main memory latency at a mere 5.5% [39].
This means that an algorithm that is efficient today, because it does enough
floating point operations per memory reference to mask slow memory speed,
may not be efficient in the near future. The same story holds for parallelism,
with communication network bandwidth improving at just 26%, and network
latency unimproved since the Cray T3E in 1996 until recently.

The largest scale target architectures of importance for LAPACK and ScaLA-
PACK include platforms now installed at NSF and DOE sites, as well as near
term procurements. Longer term the High Productivity Computing Systems
(HPCS) program [45] is supporting the construction of petascale computers by
Cray (Cascade) and IBM (PERCS).

LAPACK and ScaLAPACK will have to run efficiently and correctly on a
much wider array of platforms than in the past. In addition to the above ar-
chitecturally diverse set of supercomputers and multicore chips in laptops, some
future architectures are expected to be heterogeneous. For example, a cluster
purchased over time will consist of some old, slow processors and some new,
fast ones. Some processors may have higher loads from multiple users than oth-
ers. Even single machines will be heterogenous, consisting of a CPU and other,
faster, special purposes processors like GPUs, SSE units, etc. These will not just
be heterogeneous in performance, but possibly in floating point semantics, with
different units treating exceptions differently, or only computing in single preci-
sion. In a cluster, if one processor runs fastest handling denormalized numbers
according to the IEEE 754 floating point standard [46], and another is fastest
when flushing them to zero, then sending a number from one processor to an-
other may change its value or even lead to a trap. Either way, correctness is a
challenge, and not just for linear algebra.
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It will be a challenge to map LAPACK’s and ScaLAPACK’s current soft-
ware hierarchy of BLAS/BLACS/PBLAS/LAPACK/ScaLAPACK efficiently to
all these platforms. For example, on a platform with multiple levels of paral-
lelism (multicores, SMPs, distributed memory) would it be better to treat each
SMP node as a ScaLAPACK process, calling parallelized BLAS or should each
processor within the SMP be mapped to a process, or something else?

A more radical departure from current practice would be to make our al-
gorithms asynchronous. Currently our algorithms are block synchronous, with
phases of computation followed by communication with (implicit) barriers. But
on networks that can overlap communication and computation, or on multi-
threaded shared memory machines, block synchrony can leave a significant frac-
tion of the platform idle at any time. For example, the LINPACK benchmark
version of LU decomposition exploits such asynchrony and can run 2x faster
than its block synchronous ScaLAPACK counterpart (see Section 5).

3 Better Algorithms

Three categories of routines are going to be addressed in Sca/LAPACK: (1)
faster and/or more accurate algorithms for functions in LAPACK, which also
need to be put in ScaLAPACK (discussed here) (2) functions now in LAPACK
but not in ScaLAPACK (discussed in Section 4), and (3) functions in neither
LAPACK nor ScaLAPACK (also discussed in Section 4). The following are lists
of planned improvements.

Linear Systems and Least Squares Problems. Possible improvements in-
clude (1) iterative refinement using portable extra precision BLAS [52,5,14,13]
to get guaranteed accuracy in linear systems [24] and least squares problems; (2)
iterative refinement where the LU factorization is computed in single precision
even though all the data is in double precision, in order to exploit the fact that
single can be from 2x faster than double (on an SSE unit) to 10x faster (on an
IBM Cell) – refinement is used to try to make the answer as accurate as standard
double precision LU factorization; (3) recursive data structures of Gustavson,
Kågström et al [35] to improve memory locality, in particular for symmetric
packed matrix factorizations, but keeping the usual columnwise matrix interface;
(4) a more stable pivoting scheme for symmetric indefinite matrices proposed by
Ashcraft, Grimes and Lewis [4], that keeps the L factor more bounded than the
current Bunch-Kaufman factorization; (5) Cholesky factorization with diagonal
pivoting [44] that avoids a breakdown if the matrix is nearly indefinite/rank-
deficient, which is useful both for optimization problems and computing high
accuracy symmetric positive definite eigenvalue decompositions (EVD); (6) im-
proved condition estimators for tridiagonal [25,43] or triangular [34] matrices;
and (7) “latency avoiding” variations on the LU and QR decompositions that
reduce the number of messages sent by factor equal to the block size in the 2D
block-cyclic layout, which may be advantageous when the latency is large.

Eigenvalue Problems. Possible improvements include (1) the 2003 SIAM Lin-
ear Algebra Prize winning work of Braman, Byers, and Mathias [16,17] for
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solving the nonsymmetric eigenvalue problem up to 10x faster, as well as ex-
tensions to QZ in collaboration with Kågström and Kressner [50]; (2) a more
complete implementation of the 2006 SIAM Linear Algebra Prize winning work
of Dhillon and Parlett [57] on the Multiple Relatively Robust Representations
(MRRR) algorithm for the symmetric eigenvalue problem, including work by
Parlet and Vömel [58] to deal with tight clusters of eigenvalues and by Bien-
tensi, Dhillon and can de Geihn on load balancing in the parallel version [9];
(3) extensions of the MRRR algorithm to the SVD [41], though some potential
obstacles to guaranteed stability remain [70]; (4) a faster reduction to bidiagonal
form for the SVD by Howell, Fulton, et al [37] that uses new BLAS [13] to achieve
better memory locality; (5) a different faster bidiagonal reduction suitable for
the case when only left or only right singular vectors are desired, but with possi-
ble less numerical stability [7,59]; (6) when only a few eigen- or singular vectors
are desired, the successive band reduction approach of Bischof and Lang [11]
can move most flops from level 2 to level 3 BLAS; (7) an efficent algorithm by
Drmač and Veselić for computing the SVD with high relative accuracy [33]; and
(8) analogous high accuracy algorithms for the symmetric indefinite EVD by
Slapničar [61] and by Dopico, Molera and Moro [32].

4 Added Functionality

Putting More of LAPACK into ScaLAPACK. Numerous matrix data
types supported by LAPACK are not in ScaLAPACK. The most important
omissions are as follows: (1) There is no support for packed storage of symmet-
ric (SP,PP) or Hermitian (HP,PP) matrices, nor the triangular packed matrices
(TP) resulting from their factorizations (using ≈ n2/2 instead of n2 storage);
these have been requested by users. The interesting question is what data struc-
ture to support. One possibility is recursive storage as discussed in Sec. 3 [35,2].
Alternatively the packed storage may be partially expanded into a 2D array
in order to apply Level 3 BLAS (GEMM) efficiently. Some preliminary ScaLA-
PACK prototypes support packed storage for the Cholesky factorization and the
symmetric eigenvalue problem [12]. (2) ScaLAPACK only offers limited support
of band matrix storage and does not specifically take advantage of symmetry or
triangular form (SB,HB,TB). (3) ScaLAPACK does not support data types for
the standard (HS) or generalized (HG, TG) nonsymmetric EVDs; see further
below.

The table below compares the available functions in LAPACK and ScaLA-
PACK. The relevant user interfaces (’drivers’) are listed by subject and acronyms
are used for the software in the respective libraries. The table also shows that in
the ScaLAPACK library the implementation of some driver routines and their
specialized computational routines are currently missing. The highest priority
ones to include are marked “add”. We also want expert drivers that compute
error bounds.

Extending Current Functionality. We outline possible extensions of Sca/
LAPACK functionality, motivated by users and research progress: (1) efficient
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LAPACK SCALAPACK
Linear Equations GESV (LU) PxGESV

POSV (Cholesky) PxPOSV
SYSV (LDLT ) missing, add

Least Squares (LS) GELS (QR) PxGELS
GELSY (QR w/pivoting) missing
GELSS (SVD w/QR) missing
GELSD (SVD w/D&C) missing

Generalized LS GGLSE (GRQ) missing
GGGLM (GQR) missing

Symmetric EVD SYEV (QR) PxSYEV
SYEVD (D&C) PxSYEVD
SYEVR (RRR) missing, add

Nonsymmetric EVD GEES (HQR) missing driver, add
GEEV (HQR + vectors) missing driver, add

SVD GESVD (QR) PxGESVD (missing
complex C/Z)

GESDD (D&C) missing
Generalized Symmetric EVD SYGV (inverse iteration) PxSYGVX

SYGVD (D&C) missing, add
Generalized Nonsymmetric EVD GGES (HQZ) missing, add

GGEV (HQZ + vectors) missing, add
Generalized SVD GGSVD (Jacobi) missing

updating of factorizations like Cholesky, LDLT , LU and QR, either using known
unblocked techniques [38,26] or more recent blocked ones; (2) an O(n2) eigen-
value routine for companion matrices, i.e. to find roots of polynomials, which
would replace the roots() function in Matlab, based on recent work of Gu, Bini
and others on semiseparable matrices [20,66,10]; (3) recent structure-preserving
algorithms for matrix polynomial eigenvalue problems, especially quadratic
eigenvalue problems [63]; (4) new algorithm for matrix functions like the square
root, exponential and sign function [23]; (5) algorithms for various Sylvester-type
matrix equations (recursive, RECSY; parallel, SCASY) [48,49,40]. (6) prod-
uct and quotient eigenvalue algorithms now in SLICOT [8] are being consid-
ered, using the improved underlying EVD algorithms; and (7) out-of-core algo-
rithms [12,28,27].

5 Software

Improving Ease of Use. “Ease of use” can be classified as follows: ease of pro-
gramming (which includes easy conversion from serial to parallel, from LAPACK
to ScaLAPACK and the possiblity to use high level interfaces), ease of obtaining
predictable results in dynamic environments (for debugging and performance),
and ease of installation (including performance tuning).

There are tradeoffs involved in each of these subgoals. In particular, ultimate
ease of programming, exemplified by typing x = A\b in order to solve Ax = b
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(paying no attention to the data type, data structure, memory management or
algorithm choice) requires an infrastructure and user interface best left to the
builders of systems like MATLAB and may come at a significant performance
and reliability penalty. In particular, many users now exercise, and want to con-
tinue to exercise, detailed control over data types, data structures, memory man-
agement and algorithm choice, to attain both peak performance and reliability
(e.g., not running out of memory unexpectedly). But some users also would like
Sca/LAPACK to handle workspace allocation automatically, make it possible to
call Sca/LAPACK on a greater variety of user-defined data structures, and pick
the best algorithm when there is a choice.

To accomodate these “ease of programming” requests as well as requests to
make the Sca/LAPACK code accessible from other languages than Fortran, the
following steps are considered: (1) Produce new F95 modules for the LAPACK
drivers, for workspace allocation and algorithm selection. (2) Produce new F95
modules for the ScaLAPACK drivers, which convert, if necessary, the user input
format (e.g., a simple block row layout across processors) to the optimal one
for ScaLAPACK (which may be a 2D block cyclic layout with block sizes that
depend on the matrix size, algorithm and architecture). Allocate memory as
needed. (3) Produce LAPACK and ScaLAPACK wrappers in other languages.
Based on current user surveys, these languages will tentatively be C, C++,
Python and MATLAB. See below for software engineering details.

Ease of conversion from serial code (LAPACK) to parallel code (ScaLAPACK)
is done by making the interfaces (at least at the driver level) as similar as possi-
ble. This includes expanding ScaLAPACK’s functionality to include as much of
LAPACK as possible (see Section 4).

Obtaining predictable results in a dynamic environment is important for de-
bugging (to get the same answer when the code is rerun), for reproducibility,
auditability (for scientific or legal purposes), and for performance (so that run-
times do not vary widely and unpredictably). Reproducibility in the face of asyn-
chronous algorithms and heterogeneous systems will come with a performance
penalty but is important for debugging and when auditability is critical.

To ease installation, we will use tools like autoconf and automatic performance
tuning, supporting users from those who want to download and use one routine
as quickly and simply as possible, to those who want an entire library, and to
test and performance tune it carefully.

Improved Software Engineering. We describe our software engineering
(SWE) approach. The main goals are to keep the substantial code base main-
tainable, testable and evolvable into the future as architectures and languages
change. Maintaining compatibility with other software efforts and encouraging
3rd party contributions to the efforts of the Sca/LAPACK team are also goals
[51].

These goals involve tradeoffs. One could explore starting “from scratch”, using
higher level ways to express the algorithms from which specific implementations
could be generated. This approach yields high flexibility allowing the generation
of code that is optimized for future computing platforms with different layers of
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parallelism, different memory hierarchies, different ratios of computation rate to
bandwidth to latency, different programming languages and compilers, etc. In-
deed, one can think of the problem as implementing the following meta-program:

(1) for all linear algebra problems
(linear systems, eigenproblems, ...)

(2) for all matrix types (general, symmetric, banded, ...)
(3) for all data types (real/complex, different precisions)
(4) for all machine architectures, communication topologies
(5) for all programming interfaces
(6) provide the best algorithm(s) available in terms of

performance and accuracy (‘‘algorithms’’ is plural
because sometimes no single one is always best)

This potential scope is quite large, requiring a judicious mixture of prioritiza-
tion and automation. Indeed, there is prior work in automation [42], but so
far this work has addressed only part of the range of algorithmic techniques
Sca/LAPACK needs (e.g., not eigenproblems), it may not easily extend to more
asynchronous algorithms and still needs to be coupled to automatic performance
tuning techniques. Still, some phases of the meta-program are at least partly au-
tomatable now, namely steps (3) through (5) (see below).

Note that line (5) of the meta-program is “programming interfaces” not “pro-
gramming languages,” because the question of the best implementation language
is separate from providing ways to call it (from multiple languages). Currently
Sca/LAPACK is written in F77. Over the years, the Sca/LAPACK team and
others have built on this to provide interfaces or versions in other languages:
LAPACK95 [6] and LAPACK3E [3] for F95 (LAPACK3E providing a straight-
forward wrapper, and LAPACK95 using F95 arrays to simplify the interfaces at
some memory and performance costs), CLAPACK in C [21] (translated, mostly
automatically, using f2c [36]), LAPACK++ [29], TNT [64] in C++, and JLA-
PACK in Java [47] (translated using f2j).

First we summarize the SWE development plan and then the SWE research
plan. The development plan includes (1) maintaining the core in Fortan, adopt-
ing those features of F95 that most improve ease-of-use and ease-of-development
(recursion, modules, environmental enquiries) but do not prevent the most de-
manding users from attaining the highest performance and reliable control over
the run-time environment (so not automatic memory allocation). Keeping For-
tran is justified for cost and continuity reasons, as well as the fact that the
most effective optimizing compilers still work best on Fortran, even when they
share “back ends” with the C compiler, because of the added difficulty of dis-
cerning the absence of aliasing in C [22]; (2) F95 wrappers for the drivers to
improve ease of use, via automatic workspace allocation and automatic algo-
rithm selection; (3) F95 wrappers for the drivers that use performance models
to determine the best layout for the user’s matrix (which may be 2D block-cyclic
and/or recursive instead of the 1D blocked layouts most natural to users) and
which convert to that layout and back invisibly to the user; (4) wrappers for the
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drivers in other languages, like C, Python and Matlab; (5) using the new BLAS
standard [15,13,5], for new Sca/LAPACK routines, which also provides new high
precision functionality needed for iterative refinement [24], and systematically
ensuring thread-safety; (6) using tools like autoconf, bugzilla, svn, automatic
overnight build and test, etc. to streamline installation and development and
encourage third party contributions, and using modules to provide extra precise
versions based on one source; and (7) doing systematic performance tuning, not
just the BLAS [69,68] and the BLACS [54,65], but the 1300 calls to the ILAENV
routine in LAPACK that provides various blocking parameters, and exploiting
modeling techniques that let the user choose how much tuning effort to expend
[67,56].

The following are SWE research tasks : (1) exploring the best mappings of
the Sca/LAPACK software layers (BLAS, BLACS, PBLAS, LAPACK, ScaLA-
PACK) to the hardware layers of emerging architectures, including deciding that
different layers entirely are needed; (2) exploring the use of new parallel program-
ming languages being funded by NSF, DOE and the DARPA HPCS program,
namely UPC [19], Titanium [71], CAF [55], Fortress [1], X10 [60] and Cascade
[18]; (3) exploring further automation of the production of library software (ex-
isting work such as [42] still needs to address two-sided factorizations, iterative
algorithms for the EVD and SVD, more asynchronous algorithms, novel data
layouts, how multiple levels of parallelism map to multiple levels of hardware,
and so on); (4) using statistical models to accelerate performance tuning at in-
stallation time [67]; and (5) choosing the right subset of a cluster to run on at
run-time, depending on the dynamically changing load.

Multicore and Multithreading. Message passing as used in ScaLAPACK in-
troduces memory overhead unnecessary on multicore platforms, degrading per-
formance and making it harder to schedule potentially parallel operations. Lim-
iting shared memory parallelism to fork-join parallelism (e.g., OpenMP) or the
BLAS is inadequate. Shared memory would let us replace data partitioning by
work partitioning, although cache locality requirements mean we still need either
two dimensional block cyclic (or perhaps recursive) layouts.

Shared memory systems have used client/server, work-crew, and pipelining
for parallelism, but because of data dependencies pipelining is most appropriate,
as well as being a good match for streaming hardware like the IBM Cell. For
efficiency we must avoid pipeline stalls when data dependencies block execution.

We illustrate this for LU factorization. LU has left-looking and right-looking
formulations [30]. Transition between the two can be done by automatic code
transformations [53], although more than simple dependency analysis is needed.
Lookahead can improve performance by performing panel factorizations in par-
allel with updates to the trailing matrix from the previous algorithm steps [62].
The lookahead can be of arbitrary depth (as exploited by the LINPACK bench-
mark [31]).

In fact lookahead provides a spectrum of implementations from right-looking
(no lookahead) to left-looking (maximum lookahead). Less lookahead avoids
pipeline stalls at the beginning of the factorization, but may introduce them
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at the end; more lookahead provides more work at the end of the factorization
but may stall at the beginning.

Recent experiments show that pipeline stalls can be greatly reduced if unlim-
ited lookahead is allowed and the lookahead panel factorizations are dynamically
scheduled, which is much easier in shared memory than distributed memory, in
part because there is no storage overhead.

6 Performance

We give a few recent performance results for ScaLAPACK driver routines on
recent architectures. We discuss strong scalability, i.e. we keep the problem size
constant while increasing the number of processors.

Figure 1(left) gives the time to solve Ax = b for n = 8, 000 on a cluster of
dual processor 64 bit AMD Opterons with a Gigabit ethernet. As the number of
processors increases from 1 to 64, the time decreases from 110 sec (3.1 GFlops)
to 9 sec (37.0 GFlops) (thanks to Emmanuel Jeannot for sharing the result.)

Figure 1(right) gives the time for the symmetric eigendecomposition with
n = 12, 000 on a 64 processor cluster of dual processor 64 bit Intel Xeon EMTs
with a Myrinet MX interconnect. The matrices are generated randomly using
the same generator as in the Linpack Benchmark, so there are no tight eigenvalue
clusters.
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Fig. 1. Left: Scalability of ScaLAPACK’s LU (pdgetrf) for n = 8, 000. Right: Scala-
bility of the ScaLAPACK’s symmetric eigensolvers with n = 12, 000. Four eigensolvers
are shown: BX (pdsyevx), QR (pdsyev), DC (pdsyevd) and MRRR (pdsyevr).
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Abstract. We use the two-dimensional DCT to study several proper-
ties of reconstructed images computed by regularizing iterations, that
is, Krylov subspace methods applied to discrete ill-posed problems. The
regularization in these methods is obtained via the projection onto the
associated Krylov subspace. We focus on CGLS/LSQR, GMRES, and
RRGMRES, as well as MINRES and MR-II in the symmetric case.

1 Introduction

In the setting of matrix computations, the model for the blurring of the image
is Ax = b, where the vectors x and b represent the exact and blurred images,
and the matrix A represents the blurring process. Since image deblurring is a
discrete ill-posed problem, it is necessary to use regularization in order to com-
pute stable solutions [6]. Moreover, it is often advantageous to impose boundary
conditions on the reconstruction, which is achieved by a simple modification of
the coefficient matrix [9], [12].

This paper focuses on regularizing iterations where we apply a Krylov sub-
space method directly to the problem Ax = b. The regularization comes from the
projection of the solution on the Krylov subspace associated with the method,
and the number of iterations plays the role of the regularization parameter.

We use the two-dimensional discrete cosine transform (2D-DCT) to perform a
spectral analysis of the solutions to the image deblurring problem, computed by
means of regularizing iterations, and we focus on CGLS/LSQR and GMRES and
their variants MINRES, RRGMRES and MR-II. To the best of our knowledge, a
thorough study of the spectral and visual quality of the reconstructions computed
by these methods has not been carried out.

2 The Image Deblurring Problem and Its Regularization

Underlying the image deblurring problem is a 2D Fredholm integral equation of
the first kind which has the generic form

∫ 1

0

∫ 1

0
K(s, t; x, y) f(x, y) dx dy = g(s, t), 0 ≤ s, t ≤ 1 (1)
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where f and g represent the exact and blurred images, and the kernel K is
the point spread function (PSF) for the blurring. Our work here is restricted to
square n × n images, and to the case where the PSF is spatially invariant and
separates in the variables, i.e., K(s, t, ; x, y) = kc(s − x) kr(t − y) where kc and
kr are given functions. More general PSFs can be studied by the same approach,
at the cost of a much higher computational complexity, but the separable PSFs
suffice to illustrate our points.

Discretization of the integral equation (1) then leads to the linear model

Ac X AT
r = B (2)

in which X and B are the exact and blurred images, and the two n × n Toeplitz
matrices Ac and Ar perform blurring in the direction of the columns and rows of
the image, respectively. By introducing the vectors x = vec (X) and b = vec (B),
where vec (·) stacks the columns of the matrix, we can rewrite the above system
in the form Ax = b, in which the PSF matrix A is the n2×n2 Kronecker product

A = Ar ⊗ Ac. (3)

We emphasize that while the Kronecker-product system is useful for studying
the discrete ill-posed problem, all computations are performed with the system
in (2). See, e.g., [7] for details about deconvolution algorithms.

In addition to the above choice of PSF model, we assume that the noise in
the discrete problem appears as additive Gaussian noise in the right-hand side,

B = Ac X AT
r + E,

where X is the exact image, and the elements of the noise matrix E are statisti-
cally independent, uncorrelated with X , and coming from a normal distribution
with zero mean and standard deviation η.

The Kronecker form of the PSF matrix (3) lets us compute the SVD of large
matrices, due to the fact that given the SVDs of the two matrices Ac and Ar,

Ac = Uc Σc V T
c , Ar = Ur Σr V T

r ,

we can write the SVD of the PSF matrix A = Ar ⊗ Ac as

A = U Σ V T =
(
Ur ⊗ Uc)Π

)(
ΠT (Σr ⊗ Σc)Π

)(
(Vr ⊗ Vc)Π

)T
, (4)

where the n2 × n2 permutation matrix Π ensures that the diagonal elements of
ΠT (Σr ⊗ Σc)Π appear in decreasing order. We emphasize that our analysis of
the iterative methods is not restricted to Kronecker products – it holds for all
PSF matrices.

It is well know that the SVD of the coefficient matrix A provides a natural
basis for the study of regularization methods. Many regularization methods,
including regularizing iterations, lead to regularized solutions in the form

xreg =
n2∑

k=1

φi
uT

k b

σk
vk. (5)

These methods are often referred to as spectral filtering methods; we avoid this
term, in order not to confuse it with our DCT-based spectral analysis.
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With the notation xreg = vec (Xreg), (5) immediately leads to the expression

Xreg =
n2∑

k=1

φk
uT

k b

σk
V [k], (6)

where φk are the filter factors, σk are the singular values of A, uk are the left
singular vectors, and V [k] are n × n matrices such that vk = vec

(
V [k]

)
are the

right singular vectors. This relation shows that we can express the regularized
solution Xreg as a weighted sum over the basis images V [k].

With the Kronecker-product form of the PSF matrix A, Eq. (4) shows that
there are simple expressions for the singular values and vectors. If σri and σcj

are the singular values of Ar and Ac, then their products are the singular values
of A. Moreover, if uri, ucj, vri and vcj are the left and right singular vectors of Ar
and Ac, then the left and right singular vectors of A are ucj ⊗ uri and vcj ⊗ vri,
respectively. Then (6) takes the form

Xreg =
n∑

i=1

n∑
j=1

φij
uT

ri B ucj

σri σcj
V [ij]

where φij is the filter factor associated with the product σri σcj , and the basis
images are given by V [ij] = vri vT

cj .

3 Spectral Properties of the PSF Matrix

The two-dimensional discrete cosine transform (2D-DCT) is a simple frequency
transform that is often used in image processing. The transformed image X̂ is
given by

X̂ = C X CT ,

where C is an orthogonal matrix that represents the one-dimensional DCT. The
elements of C ∈ R

n×n are given by

Cij =

{√
1/n i = 1√
2/n cos

(
π(i − 1)(2j − 1)/(2n)

)
, i > 1.

The 2D-DCT transformed image X̂ provides a frequency representation of the
image X , where each element x̂ij corresponds to a specific basis image (see e.g,
[11, p. 136]). The element x̂11 represents a constant (the DC term), and the
elements x̂1j and x̂i1 correspond to simple cosine waves of varying frequency in
horizontal or vertical direction over the entire image. The remaining elements of
X̂ represent combinations of frequencies in the two directions. The lowest spatial
frequencies are represented in one corner, and the highest in the opposite corner.

For one-dimensional discrete ill-posed problems arising from discretizations of
Fredholm integral equations, we know from the analysis in [8] that the singular
vectors ui and vi of the coefficient matrix A tend to have an increasing number



Large-Scale Methods in Image Deblurring 27

of sign changes in their elements as the index i increases. I.e., the smaller the
singular value σi, the more high-frequent the appearance of the corresponding
singular vectors ui and vi.

In the two-dimensional case we expect a similar behavior, but the concept of
frequency is more complicated because the singular vectors now correspond to
two-dimensional basis images. The correct way to study the spectral behavior of
the singular vectors is therefore to study the two-dimensional spectral behavior
of the basis images V [k], e.g., by means of the 2D-DCT. We need to sort the
latter basis images according to decreasing singular values σri σcj using the per-
mutation matrix Π from Eq. (4); the sorted basis images are then equal to V [k],
k = 1, 2, . . . , n2.

Fig. 1. Top left: The four basis images V [k], k = 1, 2, 3, 4 for the PSF matrix for
isotropic blur. Bottom left: the corresponding |V̂ [k]|. Right: Plot of (

∑150
i=1 |V̂ [i]|2)1/2;

the main contribution is located in a sphere in the upper left corner.

We now construct two coefficient matrices A ∈ R
1024×1024 and Ã ∈ R

1024×1024,
both being Kronecker products of two 32 × 32 Toeplitz matrices. The matrix A
describes isotropic blurring while Ã describes non-isotropic blurring. The first
four basis images V [1] to V [4] of A are shown in Fig. 1, together with |V̂ [1]| to
|V̂ [4]| which denote the absolute values of their 2D-DCT. The rightmost picture
in Fig. 1 shows the “RMS image”

(∑150
i=1 |V̂ [i]|2

)1/2 of the first 150 basis images,
which illustrates all the dominating frequency components in the first 150 basis
images. We see that the main contributions lie in the upper left corner of the
spectrum; thus all the first basis images are low-frequent.

Fig. 2. Similar to Fig. 1, but for the coefficient matrix Ã for non-isotropic blur. Fre-
quencies in one direction appear before similar frequencies in the other direction.
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Figure 2 shows the first four basis images of Ã for non-isotropic blur. We
see that frequencies in one direction tend to appear before the corresponding
frequencies in the other direction in the image. This is clearly seen in the fourth
basis image V [4] which is dominated by the 2D-DCT component v̂

[4]
3,2 – while in

the isotropic case, V [4] is dominated by v̂
[4]
2,2 We also see from the plot of the

“RMS image”
(∑150

i=1 |V̂ [i]|2
)1/2 that the frequency contents is no longer confined

to a spherical region, but the main contributions are still low-frequent.
We emphasize that the boundary conditions influence the basis images, see [9],

but the frequency decomposition property is similar for all boundary conditions.
In this work we use zero boundary conditions, and all basis images are therefore
zero at the border. Other choices of boundary conditions, such as periodic and
reflexive boundary conditions, lead to a different behavior of the basis images
at the boundaries; but discussions of these issues are outside the scope of this
paper.

4 Krylov Subspace Methods

The properties of Krylov subspaces have been studied extensively in the lit-
erature [10] and they form the basic element for understanding the intrinsic
regularizing properties of LSQR, GMRES, etc.

4.1 The CGLS and LSQR Algorithms

The two algorithms CGLS and LSQR, which are designed to solve the least
squares problem min ‖Ax−b‖2, are mathematically equivalent; we use the LSQR
formulation here because it better allows us to carry out the desired spectral
analysis. Both methods work implicitly with the normal equations AT Ax = AT b
and are thus based on the Krylov subspace

Kk

(
AT A, AT b

)
= span

{
AT b, (AT A)AT b, . . . , (AT A)k−1AT b

}
. (7)

LSQR constructs explicit basis vectors for this Krylov subspace via the Lanczos
bidiagonalization algorithm, which gives the partial decomposition

AVk = Uk+1Bk, (8)

where Vk ∈ R
n2×k is a matrix with orthonormal columns that span the Krylov

subspace (7). The matrix Uk+1 ∈ R
n2×(k+1) also has orthonormal columns, and

its first column is chosen as u1 = b/‖b‖2 which simplifies the implementation
considerably. The matrix Bk ∈ R

(k+1)×k is a lower bidiagonal matrix. The LSQR
iterate x(k) minimizes the 2-norm of the residual in the Krylov subspace, i.e.,
x(k) = argminx‖Ax − b‖2 s.t. x ∈ Kk

(
AT A, AT b

)
, and it follows that

x(k) = Vkξk, ξk = argminξ∈Rk‖Bkξ − ρe1‖2, (9)

where e1 is the first canonical unit vector in R
k+1 and ρ = ‖b‖2. This algorithm

can be implemented using short recurrences and thus one can avoid storing the
partial decomposition (8).
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4.2 The GMRES Algorithm and Its Relatives

These algorithms are based on the Arnoldi process that iteratively constructs an
orthonormal basis for the Krylov subspace

Kk (A, b) = span
{
b, Ab, A2b, . . . , Ak−1b

}
, (10)

and results in the partial decomposition

AWk = Wk+1Hk, Wk+1 = (Wk , wk+1 ), (11)

where the columns of Wk ∈ R
n2×k provide an orthonormal basis for the Krylov

subspace in (10), and Hk ∈ R
(k+1)×k is an upper Hessenberg matrix. The first

column in Wk is again chosen as w1 = b/‖b‖2. If A is symmetric then Hk reduces
to tridiagonal form, and the construction of the partial decomposition (11) can
be done by a three-term recurrence as implemented in MINRES. In this case the
solution can be updated without explicitly storing the partial decomposition. For
general matrices, however, no such short recurrences exist and GMRES needs to
save all the constructed Krylov vectors.

The GMRES/MINRES iterate x̂(k) minimizes the residual norm with respect
to the above Krylov subspace, i.e., x̂(k) = argmin‖b − Ax‖2 s.t. x ∈ Kk (A, b),
which leads to the relation

x̂(k) = Wkζk, ζk = argminζ∈Rk‖Hkζ − ρe1‖2, (12)

where again e1 is the first canonical unit vector and ρ = ‖b‖2.
There exists a variant of GMRES that uses Ab as the starting vector for the

Krylov subspace, instead of b as in (10). This gives the “shifted” Krylov subspace

Kk (A, Ab) = span
{
Ab, A2b, A3b, . . . , Akb

}
. (13)

The algorithm MR-II [4], [5] is an efficient short-term recurrence implementation
of this method for symmetric matrices. In the non-symmetric case the algorithm
is called RRGMRES [1], [2]. The partial decomposition when using RRGMRES
or MR-II is written as

AŴk = Ŵk+1Ĥk, Ŵk+1 = ( Ŵk , ŵk+1 ), (14)

where Ŵ ∈ R
n2×k provides a basis for (13).

4.3 Examples of Iterates

We illustrate the typical behavior of the iterative methods using two examples.
The true image X is a part of the image Barbara of size 175 × 175. Two PSF
matrices are used: a symmetric A for isotropic blur, and a non-symmetric Ã for
non-isotropic blur. In both cases, we use additive white noise E, scaled such that
‖E‖F/‖B‖F = 0.05. The true image and the two blurred and noisy images are
shown in Fig. 3.
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Fig. 3. Left: True image X. Middle: Blurred image B due to the symmetric PSF matrix
A. Right: Blurred image B due to the non-symmetric PSF matrix Ã.

Figure 4 shows the LSQR, MINRES, and MR-II solutions after 5, 10, and
25 iterations for the symmetric PSF matrix, and it is seen that the algorithms
give very different solutions. The LSQR solutions slowly improve, but after 25
iterations some noise has appeared as small circular “freckles.” The MINRES
solutions get dominated very fast by high-frequency noise; with the noise level
defined above, the iterates are clearly dominated by noise after only 5 iterations.
The MR-II solutions show artifacts similar to the LSQR solutions, but the con-
vergence seems faster as the solution after 10 MR-II iterations is visually similar
to the LSQR solution after 25 iterations.

The solutions for the non-symmetric PSF matrix are also shown in Fig. 4.
Here, the LSQR algorithm is again seen to generate some structured artifacts,
clearly visible after 25 iterations. The artifacts are no longer circular, due to the
non-isotropic blurring. But they are still band-limited and certainly not high-
frequent as the noise seen in the GMRES solutions. The RRGMRES solutions
again show artifacts similar to the artifacts for LSQR. But the difference in
convergence speed is not as large as for LSQR and MR-II.

For a smaller noise level, GMRES and MINRES seem to exhibit faster con-
vergence than LSQR, and converge to visually pleasing solutions as studied, e.g.,
in [3]. Figure 5 shows the 10th iteration of LSQR, MINRES, and MR-II for the
symmetric blurring with the noise level reduced to ‖E‖F/‖B‖F = 5 · 10−4. The
MINRES solution visually gives the highest level of detail and it is at least as
good as the MR-II solution. The LSQR solution is a bit more blurred, which
indicates that MINRES, behind the noise, converges faster than LSQR.

5 Study of Solution and Noise Components

We now study how the regularization behaves and how it treats the wanted
signal contents, as well as the additive noise. This analysis is only possible when
the additive noise e = vec(E) is explicitly known, and we can split the noisy
right-hand side as b = bexact + e with bexact = Axexact.

In the case of LSQR, the filter factors φk can be computed by a three-term
recurrence [6, Theorem 6.3.2], [13]. But for GMRES, no short recurrence exists
and the filters are are not simple to compute. Hence, to split the solution com-
ponents, we must return to the basic relations for the algorithms (8), (11), and
(14). We stress that MINRES and MR-II cannot be used in this connection,
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Fig. 4. Top: LSQR, MINRES, and MR-II iterates x(k), x̂(k) and x̃(k) with the sym-
metric PSF matrix A, for k = 5, 10, and 20 iterations. Bottom: LSQR, GMRES, and
RRGMRES iterates x(k), x̂(k) and x̃(k) with the nonsymmetric PSF matrix Ã, for
k = 5, 10, and 25 iterations.
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LSQR MINRES MR-II

Fig. 5. LSQR, MINRES, and MR-II solutions for symmetric problem with noise level
‖E‖F/‖B‖F = 5 · 10−4. The lower noise level makes the MINRES solution useful, and
we see that the MINRES solution visually seems to have the highest level of details.

while the partial Arnoldi decompositions are explicitly needed; therefore GM-
RES and RRGMRES have been used in the following also for the symmetric
problem.

Using the splitting of the right-hand side into the signal and noise components,
for LSQR we have x(k) = x

(k)
b + x

(k)
e with

x
(k)
b = VkB†

kUk+1b
exact, x(k)

e = VkB†
kUk+1e,

and similarly x̂
(k)
b and x̂

(k)
e for GMRES, and x̃

(k)
b and x̃

(k)
e for RRGMRES. This

procedure enforces the solution components to lie in the correct Krylov sub-
spaces, generated from A and b, and spanned by the columns of Vk, Wk, and W̃k.

These splittings are shown in Fig. 6 for LSQR, GMRES, and RRGMRES for
the Barbara image. Both the symmetric and the non-symmetric PSF matrix are
studied. We see how the noise propagates very differently due to the differences
in the Krylov subspaces. The LSQR algorithm produces ringing effects in the
symmetric case, and low-frequent but more unstructured ringing artifacts in the
non-symmetric case. It is interesting to see how the ringing effects follow the
contours of the image.

GMRES propagates the noise more or less as white noise for both PSF ma-
trices. An interesting observation is that also the signal component is noisy,
especially for the non-symmetric problem. This is caused by the fact that the
noise is directly present in the Krylov basis from which the solutions are recon-
structed.

The RRGMRES solution components behave much like the LSQR solution
components, but appear to carry more details after the same number of itera-
tions. After 10 iterations, the “freckles” are smaller in diameter, but more intense
in the reconstructed images. The solution components of the non-symmetric
problem are even more similar to the LSQR solution components. Avoiding the
noisy right-hand side from the GMRES subspace is seen to improve the quality
of the RRGMRES solutions.

To study the “freckles” in more detail, we study how the noise in the LSQR so-
lutions behaves in the 2D-DCT domain. For the three LSQR solutions after 5, 10,
and 25 iterations from Fig. 4, we show in Fig. 7 the error components X

(k)
e and

their 2D-DCT spectra. We see that the frequencies are primarily represented in
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LSQR GMRES

RRGMRES

Fig. 6. For each method, we show the splitting of the solution after 10 iterations into
the signal part (left) and the noise part (right), for both the symmetric problem (top
images) and the nonsymmetric problem (bottom images)

the upper left corner — corresponding to the situation for the frequency contents
of the singular vectors in Figs. 1 and 2. We also observe that the “freckles” appear
as a bandlimited ring of frequencies in the 2D-DCT domain, and that this ring
gets larger and more intense when increasing the number of iterations. Due to
the SVD filtering, we know that the components remaining to be restored are all
higher-frequent and contaminated by noise. Thus all the extractable information
about the true solution lies in the lower frequencies which are all reconstructed
when the “freckles” start to dominate.

The higher convergence speed observed by Calvetti et al. [3] for GMRES
with less noise is verified by our MR-II and RRGMRES solutions that exclude
the noisy component from the Krylov subspace. An interesting observation is
that removing the noise from the GMRES subspace results in “freckle” artifacts
similar to LSQR if the iterations are run to far.
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Fig. 7. Top: The noise components X
(k)
e of the LSQR solution for iteration 4, 10 and

25. Bottom: The 2D-DCT of these noise components.

Fig. 8. Top: The noise components X
(k)
e of the GMRES solution for iteration 4, 10

and 25. Bottom: The 2D-DCT of these noise components.

The reason that some GMRES/MINRES solutions appear to be visually bet-
ter than the LSQR solutions in a low-noise setting is simply because the “freck-
les” do not appear to the same extend. The “freckles” are very disturbing for
for the visual quality of the solutions, while the propagated noise component
is not — provided its size is sufficiently small. The extra noise can even create
an illusion of higher resolution even though no true information can be reliably
reconstructed beyond the “freckles.” Figure 8 shows how the noise is propagated
by GMRES in the low-noise setting actually also produce ringing effects, but of
much smaller magnitude than the wanted signal contents. The main contribu-
tions from the subspace is low-frequent, but the higher frequencies are slowly
boosted to cover the freckles.
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6 Conclusion

We have provided some insight into the use of regularizing iterations in connec-
tion with image restoration. We showed that – similar to the one-dimensional
case – the SVD provides a frequency (or spectral) decomposing, and that the
projection onto the Krylov subspace of LSQR/CGLS has a regularizing effect.
We also showed that the GMRES and MINRES Krylov subspaces contain noise
components that can severely deteriorate the solutions, and hence the MR-II and
RRGMRES variants are to be preferred. Finally we demonstrated that all the
methods can produce visually disturbing artifacts which appear as “freckles.”
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Abstract. Several widely used and promising programming tools and
styles for computational science software are reviewed and compared.
In particular, we discuss function/subroutine libraries, object-based pro-
gramming, object-oriented programming, generic (template) program-
ming, and iterators in the context of a specific example involving sparse
matrix-vector products. A key issue in the discussion is to hide the stor-
age structure of the sparse matrix in application code. The role of dif-
ferent languages, such as Fortran, C, C++, and Python, is an integral
part of the discussion. Finally, we present performance measures of the
various designs and implementations. These results show that high-level
Python programming, with loops migrated to compiled languages, main-
tains the performance of traditional implementations, while offering the
programmer a more convenient and efficient tool for experimenting with
designs and user-friendly interfaces.

1 Introduction

During the last fifty years we have experienced a tremendous speed-up of hard-
ware and algorithms for scientific computing. An unfortunate observation is that
the development of programming techniques suitable for high-performance com-
puting has lagged significantly behind the development of numerical methods
and hardware. This is quite surprising since difficulties with handling the com-
plexity of scientific software applications is widely recognized as an obstacle for
solving complicated computational science problems. As a consequence, techni-
cal software development is a major money consumer in science projects. The
purpose of this paper is to review and compare common scientific programming
techniques and to outline some new promising approaches.

The first attempts to improve scientific software development took place in the
1970s, when it became common to collect high-quality and extensively verified
implementations of general-purpose algorithms in Fortran subroutine libraries.
The subroutines then constitute the algorithmic building blocks in more ad-
vanced applications, where data represented by array, integer, real, and string
variables are shuffled in and out of subroutines. Such libraries are still perhaps
the most important building blocks in scientific software (LAPACK being the
primary example).

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 36–49, 2007.
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In the 1980s and 1990s some transition from Fortran to C took place in the
scientific computing community. C offers the possibility to group primitive vari-
ables together to form new compound data types. Fortran 90 also provides this
functionality. The result is that the function arguments are fewer and reflect a
higher abstraction level.

With C++ or Fortran 90, and the class or module concept, compound data
types could also be equipped with functions operating on the data. Application
code may then define some class objects and call their functions instead of shuf-
fling long lists of variables in and out of function/subroutine libraries as in C
and Fortran 77. C++ also offers object-oriented programming and templates,
two constructs that can be used to parameterize types away such that one single
function may work with different types of input data. This reduces the amount of
code in libraries significantly and increases the flexibility when using the library
in a specific application code. The upcoming Fortran 2003/2008 will enable the
same constructs.

An important feature of the present paper is that we, along with the above
mentioned programming strategies in Fortran, C, and C++, also illustrate the
use of the Python language. Python supports all major programming styles and
serves as a more convenient and more productive implementation environment
than the traditional compiled languages used in high-performance computing.
A particularly important feature of Python is the clean syntax, which by many
is referred to as “executable pseudocode”. This feature helps to bridge the gap
between a mathematical expression of a solution algorithm and the correspond-
ing computer implementation. Add-on modules equip Python with functionality
close to that of basic Matlab. Contrary to Matlab, Python offers an advanced,
full-fledged programming language with strong support for clean programming
with user-defined objects. Another advantage of Python is its rich set of libraries
for non-numerical/administrative tasks, and such tasks tend to fill up large por-
tions of scientific codes.

The paper is divided into two parts. First, we exemplify major programming
techniques, tools, and languages used in scientific computing and demonstrate
how Python is both a complement and an alternative to Fortran, C, and C++.
The second part presents some computational performance assessments of the
various programming techniques. We remark that the paper primarily addresses
readers with some technical knowledge of C, C++, and Python.

2 A Review of Programming Tools and Techniques

Programming tools and techniques are often best illustrated by applying them
to a specific problem. We have chosen to focus on the matrix-vector product
because the numerics of this problem is simple, the codes become short, and yet
different implementation styles exhibit diverse properties.

Mathematically, we want to compute r = Ax, where A is a square n × n
matrix, and x and r are n-vectors. This operation is a key ingredient in many
numerical algorithms. In particular, if A arises from discretization of a partial
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differential equation with finite difference, element, or volume methods, A is
sparse in the sense that most matrix entries are zero. Various matrix storage
schemes enable the programmer to take computational advantage of the fact
that A is sparse. One such storage scheme is the compressed row storage format.
Given a matrix

A =

⎛
⎜⎜⎜⎜⎝

a0,0 0 0 a0,3 0
0 a1,1 a1,2 0 a1,4
0 a2,1 a2,2 0 0

a3,0 0 0 a3,3 a3,4
0 a4,1 0 a4,3 a4,4

⎞
⎟⎟⎟⎟⎠

,

the compressed row storage scheme consists of a one-dimensional array, a, of all
the nonzeroes, stored row by row, plus two indexing integer arrays, where the
first, rowp (“row pointer”), tells where each row begins, and the second, coli,
holds the column indices:

a = (a0,0, a0,3, a1,1, a1,2, a1,4, a2,1, a2,2, a3,0, a3,3, . . . , a4,4)
rowp = (0, 2, 5, 7, 10, 13)
coli = (0, 3, 1, 2, 4, 1, 2, 0, 3, 4, 1, 3, 4)

Notice here that we index A with base zero, i.e., the entries of A are ai,j for
i, j = 0, . . . , n − 1. Also notice that rowp has length n + 1, with last entry equal
to the number of nonzeroes.

The straightforward algorithm for computing the matrix-vector product goes
as follows:

r = 0
for i = 0, ..., n-1:

s = 0
for j = rowp[i], ..., rowp[i+1]-1:

s = s + a[j]*x[coli[j]]
r[i] = s

The next subsections exemplify how different programming techniques result
in different levels of complexity in codes that need to call matrix-vector product
functionality for different matrix storage schemes. Two schemes are exemplified:
a two-dimensional array for a (full) n × n matrix and compressed row storage of
a sparse matrix.

2.1 Classical Fortran 77 and C Implementations

In Fortran 77 the matrix-vector product is naturally implemented as a subroutine
where A, x, r, and the array size n are subroutine arguments. Typically, the
product is computed by

call matvec_dense(A, n, x, r)
call matvec_sparse(a, rowp, coli, n, nz, x, r)

for the two cases that A is stored in a two-dimensional n × n array A or A
is a sparse matrix stored in the a, rowp, and coli arrays (nz is the number of
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nonzeroes, i.e., the length of a and coli). As seen, the calls are quite different
although the mathematics is conceptually identical. The reason is that Fortran
77 exposes all details of the underlying data structures for matrix storage. An
implication for a linear solver, say some Conjugate Gradient-like method, where
the matrix-vector product is a key ingredient in the algorithm, is that the code
depends explicitly on the way we store the matrix. Adding a new storage scheme
implies that all matrix-vector product calls in the whole code need modification.

A similar C implementation differs mainly by its use of pointers instead of
proper arrays:

void matvec_dense(double** A, int n, double* x, double* r);
matvec_dense(A, n, x, r); /* call */

void matvec_sparse(double* a, int* rowp, int* coli, int n,
int nz, double* x, double* r);

matvec_sparse(a, rowp, coli, n, nz, x, r); /* call */

2.2 Object-Based Implementation in Terms of C-Like Structs

A significant language feature of C is the struct type, which allows several basic
data types to be grouped together. It makes sense that the arrays a, rowp, and
coli used to represent a sparse matrix, are grouped together and equipped with
information on the sizes of the array:

struct MatSparseC {
double* a; int* rowp; int* coli; int n; int nz;

};

MatSparseC A = MatSparseC();

We can now access the internal sparse matrix arrays through the dot notation:
A.a, A.rowp, etc.

A dense matrix representation of A in terms of a C array can be implemented
similarly:

struct MatDenseC {
double** A; int n;

};

The calls to matrix-vector product functions

void matvec_dense (MatDenseC* A, double* x, double* r);
void matvec_sparse(MatSparseC* A, double* x, double* r);

can now be made more uniform:

matvec_dense (&A, x, r);
matvec_sparse(&A, x, r);

That is, only the fundamental mathematical objects A, x, and r enter the func-
tion that computes r = Ax.

Applying C++ as a “better C”, we may use the same name for the matrix-
vector product function (known as function overloading) such that the call hides
the way A is stored:
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void matvec(const MatDenseC* A, const double* x, double* r);
void matvec(const MatSparseC* A, const double* x, double* r);

matvec(&A, x, r); // same syntax when A is MatDenseC or MatSparseC

The const keyword contributes to increased readability (input arguments) and
safety (no possibility to change A and x inside the functions).

Actually, in C++ we would use references instead of pointers and proba-
bly also wrap primitive arrays in a class. A natural choice is to employ the
ready-made vector class std::valarray<double> from the C++ Standard Tem-
plate Library (STL) [6]. Alternatively, a home-made vector class can easily be
implemented. For the rest of the paper we introduce the short form Vecd for
std::valarray<double>. A new vector of length n is then created by Vecd(n),
while Vecd(a,n) borrows data from an existing double* a array of length n.

With help of the Vecd type the function signatures and associated call become

void matvec(const MatDenseC& A, const Vecd& x, Vecd& r);
void matvec(const MatSparseC& A, const Vecd& x, Vecd& r);

matvec(A, x, r); // same syntax when A is MatDenseC or MatSparseC

When data are grouped together using a struct or class, one often speaks about
object-based programming, since the fundamental variables are objects (here A)
encapsulating more primitive data types.

In Python we may mirror all the implementations above. The relevant array
data structure is supported by Numerical Python [3], and this structure con-
tains both the array data and the length of each array dimension. Fortran-style
functions can be implemented in Python and called as

matvec_dense2(A, x, r)
matvec_sparse2(a, rowp, coli, x, r)

A more “Pythonic” implementation would return the result r rather than having
it as an argument (and performing in-place modifications of r):

r = matvec_dense(A, x)
r = matvec_sparse(a, rowp, coli, x)

This latter design requires the matvec * routines to allocate a new r vector in
each call. This work introduces some overhead that we will quantify in Section 3.

Python’s class construction can be used to group data structures into objects
as one does in C with a struct. Here is a possible example:

class MatSparseC:
pass # start with empty class

A = MatSparseC()
A.a = some_a; A.rowp = some_rowp; A.coli = some_coli
r = matvec_sparse_C(A, x)

class MatDenseC:
pass

A = MatDenseC(); A.a = some_a
r = matvec_dense_C(A, x)
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Function overloading is not supported in Python so each function must have a
unique name. Also observe that in Python, we may declare an empty class and
later add desired attributes. This enables run time customization of interfaces.

2.3 Object-Based Implementation in Terms of Classes

The class concept, originally introduced in SIMULA and made popular through
languages such as Smalltalk, C++, Java, C#, and Python, groups data struc-
tures together as in C structs, but the class may also contain functions (referred
to as methods) operating on these data structures. An obvious class implemen-
tation of sparse and dense matrices would have the matrix-vector product as a
method. The idea is that the internal data structures are invisible outside the
class and that the methods provide algorithms operating on these invisible data.
In the present example, the user of the class is then protected from knowing
how a matrix is stored in memory and how the algorithm takes advantage of the
storage scheme.

A typical C++ implementation of a sparse matrix class may be outlined as
follows.

class MatSparse
{
private:

Vecd a;
Vec<int> rowp;
Vec<int> coli;
int n, nz;

public:
MatSparse(double* a_, int* rowp_, int* coli_, int nz, int n) :
a(a_, nz), rowp(rowp_, n+1), coli(coli_, nz) {}

Vecd matvec (const Vecd& x) const {
Vecd r = Vecd(x.size());
matvec2(x, r); return r;

}
void matvec2 (const Vecd& x, Vecd& r) const {
matvec_sparse(a.ptr(), rowp.ptr(), coli.ptr(),

rowp.size()-1, a.size(), x.ptr(), r.ptr());
}

Vecd operator* (const Vecd& x) const {
return matvec(x);

}
};

There are three matrix-vector multiplication methods: one that takes a pre-
allocated r array as argument, one that returns the result r in a new array,
and one (similar) that overloads the multiplication operator such that r = Ax
can be written in C++ code as r=A*x. Observe that if we have the plain C
function matvec sparse from page 38, class MatSparse above may be thought of
as a wrapper of an underlying C function library.

The idea is now that all matrix storage formats are encapsulated in classes
such as MatSparse, i.e., we may have classes MatDense, MatTridiagonal, MatBanded,
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etc. All of these have the same interface from an application programmer’s point
of view:

// A is MatSparse, MatDense, etc., x is Vecd
Vecd r(n);

r = A*x;
r = A.matvec(x);
A.matvec2(x, r);

This means that we may write a solver routine for a Conjugate Gradient-like
method by using the same matrix-vector product syntax regardless of the matrix
format:

void some_solver(const MatSparse& A, const Vecd& b, Vecd& x)
{

...
r = A*x;
...

}

Nevertheless, the arguments to the routine must be accompanied by object types,
and here the explicit name MatSparse appears and thereby ties the function to
a specific matrix type. Object-oriented programming, as explained in the next
section, can remove the explicit appearance of the matrix object type.

What we did above in C++ can be exactly mirrored in Python:

class MatSparse:
"""Class for sparse matrix with built-in arithmetics."""
def __init__(self, a, rowp, coli):

self.a, self.rowp, self.coli = a, rowp, coli # store data

def matvec(self, x):
return matvec_sparse(self.a, self.rowp, self.coli, x)

def matvec2(self, x, r):
matvec_sparse2(self.a, self.rowp, self.coli, x, r)

def __mul__(self, x):
return self.matvec(x)

The mul method defines the multiplication operator in the same way as
operator* does in C++. Also this Python class merely acts as a wrapper of
an underlying function library.

Contrary to C++, there is no explicit typing in Python so a single solver
routine like

def some_solver(A, x, b):
...
r = A*x
...

will work for all matrix formats that provide the same interface. In other words,
there is no need for object orientation or template constructs as we do in C++
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to reach the same goal of having one solver that works with different matrix
classes.

We should add that the matrix classes shown above will normally be equipped
with a more comprehensive interface. For example, it is common to provide a
subscription operator such that one can index sparse matrices by a syntax like
A(i,j) or A[i,j]. More arithmetic operators and I/O support are also natural
extensions.

2.4 Object-Oriented Implementation

The key idea behind object-oriented programming is that classes are organized
in hierarchies and that an application code can treat all classes in a hierarchy in
a uniform way. For example, we may create a class Matrix that defines (virtual)
methods for carrying out the matrix-vector product (like matvec, matvec2, and
the multiplication operator), but there are no data in class Matrix so it cannot be
used to store a matrix. Subclasses implement various matrix formats and utilize
the specific formats to write optimized algorithms in the matrix-vector product
methods. Say MatDense, MatSparse, and MatTridiagonal are such subclasses. We
may now write a solver routine where the matrix object is parameterized by the
base class,

void some_solver(const Matrix& A, const Vecd& b, Vecd& x)
{

...
r = A*x;
...

}

Through the Matrix reference argument we may pass any instance of any subclass
in the Matrix hierarchy, and C++ will at run-time keep track of which class type
the instance corresponds to. If we provide a MatSparse instance as the argument A,
C++ will automatically call the MatSparse::operator* method in the statement
r=A*x. This hidden book-keeping provides a kind of “magic” which simplifies the
implementation of the flexibility we want, namely to write a single function that
can work with different types of matrix objects.

Python offers the same mechanism as C++ for object-oriented programming,
but in the present case we do not need this construction to parameterize the
matrix type away. The dynamic typing (i.e., the absence of declaring variables
with types) solves the same problem as object orientation in C++ aims at.
However, in some cases where some matrix classes can share data and/or code,
it may be beneficial to use inheritance and even object-oriented programming.
This is exemplified in Section 2.6.

2.5 Generic Programming with Templates in C++

C++ offers the template mechanism to parameterize types. With templates we
can obtain much of the same flexibility as dynamic typing provides in Python.



44 H.P. Langtangen

For example, we can write the solver function with a template for the matrix
type:

template <typename Matrix>
void some_solver(const Matrix& A, const Vecd& b, Vecd& x)
{

...
r = A*x;
...

}

Now we may feed in totally independent classes for matrices as long as these
classes provide the interface required by the some solver function. Sending (say)
a MatSparse instance as A to this function causes the compiler to generate the
necessary code where Matrix is substituted by MatSparse. Writing algorithms
where the data are parameterized by templates is frequently referred to as generic
programming. This style encourages a split between data and algorithms (see
Section 2.7), while object-oriented programming ties data and algorithms more
tightly and enforces classes to be grouped together in hierarchies. A consequence
is that libraries based on object-oriented programming are often harder to reuse
in new occasions than libraries based on generic programming. The class methods
in object-oriented programming are virtual, which implies a (small) overhead for
each method call since the methods to call are determined at run-time. With
templates, the methods to call are known at compile time, and the compiler can
generate optimally efficient code.

2.6 Combining Python and Compiled Languages

Python offers very compact and clean syntax, which makes it ideal for exper-
imenting with interfaces. The major deficiency is that loops run much more
slowly than in compiled languages, because agressive compiler optimizations are
impossible when the variables involved in a loop may change their type during
execution of the loop. Fortunately, Python was originally designed to be ex-
tended in C, and this mechanism can be used to easily migrate time-consuming
loops to C, C++, or Fortran.

Integration of Python and Fortran is particularly easy with the aid of F2PY
[4]. Say we have the matvec sparse routine from page 38. After putting this (and
other desired routines) in a file somecode.f, it is merely a matter of running

Unix/DOS> f2py -m matvec -c somecode.f

to automatically parse the Fortran code and create a module matvec that can be
loaded into Python as if it were written entirely in Python. Either in the Fortran
source code, or in an intermediate module specification file, the programmer
must specify whether the r parameter is a pure output parameter or if it is both
input and output (all parameters are by default input). Because all arguments
are classified as input, output, or both, F2PY may provide both the interfaces
matvec sparse and matvec sparse2 on page 40 by calling the same underlying
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Fortran routine. It is the F2PY-generated wrapper code that, in the former
case, allocates a new result array in each call.

Class MatSparse can now be modified to call Fortran routines for doing the
heavy work. The modification is best implemented as a subclass that can inherit
all the functionality of MatSparse that we do not need to migrate to Fortran:

class MatSparse_compiled(MatSparse):
def __init__(self, a, rowp, coli):

MatSparse.__init__(self, a, rowp, coli)
import matvec; self.module = matvec

def matvec(self, x):
# call Fortran routine, let wrapper allocate result:
return self.module.matvec_sparse(self.a, self.rowp,

self.coli, x)

def matvec2(self, x, r):
# call Fortran routine, use pre-allocated result r:
self.module.matvec_sparse2(self.a, self.rowp,

self.coli, x, r)

Note that it is not necessary to redefine mul since the inherited version (from
MatSparse) calls matvec, which behaves as a virtual method, i.e., the correct
version of matvec in the subclass will be automatically called (we thus rely on
object-oriented programming when we do not repeat mul in the derived class).
To summarize, the classes MatSparse and MatSparse compiled have the same in-
terface and can be used interchangeably in application code.

F2PY can also be used to wrap C code. However, it is hard to parse C code
and detect which function arguments are arrays because (i) a pointer can be both
an array and the address of a scalar, and (ii) there is no mechanism to associate
array dimensions with a pointer. By expressing the function signatures in C in
a Fortran 90-like module (an interface or .pyf file in F2PY terminology), F2PY
can automatically generate extension modules from C sources. It is a simple
matter to extend class MatSparse compiled so that self.module either refers to
a Fortran or to a C extension module. We have done this in the experiments to
see if there are performance differences between Fortran and C.

There exist several techniques for migrating the matrix-vector product to
C++. One technique is to apply a tool like SWIG [7] to automatically wrap the
C++ class MatSparse such that it is mirrored in Python. Another alternative is
to make a straight C function taking pointers and integers as arguments and
then pass the arrays to a C++ function that creates a MatSparse instance for
computation. The latter strategy has been implemented and will be referred to as
Python calling C, calling C++ MatSparse::matvec2. The C function was made
callable from Python by F2PY. A third technique is to use tools like Weave,
Pyrex, PyInline, or Instant to write inline C or C++ code in Python.

When Python is combined with Fortran, C, or C++, it is natural and con-
venient to allocate memory on the Python side. Numerical Python arrays have
contiguous memory layout and can be efficiently shuffled to compiled code as
pointers.
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2.7 Iterators

Classical Fortran and C code applies do or for loops over integer indices to
traverse array data structures. This coding style works in most other languages
as well, but C, C++, and Fortran compilers are very good at optimizing such
constructions.

In recent years, iterators have become a popular alternative to loops with
integer indices. The standard template library (STL) [6] in C++ promoted the
use of iterators in the mid 1990s, and the construction has gained wide use also
in scientific computing (three extensive examples being Boost [1], MTL [5], and
Dune [2]). One may view iterators as generalized loops over data structures. A
matrix-vector product can be implemented as something like

template <class Matrix>
void matvec(const Matrix& A, const Vecd& x, Vecd& r)
{

r = 0;
Matrix::iterator element;
for (element = A.begin(); element != A.end(); ++element) {

r(element.i()) += (*element)*x(element.j());
// index i value index j

}

The idea is to have an iterator instance, here Matrix::iterator element, which
acts as generalized pointer to the elements of the data structure. The for loop
starts with setting element to point to the beginning of the data structure
A. The loop continues as long as element has not reached one step beyond
the data in A. In each pass we update the element “pointer” by the unary
Matrix::iterator::operator++ method. For a sparse matrix, this operator++

must be able to pass through all the nonzeroes in each row of A. The element

instance also provides a pointer dereferencing, through the unary operator*, for
accessing the corresponding data element A. The mathematical matrix indices
are available through the methods element.i() and element.j().

We emphasize that there are many design considerations behind a particular
iterator implementation. The one shown here is just an example. High-quality
numerical libraries based on iterators provide different designs (MTL [5] applies
separate row and column iterators, for instance).

The idea of using iterators to implement a matrix-vector product is that the
same function can be used for different matrix formats, as long as the provided
matrix instance A offers an iterator class with the described interface and func-
tionality. Using inline functions for the operator++, operator*, i, and j methods,
the iterator class may with a clever implementation be as efficient as classical
loops with integers. In the present example with one iterator running through
the whole sparse matrix, optimal efficiency is non-trivial.

In some way iterators are both complementary and an alternative to tem-
plates, object-oriented programming, or dynamic typing. Iterators are here used
to implement the matrix-vector product such that the same code, and the same
call of course, can be reused for various matrix objects. The previous construc-
tions in Sections 2.1–2.6 aimed at encapsulating different matrix-vector imple-
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mentations in terms of loops tailored to the underlying representation array of
the matrix, such that the product looks the same in application code and the ma-
trix type is parameterized away. Iterators and templates in combination (generic
programming) provide a quite different solution to the same problem.

Iterators may be somewhat comprehensive to implement in C++. To play
around with iterators to see if this is the desired interface or not, we strongly
propose to use Python because the language offers very convenient constructs to
quickly prototype iterators. For example, the sparse matrix iterator can be com-
pactly implemented through a so-called Python generator function as follows:

class MatSparse:
...
def __iter__(self):

"""Iterator: for value, i, j in A:"""
for i in xrange(len(self.rowp)-1):

for c in xrange(self.rowp[i],self.rowp[i+1]):
yield self.a[c], i, self.coli[c]

We can now write the matrix-vector product function in a generic way as

def matvec(A, x):
r = zeros(len(x), x.dtype)
for value, i, j in A:

r[i] += value*x[j]
return r

This implementation works well with all matrix instances that implement an
iterator that returns a 3-tuple with the matrix value and the two indices. Observe
how this compact for loop replaces the traditional nested loops with integer
indices, and also notice how simple the mapping between the traditional loops
and the new iterator is (in the MatSparse. iter method).

A faster but also more memory consuming implementation can be made by
precomputing a (new sparse matrix) storage structure that holds the (value,i,j)
tuple for each matrix entry:

def __iter__(self):
try:

return self._ap # use a precomputed list as iterator
except AttributeError: # first time, precompute:

self._ap = [(value, i, j) for value, i, j in self]
return self._ap

3 Performance Experiments

We have run experiments comparing the various implementations sketched in
Section 2 on an IBM laptop X30 machine with 1.2 GHz Pentium III processor
and 500 Mb memory, using Linux Ubuntu 2.6.12, GNU compilers (gcc, g++, g77)
version 4.0 with -O3 optimization, Python version 2.4, numpy version 1.0, and
Numeric version 24.2.
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The results in Table 1 show that there is no significant difference between
implementations of the matrix-vector product r=A*x in C, C++, and Fortran
(and especially no overhead in wrapping arrays in the C++ class MatSparse).
Using a preallocated result array r is as expected most efficient in these tests
where a large number (160) of matrix-vector products are performed. Letting
the result array be allocated in each call gives 10-15% overhead, at the gain of
getting more “mathematical” code, either r=matvec sparse(A,x) or r=A*x.

The pure Python implementation may be useful for experimenting with al-
ternative software designs, but the CPU time is increased by two orders of mag-
nitude, so for most applications of Python in scientific computing one must
migrate loops to compiled code. We also note that the new Numerical Python
implementation numpy is still slower than the old Numeric for pure Python loops,
but the efficiency of numpy is expected to increase in the future.

Iterators are very conveniently implemented in Python, but these run slower
than the plain loops (which we used internally in the iterator implementation).
Even a straight for loop through a precomputed data structure tailored for the
iterator is as slow as plain loops. The overhead of loops in Python also drowns
the expected positive effect of preallocating arrays.

When our Python class for sparse matrices has its loops migrated to compiled
code, there is no loss of efficiency compared to a pure Fortran or C function
working with plain arrays only. We have from additional experiments estimated
that a Python call to a Fortran function costs about 70 Fortran floating-point
multiplications, which indicates the amount of work that is needed on the Fortran
side to make the overhead negligible.

Table 1. Scaled CPU times for various implementations of a matrix-vector product
with vector length 50,000 and 231,242 nonzeroes

Implementation numpy Numeric

Python calling matvec sparse2, calling C, no array returned 1.0 1.0
Python calling matvec sparse2, calling F77, no array returned 1.0 1.0
Python calling C, calling C++ MatSparse::matvec2 1.0 1.0
Python MatSparse compiled.matvec2 1.0 1.0
Python calling matvec sparse, calling F77 , new array returned 1.10 1.12
Python calling matvec sparse, calling C, new array returned 1.13 1.15
Python MatSparse compiled.matvec 1.13 1.12
Python MatSparse compiled: r=A*x 1.16 1.13
Python iterator with new precomputed matrix data 136 89
Python MatSparse.matvec 153 92
Python MatSparse.matvec2 153 92
Python MatSparse: r=A*x 153 92
Python function matvec sparse 153 92
Python iterator based on generator method 228 156
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4 Concluding Remarks

We have in this paper reviewed the ideas of function libraries, object-based pro-
gramming, object-oriented programming, generic programming and iterators,
using a simple example involving the implementation of a matrix-vector prod-
uct. The role of the traditional high-performance computing languages Fortran
and C, along with the more recently accepted language C++ and the potentially
interesting Python language, has also been discussed in the context of the exam-
ple. A driving force from “low level” languages like Fortran and C to higher-level
languages such as C++ and Python is to offer interfaces to matrix operations
where the specific details of the sparse matrix storage are hidden from the ap-
plication programmer. That is, one goal is to write one matrix-vector call and
make it automatically work for all matrix types. Object-oriented programming,
generic programming with templates and iterators, as well as the dynamic typing
in Python, provide different means to reach this goal.

A performance study shows that low level (and fast) Fortran or C code can be
wrapped in classes, either in C++ or Python, with negligible overhead when the
arrays are large as in the present tests. There is neither any difference in speed
between loops in Fortran, C, and C++ on the author’s machine with GNU v4.0
compilers.

The author’s most important experience from this case study is that scientific
programming is much more convenient in Python than in the more traditional
languages. Therefore, Python shows a great potential in scientific computing, as
it promotes quick and convenient prototyping of user-friendly interfaces, while
(with a little extra effort of migrating loops to compiled code) maintaining the
performance of traditional implementations.
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Stretching Time and Length Scales in
Biomolecular Modelling:
Minisymposium Abstract
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Molecular modelling/simulation techniques have in three decades evolved to
a powerful tool and scientific discipline of its own now used in many areas
of physics, chemistry, and biology with applications from materials science to
biotechnology. These techniques have naturally become applicable for more and
complex systems largely thanks to the rapid development in computer technol-
ogy. However in recent years a variety of new advanced and innovative tech-
niques have been presented to push the time and length scales further to-
wards nano/meso scale applications and soft matter. More efficient computa-
tional schemes have been proposed to treat long-ranged interactions, parallel
algorithms are proposed to run on high-end fast computers, pc-clusters and
heterogeneous GRID environment. Ab initio and hybrid QM/MM methods are
becoming routine and developed to treat large systems. Multi-scale modelling
schemes across several physical descriptions of matter from quantum mechanical
systems with nuclei and electrons all the way to nano/meso/micro/macro levels
are maturing rapidly. This minisymposium will highlight several of these latest
techniques.
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Abstract. One of the challenges in the large scale simulations required
for biomolecular system is the recording, monitoring and visualization of
configurational information from molecular dynamics trajectories. A de-
tailed record of instantaneous configuration along the full trajectory can
quickly become unmanageable. In this paper we will describe an alter-
native approach where configurations averaged over trajectory segments
are used to follow the detailed molecular behaviour of a system over
multiple-nanosecond simulations. We will then discuss the successful ap-
plication of this approach to molecular dynamics simulations of crystal
growth.

1 Introduction

Analysis of system configurations can be a key component in the computer sim-
ulation of molecular systems. These configurations, which supply full molecular
details of the (relative) positions of the particles that make up the system, are
frequently used to provide a means of exploring the microscopic behaviour cap-
tured by a molecular simulation. It is typical for these configurations to consist
simply of the positions of all particles at a particular instant in time along the
dynamical trajectory of the system. A set of such instantaneous configurations
from a simulation can be saved and later analyzed further or visualized.

Complications arise in simulations, such as those required for biomolecular
systems, where large length and time scales are necessary to capture the be-
haviour of interest [1,2,3,4]. In these cases, the storage required to maintain this
detailed record of the systems evolution (for example, as instantaneous configu-
rations recorded every 50fs) can be prohibitive (possibly requiring 106 configura-
tions, or more). Moreover, the visualization of a system at this resolution over a
multiple nanosecond trajectory becomes quite impractical, and may well contain
detailed information (for example, due to the thermal motion of the atoms or
molecules of interest) that tends to obscure the most relevant behaviour. One
remedy to these problems is to select and record instantaneous configurations
on a far coarser grid in time (perhaps every 50 ps, for example). However, while
such an approach may retain some basic aspects of the dynamics exhibited by
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the system, considerable information is lost nonetheless. For instance, it may not
be clear if the instantaneous configuration recorded at the end of a relatively long
trajectory segment is representative of the behaviour exhibited by the system
during that segment. Below we will demonstrate that an alternative approach,
that employs averaged configurations to provide a true time coarse-graining of a
simulation trajectory, captures considerably more detailed molecular information
and allows larger scale behaviour in such systems to be tracked more readily.

2 Generation of Averaged Configurations

Spatial coarse-graining has become a widely used approach [3,4,5,6] in molecular
simulations of large systems (such as membrane system) where by the detailed
behaviour of groups of atoms are represented by (averaged into) single effective
interaction sites. The present approach is similar in character in that to will rely
on a coarse-graining, but now in time. Specifically, an averaged configuration
can be produced for any particular trajectory segment by averaging molecular
(or atomic) coordinates,

x̄ =
1

Ns

Ns∑

t=1

xt , (1)

over the Ns time steps of the segment spanning a time τ . In Eq. (1), x can
represent a positional coordinate; the case of orientational coordinates will be
discussed below. The choice of segment length can be an important consideration;
it typically is made as long as possible while still providing a reasonable vantage
point (i.e., frequency of sampling) from which to observe the complex processes
characterizing the molecular behaviour of interest. With an appropriate selection
of trajectory segment length over which to average, extraneous particle motion
(e.g. thermal motion) can be effectively removed so that any net (more gross)
motion can be more easily observed.

For each trajectory segment one has in principle a distribution of values for
each degree of freedom of the system. To provide additional information into
the nature of these distributions (beyond their means, or first-moments), we
also find it advantageous to monitor their second-moments, or widths. The root
mean-squared (RMS) deviations,

σ = (x2 − x̄2)
1/2 , (2)

are also measures of the diffusive motion exhibited by a molecule during the
trajectory segment and hence are clearly related to Debye-Waller factors. The
treatment of molecular orientations requires specific attention. At least for small
molecules (like water), we find it advantageous to separate and average their
degrees of freedom as positions and orientations. This approach allows for the
conservation of molecular geometry during the averaging process. However, Eq.
(1) cannot be applied directly to orientational coordinates due to the lack of
commutativity of finite rotations. Fortunately, an averaging procedure for ori-
entations has been developed recently [7] in terms of an average quaternion, or
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orientational centroid. In this procedure the orientational centroid, qc minimizes
the function

G(qc) =
Ns∑

t=1

Γ 2(qc, qt) , (3)

where Γ (qc, qt) = 2cos−1(qc ·qt) is the arc length between the centroid (average)
orientation and the orientation qt. A simple Monte Carlo search algorithm can
be used [7] to determine a value of qc for a set of Ns orientations.

3 Applications to Homogeneous Nucleation

In simulation studies of homogeneous crystal growth, where one attempts to
observe the spontaneous formation of crystalline order in an otherwise bulk
liquid, the identification and characterization of the critical nucleus is a crucial
aspect. Local structural order parameters have been developed and used for this
purpose [8,9,10], although the challenge has been to identify order parameters
that are both sensitive and generic. The local structural order parameters utilized
by Frenkel and co-workers [9,10], based on spherical harmonics, are the most
widely used. Here we will only briefly outline how these order parameters are
constructed. One starts by defining for each particle i

q̄lm(i) =
1

N1(i)

N1(i)∑

j=1

Ylm(r̂ij) (4)

where N1(i) is the number of first neighbors of i, Ylm is a spherical harmonics
and r̂ij is the unit vector representing the direction of the separation vector
joining particles i and j. It has been previously shown [9,10] that the choice
of l=6 provides a rather robust measure of local order in most systems. One
then generates the normalized 13-dimensional complex vector q6(i) from the
components q̄6m(i) for each particle i. We subsequently consider the coherence
between the measures q6(i) and q6(j) for the neighboring particles i and j.
Specifically, if q6(i) · q6(j) > acon, where acon is some fixed value, then the pair
is labeled as connected. The number of connected neighbors of each i, Ncon(i), is
obtained and if Ncon(i) is greater than some threshold, i is labeled as solid-like.

In utilizing this order parameter, previous workers [9,10,11] have employed the
coordinates from instantaneous configurations from their simulations. Here we
will test the impact of using (rolling) average coordinates as obtained from Eq.
1. Since the goal is to detect solid-like particles in systems undergoing homoge-
nous nucleation, where the character of particles might be expected to change
rapidly, relatively short trajectory segments, composed of Ns=50, 100, 200 and
400 timesteps, were examined. Molecular dynamics simulations of systems of
4000 Lennard-Jones (LJ) particles were carried out at a reduced density of 0.95.
Particles were considered to be first neighbors if their separation was less than
1.5σ.
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It is first necessary to identify appropriate values for the parameters acon and
Ncon(i). For this purpose simulations were performed at a reduced temperature
of 0.65 for a LJ liquid and an FCC crystalline solid. Fig. 1 compares probability
distributions functions for q6(i) ·q6(j) recorded when instantaneous coordinates
are used with those obtained from averaged coordinates. It can be seen that
while the distributions from the liquid systems are relatively unaffected by local
time averaging (coarse-graining), there is considerable sharpening and shifting
of the distributions towards their ideal value (1.0) for crystalline systems. Conse-
quently, the overlap between liquid and solid distributions is significantly reduced
(by at least two orders of magnitude) even when configurations averaged over as
few as 100 timesteps are employed. The crossover points in Fig. 1 were utilized
to provide appropriate values for the connection threshold, acon, in each case.

Fig. 2 shows probability distributions functions for Ncon obtained when coor-
dinates from instantaneous and averaged configurations are used. We see a rather
dramatic improvement in the resolution of the distributions from crystalline and
liquid systems as local time averaging (coarse-graining) is enabled. The distribu-
tions from the liquid simulations consistently shift to the left (to lower values)
as more averaging is performed. While the solid distribution appears somewhat
broad and spans the full range of values when instantaneous coordinates are uti-
lized, all the levels of averaging shown in Fig. 2 produce a distribution that has
essentially become a delta function, centered at its ideal value of 12. The obvious
conclusion is that the sensitivity of this order-parameter, and hence ones ability
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Fig. 1. Probability distribution functions for values of q6(i) ·q6(j) from simulations of
liquid (dashed lines) and FCC solid (solid lines) LJ systems at a reduced temperature
of 0.65. The blue lines represent data obtained from instantaneous configurations, while
the red, black and green lines are results obtained from coordinates averages over 100,
200 and 400 timesteps, respectively.
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Fig. 2. Probability distribution functions for values of Ncon from simulations of liquid
and FCC solid LJ systems at a reduced temperature of 0.65. The lines are defined as
in Fig. 1. It should be noted that all the lines from averaged configurations for an FCC
solid are superimposed on this plot.

to distinguish between solid-like and liquid-like particles in these simulations,
has been greatly enhanced. Even with only modest amounts of averaging (i.e.
100 timesteps) the overlap between liquid and solid distributions is significantly
reduced, i.e. by two orders of magnitude.

Fig. 3. (a) Instantaneous and (b) averaged configurations of the same interfacial region
of an ice/water system during crystal growth. The averaging in (b) is over 20 ps.
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4 Applications to Heterogeneous Crystal Growth

We have employed averaged configurations extensively in our molecular simula-
tion studies of heterogeneous crystal growth [12,13,14], where the detailed anal-
ysis of multiple nanosecond trajectories is required to uncover the underlying
processes associated with crystal growth. The details of the simulation method-
ology we have employed can be found elsewhere [12,15]. Fig. 3 compares an
averaged configuration from a 20 ps trajectory segment with the instantaneous
configuration from the end of this trajectory segment. The ice/water system pic-
tured in Fig. 3 is looking down the c-axis of hexagonal ice (I) during its crystal
growth. Perhaps the most striking aspect of the averaged configuration is the
clarity of its crystalline structure and the distinctiveness of the interfacial layer.
Clearly even at this level, the averaged configuration is providing a superior view
of the systems behaviour. We point that while some molecular overlaps can oc-

(a)

      
(b)

Fig. 4. (a) Averaged configuration of the interfacial region of the [001] face of a growing
cubic ice (I) crystal. A trajectory segment of 25 ps was used to produce the averaged
positions and orientations of the molecules. The blue dashed lines represent hydrogen-
bonded molecules. (b) Averaged configuration of the interfacial region of the [0001]
face of a growing hexagonal ice (I) crystal. The length of averaging trajectory segment
was 75 ps. The molecules are colored as discussed in the text.
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cur in an averaged configuration within the liquid region of a system (due to the
diffusive motion of these particles), these are not problematic in our analysis.

To enhance further our ability to extract visual information from averaged
configurations, we have labeled water molecules within each averaged configura-
tion as being translationally solid-like or liquid-like, and similarly as being rota-
tionally solid-like or liquid-like. This was done by identifying appropriate thresh-
olds for the RMS deviations (i.e., diffusive behaviour) for both positions and ori-
entations that are consistent with values found in the bulk crystal; molecules with
values above these thresholds are identified as being liquid-like. The molecules
could be then colored according to their solid-like/liquid-like labels. Specifically,
if a molecular was labeled translationally solid-like, its oxygen was colored red,
otherwise the oxygen was colored magenta. If a molecule was labeled rotationally
solid-like, its hydrogens were colored white, otherwise the hydrogens were col-
ored yellow. We can see from Fig. 4, where the interfacial region of an averaged
configuration for two ice/water systems are shown, that these labels provide
considerable insight it the molecular behaviour at the interfaces. It should also
be noted that the qualitative characteristics observed in Fig. 4 do not appar-
ently change in any significant way if the length of the trajectory segment is
changed somewhat (e.g. increased from 25 to 75 ps, as in Figs. 4(a) and 4(b),
respectively). This indicates that as long as a reasonable choice for the length
of time coarse-graining is utilized, the results obtained are rather insensitive to
this value.

5 Conclusions

We have shown that averaged configurations, representing a time coarse-graining
over the trajectory of a system, can be very useful for following the molecular
mechanisms of crystal growth. The inclusion of second-moment information was
also observed to add significant depth to the information contained in these
averaged configurations. We have used this approach extensively [12,13,14,16] to
studying crystal growth of pure and mixed crystals of both atomic and molecular
systems. We would expect that it would prove similarly useful in simulations of
other systems characterized by rather slow processes, for example in the folding
of a protein or in the transport of an ion across a membrane.
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Abstract. A Monte Carlo simulation study of water and hydrocarbons
aiming at understanding the degradation of polyethylene cable insula-
tion is presented. The equilibrium distributions and clustering of water
in vapour and in hydrocarbons was investigated using Gibbs ensemble
Monte-Carlo simulations. Different combinations of water and hydrocar-
bon models are investigated in order to reproduce experimental densities
of water and hydrocarbons in both the water phase and the hydrocarbon
phase.

1 Introduction

The degradation of polyethylene insulation of high voltage DC cables in the
presence of water is an important yet incompletely understood problem. It is
found to proceed via the formation of water trees, in which water penetrates
into the cable insulation [1]. In order to separate the different possible causes
for the degradation of polyethylene in real cables, a series of simulations of
increasing complexity is performed. We start with simple systems like water and
hydrocarbons, to fine-tune simulation parameters to experimental data before
the complexity of long polymers is introduced.

In an earlier study [2] we focused on the properties of liquid water in equi-
librium with its own vapour since these properties will be of high relevance to
the behaviour of water in hydrophobic hydrocarbons where the water properties
could be expected to be similar to those of water vapour. This study gave valu-
able information about the structure of water vapour. The occurence of water
clusters with different sizes was monitored and some results are summarized in
Fig. 1.

In the present work we study the equilibrium between pure water and decane
(which acts as a model hydrocarbon). In the first, preliminary study we compare
the properties of pure water vapour with water in decane, in both cases in
equilibrium with pure water liquid. Especially the clustering of water molecules
was compared.

In these studies water and decane are modelled by the well-known SPC/E [3]
and TraPPE [4] potentials, respectively. Since these force fields, with a simple
Lorentz-Berthelot mixing rule for water-decane interactions, did not accurately
reproduce water densities in the hydrocarbon phase, the second part of this
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Fig. 1. Density of (SPC/E) water clusters (in number of clusters/Å3) as a function of
cluster size. Note the logarithmic scale.
The curves refer to water clusters in pure vapour whereas the symbols refer to water
clusters in decane (modelled by the TraPPE potential). The water densities in decane
are smaller than in pure water vapour but tendencies are similar, cf. text.

paper is devoted to optimizing the interaction parameters between water and
hydrocarbons to reproduce the equilibrium distribution of water and short chain
hydrocarbons (hexane to hexadecane). The SPC [5] water force field and the
Karayannis [6] alkane force field are also included in the study.

2 Methods

2.1 Simulation Methods

The choice of simulation method depends both on the system (i.e. what methods
are possible) and the properties of interest (i.e. what methods are desirable). In
this work different Monte Carlo (MC) methods have been used to study the
interaction between alkanes and water.

In order to study phase equilibria the Gibbs Ensemble Monte Carlo (GEMC)
method was developed by Panagiatopoulos [7]. In this method, the two phases
in equilibrium with each other are simulated in each of two boxes. The pressure
is kept constant whereas the volumes of the two boxes are allowed to vary.
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In addition to ordinary translation, rotation and regrowth moves inside each
box, it also includes trial moves where the molecules are transferred between
the boxes. The GEMC method has frequently been used to simulate liquid-
vapour equilibria but in the present study it is used to study a distribution
equilibrium with two liquid boxes, one intially containing a liquid hydrocarbon
and one containing liquid water. The configurational bias method [8] was used
to enhance the acceptance rate for insertions in dense phases. All simulations
presented here were performed using the Gibbs Ensemble program by Errington
and Panagiatopoulos [9] which was slightly modified to incorporate an analysis
of water clusters.

2.2 Force Fields

For all studies in this work pair-additive empirical force fields were used. The
reason for this choice was their simplicity and the possibility to compare with
several other studies of the pure compounds.

There exist several simple force fields that well reproduce properties of water
like the SPC/E [3] and TIP4P [10] force fields. These force fields are optimized
to reproduce the thermodynamic properties of liquid water. This means, among
others, that the dipole moment is higher than in vacuo in order to account for
the effective polarization of the water molecules in the liquid. The SPC/E model
was used for most of the studies reported here since it allows for comparison
with previous simulations of liquid-vapour phase equilibria [2].

Most simulations presented here were made using the the TraPPE united-
atom force field [4] for the alkane molecules. This force field is known to repro-
duce experimental phase properties for different alkanes and alkane mixtures.
Another force field, that reproduces experimental properties of polyethylene, was
developed by Karayannis et al. [6] and is here called the Karayannis model. It
is a hybrid of the Asymmetric United Atom (AUA) model [11] and the TraPPE
model. These two models overestimate the density of the polymer by a few
percent [6], while the Karayannis model shows very good agreement with exper-
imental results. One significant difference between the Karayannis model and the
TraPPE model is that the Lennard-Jones well-depth (ε) of the CH3 end groups
in the TraPPE model is approximately twice as large as for the CH2 groups,
where it is the same for all carbon groups in Karayannis model. This works well
in a polymer, with long chains and only few end groups, but we have found that
the cohesive energy of the Karayannis model is too small when it is used for
shorter alkanes. For example the liquid density of hexane, where one third of the
carbon groups are end groups, is only one eighth of the experimental density.
The TraPPE hexane density is in very good agreement with experiment. To im-
prove the Karayannis model we have used the ε of the TraPPE model for the
end groups ( 98K instead of the original 46K ), which transforms the model to
one that gives densities that only differs a few percent from experinental values.
This means that the results presented here from the “Karayannis” model are,
in fact, from a slightly modified version of the model so that it can be used in
alkane systems.
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None of the force fields contain interaction parameters between water and
hydrocarbons. A common way to estimate these parameters is to use the Lorentz-
Berthelot rules [12]

σij =
σii + σjj

2
(1)

εij =
√

εiiεjj (2)

where σij and εij are the Lennard-Jones parameters for the interaction between
species i and j whereas σii and εii are the parameters for two atoms of the same
species.

However, Equation 2 does not accurately represent the interaction when some
of the molecules are polar and in order to better reproduce the experimental
distribution of water and decane between the phases Equation 2 was modified
to

εij = B
√

εiiεjj (3)

where B is an ad-hoc parameter which is fitted to reproduce the experimental
partition coefficient.

3 Results and Discussion

In the exploratory study the SPC/E-model of Berendsen et al. [3] was used for
water. For the alkanes, the TraPPE [4] united atom model was used and the
Lorentz-Berthelot combination rules, Eqs. (1)-(2) were used for the interaction
parameters between different species. In Fig. 1 the number densities of water
clusters of different sizes in the decane phase are shown as symbols. A comparison
with the data for pure water vapour at the same temperatures shows that the
density of water clusters of a given size is similar but lower in decane. In addition,
the ratio between the clustering in neat vapour and in decane increases with
increasing cluster size, probably due to the lack of large voids in the decane
liquid. This ratio increases more rapidly at lower temperatures since the number
of voids of a given size in pure decane decreases with temperature and the energy
barrier to increase the size of a void is more easily overcome as the temperature
increases.

The overall density of water in the decane phase was much lower than the ex-
perimental values at all temperatures, c.f., open diamonds in Fig. 2, which shows
the solubility of SPC/E water in decane at different temperatures. This can be
seen as an effect of either the attractive part of the alkane/water interaction
(i.e., εij) being too weak or the water-water attraction being too strong.

Using a stronger water-alkane attraction (B = 1.68 in Eq. 3) improved the
water in decane solubility obtained from the TraPPE and SPC/E force fields
(open squares in Fig. 2). However, at 550 K a one phase system was obtained
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Fig. 2. Solubility (in mole fractions) of water in decane for different combinations of
models as a function of temperature. Note the logarithmic scale. B is defined in Eq. 2.
B = 1 corresponds to the original Lorentz-Berthelot rules. Experimental data are from
Tsonopoulos [13].

so the critical temperature for this combination of models is too low. According
to Tsonopoulos [13] the experimental critical solution point for a water - decane
system is close to 630 K and 20 MPa. In addition, this model (B = 1.68) led to
a far too high solubility of decane in water. Therefore these parameters were not
used for the water-alkane simulations.

Instead, the model was optimized by diminishing the charges on water by a
few percent to those of the SPC model, since the polarization of water in alkanes
could be expected to be notably smaller than the polarization in pure water (for
which the SPC/E model was optimized). This, together with a value of B = 1.3,
yields good solubilities in both phases (cf. Fig. 2 for water in decane).

A comparison was also made for the solubilities of water in alkanes of different
chain lengths at 450 K, cf. Fig. 3. In agreement with experiment the mole fraction
dissolved water is essentially constant for the short chain alkanes. Also here it was
found that the use of the TraPPE alkane model together with the SPC/E water
model (with B = 1.68) yields a good representation of the mutual solubilities of
water and alkanes.

The results for the Karayannis model are very similar to those for the TraPPE
model, which is expected due to the large similarity of the models, especially for
longer chain alkanes where the influence of the terminal groups is small.
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Fig. 3. Solubilities of water in alkanes as a function of chain length at 450 K and 30 bar
(expressed as mole fractions) B is defined in Eq. 2. B = 1 corresponds to the original
Lorentz-Berthelot rules. Experimental data are from Tsonopoulos [13].

4 Conclusions

An important conclusion of this study is that water clustering is similar in alkanes
and neat vapour, especially when the water concentration in the oil (or vapour)
is low. Similar to the neat vapour, the fraction of clusters dissolved in alkane
decreases with increasing cluster size. However, the number of clusters of a given
size is always smaller in decane than in neat vapour and this deviation increases
with cluster size. This is expected since the number of voids in the pure alkane
decreases rapidly with increasing void size.

In order to properly model the solubility of water in alkanes, the simple com-
bination of the SPC/E model and good alkane models is not sufficent. This is
partly due to the fact that water is a highly polarizable molecule and it is po-
larized in the liquid phase which is implicitly included in in the SPC/E model.
Water in alkane, on the other hand, is not expected to be as polarized and
thus the less polarized SPC model yields a good representation of the water
partition if the van der Waals attraction between water and alkane also is in-
creased by about 30%. An even better solution might be to explicitly include
polarizabilities, but this is not feasible yet for modelling large water-polymer
systems.
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Abstract. The charge state of molecules and solid/liquid interfaces is
of paramount importance in the understanding of the reactivity and the
physico-chemical properties of many systems. In this work, we porpose
a new Monte Carlo method in the grand canonical ensemble using the
primitive model, which allows us to simulate the titration behavior of
macromolecules or solids at constant pH . The method is applied to the
charging process of colloidal silica particles dispersed in a sodium salt
solution for various concentrations and calcium silicate hydrate nano-
particles in a calcium hydroxide solution. An excellent agreement is found
between the experimental and simulated results.

1 Introduction

For the sake of simplicity we shall consider a planar solid/liquid interface. The
solid surface is defined by explicit titratable sites (hard spheres or points) dis-
tributed on a square lattice with the same intrinsic dissociation constant K0.
The liquid phase is described by the so called primitive model [1] where the ions
are charged hard spheres embedded in a dielectric continuum that represent the
solvent (for more details see [2]. The titration can be depicted in the usual way,

M − OH � M − O− + H+ (1)

from which the intrinsic dissociation contant can be expressed,

K0 =
aM−OHaH

aM−OH
(2)

where a is the activity. The ordinary method to conduct a titration simulation
[3] consists of many attempts of deprotonation and protonation, where the trial
energy for these can be expressed as,

βΔU = βΔUel ± ln 10(pH − pK0) (3)

where ΔUel is the change in electrostatic free energy when a site is protonated
or deprotonated and β = 1/kBT . The proton is implicitely treated through the
constant pH . For this purpose a negative charge is assigned to a titrating site
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when it is deprotonated and vice versa. In order to satisfy the electroneutrality
of the system a free charge is added/removed from the simulation cell accord-
ing to the charge state of the surface site. That is, when a site is ionised the
electroneutrality can be maintained by following two distinct procedures either
adding a cation or removing an anion, that we shall call in what is following
addition cation (ACP) and deletion anion procedure (DAP). From this and as it
will be illustrated later, we immediately note that the ordinary titration method,
Eq. 3, is wrong by an energy corresponding to the use of the free positive or neg-
ative charge and as a result, the two procedures gives different results. Indeed,
the chemical potential of the surface site, μ = kBT ln 10(pH − pK0), is mixed
with that of simple ions. Ullner et al. [6] have first developed a self consistent
method which consists in calculating pH − pK0 at a set ionisation fraction in
the canonical ensemble avoiding the simple ion contribution. In this work, a
grand canonical titration method (GCT) is proposed that properly correct for
the latter and enable us to perform titration simulation at constant pH . It will
be shown that, in the framework of the ordinary titration method and depending
on the charge state of the surface, the ACP or DAP can lead to results close to
the exact solution obtained through the GCT.

2 Grand Canonical Titration

In this section the two possible procedures, i.e. ACP and DAP, in the framework
of the GCT for a surface next to a 1:1 salt (AB) are described. Similar procedures
for multivalent salts can be easily extrapolated from this work.

OH

H

OH

Na

Na

Na

H, OH

OH

OH

Na, OH

H, OH

Na

Na

H

Na

Fig. 1. Illustration of the ionisation procedure in the framework of the GCT by: a) the
deletion of an anion, here OH−; b) by the addition of a cation, here Na+
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2.1 Deletion of an Anion

In the case of DAP the ionisation of a surface site can be written as two steps.
That is, the deprotonation of the surface and the exchange of the ion couple
(H+, B−) with the bulk. This is illustrated in Figure 2-a. The corresponding
Boltzmann factor of the trial energy can be expressed as,

exp(−βΔU) =
NB

V
exp(−βμB) exp(−βΔUel) exp{+ ln10(pH − pK0)} (4)

where μ represents the chemical potential of the considered ion. A similar ex-
pression can be found for protonation as,

exp(−βΔU) =
V

NB + 1
exp(+βμB) exp(−βΔUel) exp{− ln 10(pH − pK0)} (5)

In these two equations, one can remark that only a prefactor involving the anion,
B−, appears since the contribution of the proton is already taken into account
through their last exponential term.

2.2 Addition of a Cation

In the case of ACP, the ionisation of a surface site can be described in three steps,
see Fig. 2-b. That is, the addition of the ion couple (A+, B−), the deprotonation
and the exchange of the ion couple (H+, B−) with the bulk. The corresponding
Boltzmann factor of the trial energy can be expressed as,

exp(−βΔU) =
V

NA + 1
V

NB + 1
exp(βμAB) (6)

NB + 1
V

exp(−βμB) exp(−βΔUel) exp{+ ln10(pH − pK0)}

After some simplifications this equation can be rewritten as,

exp(−βΔU) =
V

NA + 1
exp(+βμA) exp(−βΔUel) exp{+ ln10(pH − pK0)} (7)

and for protonation,

exp(−βΔU) =
NA

V
exp(−βμA) exp(−βΔUel) exp{− ln 10(pH − pK0)} (8)

From eqs (4,5,7,8) one can notice that the GCT method amounts to simply
correct the trial energy of titration, Eq. (3), by the excess chemical potential of
the ”unwanted” ion (the ion used to maintain electroneutrality of the simulation
box.
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Fig. 2. Ionisation fraction for a surface next to a 20 mM CaX2 solution varying the pH .
The surface site density is set to 4.8/nm2 and pK0 to 9.8. ACP: addition cation pro-
cedure; DAP: deletion anion procedure; OT: ordinary titration; GCT: grand canonical
titration.

3 Results and Discussion

As an example, Fig. 2 presents the simulated ionisation fraction (α) for a surface
next to a 20 mM CaX2 solution as a function of pH . The surface sites are chosen
with a density of 4.8 /nm2 and pK0 is set to 9.8 in order to correspond to calcium
silicate hydrate. The ionisation fraction is obtained using ACP and DAP in the
framework of the ordinary titration (Eq. 3) and GCT. In the case of addition of
a divalent calcium, an attempt is made to simultaneoulsy deprotonate two sites
selected at random. One can immediately notice that in the framework of GCT
both procedure, addition of Ca2+ and deletion of X−, gives exactly the same
results illustrating the self-consistency of our approach. Interestingly, it can be
seen that in the framework of the ordinary procedure and for this pH range,
DAP slightly understimates α while ACP largely overestimates it. The opposite
takes place, not shown here, for a surface of positive charge density at pH values
lower than the pK0 (for example, considering the equilibrium M − OH+1/2 �
M −O−1/2+H+. This is simply explained by the large excess density of counter-
ions near the charged wall, see Eq. (5-9).

In Fig. 3 the simulated and experimental surface charge density against pH for
various ionic strengths of silica particles next to a 1-1 salt solution are presented.
Experimental details are given in ref. [4]. For simulations, the surface site density
and pK0 is set to 4.8/nm2 and 7.5, respectively. The value of pK0 has been taken
from the literature [4,5,7,8,9,10,11]. The site diameter is set equal to that of free
charges, i.e. 0.4 nm. As expected, α increases with the ionic strength. Except for
high salt concentration at the lowest pH values, the simulation predictions are
in very good agreement with the experiments.
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Fig. 3. Surface charge density of silica next to a sodium salt varying the pH and for
increasing concentration: from top to bottom 10 mM, 100 mM, 1000 mM. empty circles:
experiments; full curves: simulations

Fig. 4. Comparison between experimental (points) and simulated (line) net increase of
the ionization fraction (Δα) as a function of the pH for C-S-H nano-particles dispersed
in a solution containing a low bulk calcium concentration

The GCT method has been further confrontated to titration data of calcium
silicate hydrate (C-S-H), which is the main constituent of cement paste. The
experimental and simulated titrating curves of C-S-H particles dispersed in a 2
mM calcium hydroxide solution are presented on Fig. 4. C-S-H does not exist
below pH 10 and since its surface is partially ionised for this pH, the net increase
of α (Δα) instead of α is reported here. In simulations, except for pK0 the
parameters are the same as before. The latter is set to 9.8, which corresponds to
the first ionisation of silisic acid. For more details see ref. [2]. Again, a very good
agreement is found between simulated and experimental Δα. This indicates that
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our microscopic model is capable of describing the electrostatic interactions that
govern the titration of individual silanol groups leading to the macroscopically
observable surface charge.

4 Conclusion

We have proposed a new Monte Carlo method in the grand canonical ensemble
called Grand Canonical Titration, which allows us to simulate the titration be-
havior of molecules or solids at constant pH . The self-consistency of the method
has been verified. In addition, the method has been applied to the charging
process of both colloidal silica particles in a sodium salt solution and C-S-H
nano-particles in a Ca(OH)2 solution. An excellent agreement has been found
between the experimental and simulated results. This result is particulary im-
portant in the field of colloid science as it shows that the many parameters of
the commonly used ”classical Stern model” can be reduced to two, namely the
surface site density and pK0. In addition to being more simple, our approach
appears to have a clearer physical basis.
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Abstract. Proteins in the living cell can interact with a wide variety
of solutes, ranging from ions, peptides, other proteins, DNA to mem-
branes. Charged groups play a major role and solution conditions such
as pH and ionic strength can modulate the interactions significantly.
Describing these systems in a statistical mechanical framework involves
thousands of pair-interactions and therefore a certain amount of coarse
graining is often required. We here present a conceptually simple “meso-
scopic” protein model where the detailed charge distribution and surface
topology is well preserved. Monte Carlo simulations based on this model
can be used to accurately reproduce second virial coeffients, pH titration
curves and binding constants of proteins.

1 Blurry Proteins

Scientists from different fields use different approximate descriptions of how a
protein or biomolecule looks like. This is illustrated in Figure 1 where it is
sketched how the same protein may be presented in various disciplines. What
is shown is in fact a kind of coarse graining where the most detailed model
(quantum level) is transformed into simpler alternatives, tailored to capture
only properties of interest. This is a powerful technique as the mathematical
complexity can be drastically reduced (or even removed) yet still provide useful
insight. It can also be a pitfall, though. It is not uncommon to see one kind
of coarse graining applied to problems where it is not suitable. For example, it
would be silly to measure protein aggregation using the “cartoon model” as it
provides no controlled way of quantifying intermolecular interactions. Likewise
it would seem overly excessive to use a full quantum mechanical model as we
deal with long range interactions and a detailed description of internal electron
densities is not really needed (nor tractable for that matter). The trick is to find
the right level for the problem at hand, and at the same time ensure that the
results are not artificially affected by an excessive amount of input parameters.

The “biologist”, “chemist”, and “physicist” models shown in Figure 1 all illus-
trate – some better than others – that proteins have a detailed surface topology
and indeed occupy a volume from which other molecules are excluded. This gives
rise to significant intermolecular interactions and any quantifying model should
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Fig. 1. A protein as seen from three different scientific view points: The “cartoon”
model (left) showing secondary structure, the ball-and-stick model (middle) illustrating
individual atoms and chemical bonds, and finally a space filling model (right), where
each atom is presented by a sphere

capture this effect. From a computational point of view it is appealing to coarse
grain as much as possible while still preserving physical properties essential to
the problem at hand – in this case the excluded volume. The “colloid scientist”
would (possibly) replace the protein with a sphere matching the protein volume
so as to reduce the number of particles from thousands to merely one. For many
globular proteins this can be a reasonable approximation but is not for more
elongated molecules. Another disadvantage of the spherical model is that the
detailed charge distribution is usually replaced by a single point charge, thus ne-
glecting possible electric multipole moments. Figure 2 shows other alternatives;

Fig. 2. Various protein models and the number of particles involved. From left to right:
1) Atomistic model where all atoms are represented by spheres. 2) Amino acid model
where entire amino acid residues are approximated by spheres. 3) Point charges in an
encapsulating sphere. 4) A sphere with a point charge in the middle (DLVO type).

in particular we note the amino acid model where all amino acid residues in
the protein are replaced by spheres. This method was scrutinized by Lund and
Jönsson[1] and – while seemingly crude – it captures many protein details and is
advantageous for several reasons: 1) the surface topology is well preserved (see
Figure 3), 2) the detailed charge distribution is maintained, 3) it can incorporate
detailed short range interactions (van der Waals, for example), and 4) the num-
ber of particles is reduced by one order of magnitude compared to the atomistic
representation, allowing even large proteins to be handled.
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Fig. 3. A cross section of the protein ribonuclease using both an atomistic- and an
amino acid representation

1.1 Rigidity

The models proposed so far all neglect structural degrees of freedom within
the protein molecule. Clearly this is an approximation as side chains do have
some flexibility and certain proteins are known to function via structural per-
turbations. To incorporate this we need a set of energy functions for stretching,
twisting and bending intra-molecular bonds in the protein. Such force fields are
typically constructed in a semi-empirical manner and may contain hundreds of
parameters and it can be difficult to make sure that these do not artificially
influence the final results.

In cases where structural fluctuations are minor or irrelevant for the prop-
erties of interest the molecule can be kept rigid. For a number of proteins
the structure is invariant to even large changes in solution conditions (pH,
salt). In theoretical calculations the (fixed) structural coordinates are acquired
from either NMR or X-ray crystallography, but these are only partly experi-
mental: After the data collection the experimental constraints (electron den-
sity maps or NOE’s) are – together with a force field – used in a simulation,
so as to obtain a the most probable structure. Therefore the “experimental”
structure do hold a reminiscence of theory and should be regarded as an av-
erage structure. This is especially true for solution NMR structures where the
flexible side chains can appear in a multitude of conformations, but are typi-
cally averaged to just one. These facts support the usage of a rigid but likely
structure.
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1.2 More Coarse Graining

So far we have discussed the macromolecule only but protein interactions usually
take place in a condensed phase in the presence of solvent and other solutes.
One obvious but important feature of an aqueous solution is that the particle
density is high; the concentration of water in water is roughly 55 mol/l and this
will significantly influence any interaction taking place. Computationally this is
challenging as one needs to consider thousands of solvent molecules and their
mutual interactions throughout phase space. This is manageable by “averaging
out” configurational variables[2], leaving us with effective potentials that has the
character of free energies and can be performed in a step wise manner,

βw(x) = − ln
∫

e−βU(x,y)dy = − ln
〈
e−βU(x,y)

〉
y

(1)

βw = − ln
〈
e−βU(x,y)

〉
x,y

= − ln
〈
e−βw(x)

〉
x
. (2)

where β is the inverse of the thermal energy. For example, for polar fluids struc-
tural degrees of freedom can be integrated out to reduce the properties of the
enormous number of solvent molecules to a single, macroscopic number, namely
the relative dielectric constant, εr. Very appropriately, the solvent is now referred
to as a dielectric continuum, indicating that structural details are nonexistent.
The (effective) interaction energy between two charges, i and j in the solution
is now given by Coulombs law, reduced by a factor of 1/εr:

〈βwij〉solv ≈ 1
εr

e2qiqj

4πε0rijkT
=

lBzizj

rij
(3)

where q is the charge, z = q/e the charge number, e0 the permittivity of vacuum,
k Boltzmann’s constant and e is the electron charge. Note the introduction of
the Bjerrum length, lB. In a similar fashion we can continue (Figure 4) to treat
salt particles implicitly and arrive at the classic Debye-Hückel result [3],

〈βwij〉solv,salt ≈ lBzizj

rij
e−κrij (4)

where the inverse Debye screening length, κ is proportional to the square root of
the ionic strength. Equation 3 and 4 are valid for spherical symmetric charges,
but for dipolar molecules (such as proteins) angular averaging produce additional
terms – dipole-dipole interactions (Keesom energy) for example:

〈
βwdip−dip

ij

〉
solv,angles

≈ − (lBμiμj)
2

3r6
ij

(5)

To derive these expressions, assumptions and mathematical approximations are
almost always applied and this of course has consequences. For example, in
the Debye-Hückel theory correlations between ions[4] are partly neglected and
unphysical results usually appear for strongly coupled systems (highly charged
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Fig. 4. Simplifying an aqueous protein solution using statistical mechanical averaging
resulting in faster and faster calculations. The blue text indicates the implication of
the approximations.

molecules, multivalent salt etc.). It suffices to say that effective potentials reduce
the computational cost significantly – usually at the expense of molecular detail;
for further information the reader should consult the textbook of Israelachvili [5].

1.3 Dielectric Boundaries

As just outlined averaging out solvent degrees of freedom can drastically re-
duce the computational cost when simulating liquids. However, this continuum
approach brings about another concern: The deep interior of proteins consists
mainly of non-polar matter, while the surrounding solvent is highly polar. The ef-
fect of this can be captured by solving the Poisson(-Boltzmann) equation for the
dielectric boundary between the low- and high dielectric regions. However, this
boundary is not well defined nor sharp; surface groups of water soluble proteins
are partially charged, polar and polarizable, stemming from proton fluctuations,
structural flexibility of amino acid side chains and backbone dipole moments.
Further, since the dielectric constant is a macroscopic property influenced by
distant molecules, setting up boundaries within a few nanometers may be to
push the model too far. Note that it is not uncommon (in fact it is normal)
to let the boundary include charges in the low-dielectric protein interior even
though the Born energy suggests costs of ∼10-100 kT per charge relative to po-
sitions just a few Ångströms away. This is typically remedied by partly solvating
charges using surface accessible areas and by doing so good agreement can be
obtained with experimental data for properties such as side-chain pKa-values
and overall titration behavior.

The above complications suggest a different and simpler approach. If we can
agree that surface charges are established in relatively high dielectric regions,
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electrostatic interactions between them can be conveniently estimated using a
uniform dielectric constant equal to that of water. Mathematically, this is trivial
as the pair interaction between any two charges will be of the type shown in
Eq. 3 or 4 and hence, many-particle systems can be studied relatively easily.
Using this approach a number of researchers[1,6,7,8,9,10,11] have obtained good
agreement with experimental data – even though effects from the low dielectric
interior have been ignored. This indicates that the uniform dielectric approxi-
mation is applicable for the overall electrostatic environment but may become
less applicable for deeply buried charges.

1.4 A Few Examples

We shall here mention just a few of the applications in which the presented tech-
niques can be used to predict protein solution properties and will not go into
great detail of how the systems are solved numerically. Using Metropolis’ Monte
Carlo (MC) simulation technique[12,13] coordinate space of a given model sys-
tem can be efficiently sampled, yielding statistical mechanical averages. Coarse
graining proteins to the amino acid level and treating salt explicitly, but sol-
vent implicitly (uniform dielectric) a number of properties have been studied as
shown in Fig. 5 and Table 1. The virial coefficients, B2 (Fig. 5, left) are obtained
from two-body simulations[1] where the inter-protein potential of mean force,
w(r) can be sampled and later integrated to yield the virial coefficient,

B2 = −2π

∫ ∞

0

(
e−βw(r) − 1

)
r2dr. (6)

When B2 is negative there is a net attraction between the proteins and is positive
they repel each other. Thus, the virial coefficient is interesting in connection with
protein aggregation and crystallization and is strongly influenced by solution pH,
salt concentration and type. In the case of lysozyme there is a strong repulsion
at low pH and salt concentration, where the protein net-charge if positive. As
pH is increased this charge gradually diminishes and as the protein goes through
its isoelectric point, an attraction occurs. Addition of salt effectively screens out
electrostatic interactions and hence the virial coefficient is much smaller.

Due to acidic and alkaline side chains on the protein surface the overall protein
charge varies with solution conditions. This can be studied in a simulation of a
single protein by letting protons fluctuate between the macromolecule and the
bulk solution[15,16]. The resulting average protein charge (Fig. 5, right), dipole
moment and charge capacitance[16] can be used to construct an approximate
expression[17] for the inter-protein potential of mean force. In addition to being
very fast, this approach to protein-protein interactions has an important advan-
tage in that the result can – mathematically – be partitioned into contributions
from ion-ion, ion-dipole interactions etc. and as such can be more informative
than a “brute-force” two-body simulation. Not only can the overall protonation
state be analyzed but it is also possible to examine individual, titrating sites.
Table 1 shows calculated values for various residues in the protein ovomucoid
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Fig. 5. Comparison between experimental data and results obtained from Monte Carlo
simulations using the uniform dielectric model. Left: The virial coefficient for lysozyme
at different pH. Open circles represents MC data. Right: Titration behavior of ribonu-
clease – experimental data from ref. [14].

Table 1. Measured and calculated pKa values for turkey ovomucoid third domain at
low salt concentrations. The MC and MTK calculations are both based on the crystal
structure[18] (1PPF). In the simulations, the amino acid model was applied together
with a uniform dielectric constant.

Ideal MTK[19] MC Exp.[20]
εp=4, relaxed εp=20 εp=80

Asp7 4.0 2.1 3.0 3.2 < 2.6
Glu10 4.4 4.0 3.5 3.9 4.1
Glu19 4.4 3.1 2.7 3.4 3.2
Asp27 4.0 2.9 3.7 2.7 < 2.3
Glu43 4.4 5.6 4.7 4.1 4.7
Ctr56 3.8 2.6 3.2 2.5 < 2.5
rms 1.2 0.5 0.7 0.4

third domain. Besides experimental data the comparison is against an ideal cal-
culation (no electrostatics) and a modified Tanford-Kirkwood (MTK) approach.
Despite the high level of coarse graining in the MC simulations, it is on average
closer to the experimental results than what is obtained with the MTK method,
based on Poisson–Boltzmann electrostatics with both a dielectric boundary and
side-chain flexibility.

1.5 Final Remarks

We have here outlined some methods useful for simplifying proteins and their sur-
rounding media – going from tens of thousands to merely hundreds of particles.
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Computationally this is a tremendous advantage and despite their naive nature
these models indeed are capable of capturing the essential physics of biomolecular
systems. An appealing feature of moderating the level of sophistication is that
the demand for input parameters is diminished. Yet – as illustrated by the above
examples – very competitive results can be obtained.
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Abstract. Molecular dynamics (MD) simulations of vitamin D receptor
(VDR) ligand complexes have been carried out to explain and predict
ligands’ functional behavior. Elevated simulation temperature, simulated
annealing, locally enhanced sampling method, and targeted dynamics
were used to speed up the sampling of the conformational space in MD
simulations. In addition, self-organizing map and Sammon’s mapping
algorithm was applied to group and visualize receptor movement upon
ligand binding. It was shown that the degree of structural order in the
carboxy-terminal α-helix inversely correlated with the strength of the
antagonistic activity of the ligand and that a two-side chain analog of
vitamin D functions as a potent agonist to the VDR despite its signif-
icantly increased volume. Binding of novel nonsteroidal VDR agonists
was also investigated. Simulation results were combined with extensive
experimental data. In this work theoretical and experimental studies
were fruitfully combined to investigate complex receptor regulation.

1 Introduction

The nuclear receptor (NR) for 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the
vitamin D receptor (VDR), binds its ligands with high affinity (Kd is 1 nM or
lower). The ligand binding domain (LBD) of VDR is formed of 12 α-helices and
its overall architecture is similar for all NRs. A crucial step in the regulation of
the biological activity of VDR is the stabilization of the agonistic conformation of
the LBD via repositioning of the most carboxy-terminal α-helix (helix 12, Fig. 1.
This conformational change is initiated by agonist binding. Helix 12 contains a
short transactivation function 2 (AF-2) domain [1]. A glutamate residue of the
AF-2 domain forms, together with a lysine residue of helix 3, a charge clamp
that positions the nuclear receptor interaction domain of coactivator proteins
to a hydrophobic cleft on the surface of the LBD [2]. The correct position of
helix 12 is important for the correct distance between the glutamate and lysine
residue and influences in this way the efficacy of the NR-coactivator interac-
tion, and eventually, resulting in an enhanced transcription of NR target genes

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 82–89, 2007.
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Fig. 1. The structure of the VDR-LBD-1α,25(OH)2D3 complex

Fig. 2. Structures of agonistic and antagonistic VDR ligands. RO43-83582 (Gemini)
is a double side chain agonist, TEI-9647 a partial antagonist for human, but a weak
agonist for rodent VDR, and CD4528 and LG190178 are potent nonsteroidal VDR
agonists.

[3]. Natural and synthetic molecules that selectively activate or inhibit VDR or
other NRs are of considerable biological significance and may have important
clinical applications. The complexes formed between a number structurally and
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functionally different ligands (Fig. 2) and the LBD of VDR were studied using
MD simulations. Special emphasis was placed on finding connections between the
structural changes induced by ligand binding and ligand’s functional properties
(agonism/antagonism). Because the structural changes taking place upon ligand
binding are slow compared to the simulation time scale different computational
tricks were used to speed up the sampling of the conformational space. To this
end, elevated simulation temperature, simulated annealing alone and in combi-
nation with locally enhanced sampling (LES) method and targeted dynamics
were applied. Similar problems were faced when different ligands (Fig. 2) were
docked to the LBP. Simulation results were used to suggest specific mutagene-
sis experiments and to provide structural data that could be used to rational-
ize experimental observations. The extensive combination of computational and
experimental results was found to results in particularly fruitful insights into
the complex regulation of the VDR that would have otherwise been difficult to
obtain.

2 Computational Details

The initial coordinates of VDR were obtained from the X-ray crystal struc-
ture of the VDR-LBD-1α,25(OH)2D3 complex (Protein Data Bank code 1DB1)
[4]. Coactivator peptide KNHPMLMNLLKDN was added to the simulation sys-
tem and placed on the surface of the VDR-LBD on the basis of (rat) VDR-
LBD-1α,25(OH)2D3 complex x-ray structure (1RK3) [5]. Ligands were placed
to the ligand-binding site using the VDR-LBD-1α,25(OH)2D3 crystal structure
as a model. The two-side chain analog RO43-83582 (Gemini) was docked to the
ligand-binding pocket using the locally enhanced sampling (LES) method [6]
with five copies of ligand side chains. The structures obtained from the LES sim-
ulations were studied further with long MD simulations. Targeted MD method
was used to generate an antagonistic receptor conformation. In this method, an
additional term is added to the energy function of the system based on the mass-
weighted root mean square deviation of a set of atoms in the current structure
compared with a reference structure. For the molecular dynamics simulations
VDR complexes were solvated by TIP3P water molecules in a periodic box of
61×69×86 Å. Crystallographic water molecules were included in the simulation
systems. The water molecules of the complexes were first energy-minimized for
1000 steps, heated to 300 K in 5 ps and equilibrated by 10 ps at constant volume
and temperature of 300 K. After that, the simulation systems were minimized
for 1000 steps, the temperature of the systems was increased to 300 K in 5 ps and
equilibrated for 100 ps The equilibration was carried out at constant pressure
(1 atm) conditions. In the production simulations of 2-10 ns the electrostatics
were treated using the particle-mesh Ewald method. A timestep of 1.5 fs was
used and bonds involving hydrogen atoms were constrained to their equilib-
rium lengths using the SHAKE algorithm. The simulations were done using the
AMBER 7.0/8.0 simulation package [7] and the parm99 parameter set of AM-
BER. The parameters of the ligands were generated with the Antechamber suite
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of AMBER in conjunction with the general amber force field [8]. The atomic
point charges of the ligands were calculated with the two-stage RESP [9] fit at
the HF/6-31G* level using ligand geometries optimized with the semi-empirical
PM3 method using the Gaussian03 program [10].

3 Results and Discussion

The carboxy-terminal α-helix, helix 12, of VDR contains a critical ligand-
modulated interface for the interaction with coactivator proteins. MD simula-
tion were done for the natural VDR agonist 1α,25(OH)2D3, a partial antagonist
ZK159222 and a complete antagonist ZK168281. Because displacement of the
helix is a slow process which is difficult to observe in MD simulations, a sim-
ulation of 1 ns at 300 K was first carried out followed by another 1 ns at 340
K. After the 2 ns MD the structural differences induced to the LBD by the
three functionally different ligands were clear. It was observed that, as expected,
helix 12 stayed in the agonistic conformation during the VDR-1α,25(OH)2D3
simulation, even after 1 ns at 340 K. The average structure of the last 500 ps
of the simulation was still close to the x-ray structure of the same complex [4].
In contrast, the structure of helix 12 of the ZK159222 and ZK168281 complexes
was clearly distorted compared to the experimental structure. In the case of the
complete antagonist, the root-mean square deviation (RMSD) of the Cα atoms
(compared to the x-ray structure) of the helix 12 (residues 417-423) was dur-
ing the 1 ns simulation at 340 K about 3 Å, while it was about 1 Å in the
1α,25(OH)2D3 simulation, confirming the antagonistic nature of ZK168281. In
the case of ZK159222 the RMSD varied between 1-3 Å during the simulation,
as would have been expected for a partial antagonist. The distance between two
charged residues, Glu420 of the helix 12 and Lys246 is critical for the interac-
tion between the VDR ligand-binding domain and coactivator. In the case of
1α,25(OH)2D3 simulation the distance between the Cα, atoms of Lys246 and
Glu420 was on average 19.0 Å, which is close to 19.1 Å of the x-ray structure.
Again, the distance of the VDR-ZK168281 simulation deviated clearly more
from the reference distance of the agonistic structure than the distance of the
ZK159222 simulation demonstrating the more complete antagonistic properties
of the former ligand. Thus, MD simulations could explain the different action of
the two antagonists by demonstrating a more drastic displacement of helix 12
through ZK168281 than through ZK159222 [11] [12].

The large majority of 1α,25(OH)2D3 analogs which have been synthesized
with the goal of improving the potency and specificity of the physiological ef-
fects of vitamin D are simply side chain modifications of the natural hormone.
RO43-83582 (Gemini) is an exceptional vitamin D3 analog with two side chains
that, despite about 25 % increased volume, acts as a potent agonist and seems
to bind the VDR in its agonistic conformation. When Gemini was docked to the
ligand-binding pocket of the VDR x-ray structures, it became far from obvious
how a ligand with two side chains and considerably increased volume could fit
into the binding pocket of the LBD without disturbing the agonistic receptor
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conformation. To dock the Gemini into the ligand-binding pocket twelve differ-
ent LBD-Gemini conformations were simulated with the LES method and five
copies of the Gemini side chains. The starting conformations for these simu-
lations were generated by rotating the side chains of Gemini in steps of 30◦.
Simulated annealing was used in conjunction with LES resulting, after cool-
ing to 0 K, an ensamble of 72 side chain placements. These placements formed
two narrow clusters predicting two possible positions for the second side chain
of Gemini. In both conformations the first side chain keeps the same position
than the single side chain of 1α,25(OH)2D3. Gemini’s 25-OH also makes the
important hydrogen bonds with His305 and His397, like the natural hormone.
However, there were two different positions for the second side chain. In one
of the positions the extra side chain points in the same direction as the C21-
methyl group of 1α,25(OH)2D3, whereas in the other position it is rotated 120
compared to the first position. This structural prediction was challenged by mu-
tating residues closest to the binding positions of the extra side chains into bulky
phenylalanines. It could be demonstrated that filling both binding sites of the
extra side chain with one bulky phenylalanine is more severe than placing two
phenylalanines together into one or the other binding site. In addition, muta-
tions were found to disturb the action of Gemini significantly more than that of
1α,25(OH)2D3. Thus, it was demonstrated that the second side chain can choose
between two binding positions within the LBP of the VDR [13] [14] [15]. At the
time of these computational and experimental studies there were no crystallo-
graphic analysis available of VDR-Gemini complex. Later, a preliminary report
on the zebrafish VDR-LBD - two side chain analog x-ray structure confirmed
that the second side chain occupies one of the predicted binding pockets with
minimal disturbance in the structure of the LBD [16]. An analysis based on
neural network algorithms and visualization of the analysis using the Sammon’s
mapping method of several VDR-ligand x-ray structures and MD simulations
showed that the expansion of the ligand-binding pocket to accommodate the
second side chain of Gemini, and also the shrinkage of the pocket upon binding
of superagonist MC1288, is a combined results of minor movements of more than
30 residues and major movements of a few critical residues [15].

The 26,23-lactone derivative of 1α,25(OH)2D3, TEI-9647, is a partial antago-
nist of the human VDR, but in rat cells it behaves as a weak agonist. Comparison
of the amino acid sequences of the human and rat VDR-LBD and inspection of
the VDR crystal structure suggested that there are only two residues, at posi-
tions 403 (Cys in human, Ser in rat) and 410 (Cys in human, Asn in rat), which
are the most likely candidates for the differing action of TEI-9647. This action
could be mimicked in human cells by the double mutagenesis (Cys403Ser and
Cys410Asn) to the human VDR. MD simulations of 6 ns of the wild type human
VDR and human VDR double mutant (Cys403Ser and Cys410Asn) complexed
with 1α,25(OH)2D3 and TEI-9647 were run to study the structural consequences
of the mutations. It was seen that TEI-9647 decreases the stability of helix 12 of
the wild type VDR compared to 1α,25(OH)2D3. In contrast, the RMSDs of helix
12 of VDR double mutant simulations were similar for both 1α,25(OH)2D3 and
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TEI-9647. In addition, the RMSDs of these two simulations were similar to those
of VDR-1α,25(OH)2D3. Thus, MD simulations reproduced the experimentally
observed behavior of 1α,25(OH)2D3 and TEI-9647 in human and rat cells. Sim-
ulation structures showed that Asn410 of rat VDR (Cys in human) formed helix
12 stabilizing interactions between helices 11 and 12. Because of the additional
stabilization TEI-9647 acted as a weak agonist of rat VDR but as an partial
antagonist of the human VDR [17].

MD simulations have also been used to understand how four selected nons-
teroidal VDR agonists bind to the LBD of the VDR. Ligand docking and MD
simulations showed that the nonsteroidal ligands take a shape within the LBP
that is very similar to that of the natural ligand and that each of the three
hydroxyl groups of the ligands formed hydrogen bonds with the residues of the
LBP. The natural hormone, 1α,25(OH)2D3, forms six hydrogen bonds with the
LDB. Therefore, the six hydrogen bond distances were measured from the MD
simulations of the nonsteroidal ligands and 1α,25(OH)2D3. The measurements
were compared to the point mutatagenesis analysis in which the same six crit-
ical residues were replaced by alanines. Comparison of the calculated distances
and experimental data showed good corrrelation between the extend of hydro-
gen bonds and loss of functional activity. In other words, the more exactly the
nonsteroidal ligands place their hydroxyl groups, the more potent VDR agonists
they seem to be [18].

The MD simulations of the modulation of the vitamin D receptor activity
by various ligands have demonstrated that although the task, the prediction
and description of receptor activity is challenging, interesting new insight may
be gained if computational experiments are tightly linked with laboratory ex-
periments. However, simulation of ligand-induced receptor activities is far more
difficult than simulation of ligand binding affinities, which nowadays may of-
ten be considered as a standard simulation task. MD simulations of receptor
activities requires often innovative use of computer simulation techniques, appli-
cation of special analysis methods and, importantly, detailed knowledge about
the relationship between receptor structure and its functional properties.

References

1. Bourguet, W., Germain, P., Gronemeyer, H.: Nuclear Receptor Ligand-Binding Do-
mains Three-Dimensional Structures, Molecular Interactions and Pharmacological
Implications. Trends Pharmacol. Sci. 21, 381–388 (2000)

2. Feng, W.J., Ribeiro, R.C.J., Wagner, R.L., Nguyen, H., Apriletti, J.A., Fletterick,
R.J., Baxter, J.D., Kushner, P.J., West, B.L.: Hormone-Dependent Coactivator
Binding to a Hydrophobic Cleft on Nuclear Receptors. Science 280, 1747–1749
(1998)

3. Freedman, L.P.: Increasing the Complexity of Coactivation in Nuclear Receptor
Signaling. Cell 97, 5–8 (1999)

4. Rochel, N., Wurtz, J.M., Mitschler, A., Klaholz, B., Moras, D.: The Crystal Struc-
ture of the Nuclear Receptor for Vitamin D Bound to its Natural Ligand. Mol.
Cell 5, 173–179 (2000)



88 M. Peräkylä
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12. Lempiäinen, H., Molnár, F., Gonzalez, M.M., Peräkylä, M., Carlberg, C.:
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Abstract. Matrices appearing in Hartree–Fock or density functional
theory coming from discretization with help of atom–centered local ba-
sis sets become sparse when the separation between atoms exceeds some
system–dependent threshold value. Efficient implementation of sparse
matrix algebra is therefore essential in large–scale quantum calculations.
We describe a unique combination of algorithms and data representa-
tion that provides high performance and strict error control in blocked
sparse matrix algebra. This has applications to matrix–matrix multipli-
cation, the Trace–Correcting Purification algorithm and the entire self–
consistent field calculation.

1 Introduction

The properties of matter as we see it are parametrized by the behavior of single
atoms. On one hand, atoms that strongly bind to each other will often make
a strong material. On the other, few atoms missing from the crystal structure
will introduce strain on microscopic scale that can considerably affect macro-
scopic mechanical or electric properties of samples consisting of many orders of
magnitude more atoms. A doping concentration of 1 atom per 105 can make the
difference between an insulator and a semiconductor [1]. Unfortunately, direct
investigation of processes at this level is often difficult and sometimes outright
impossible since the act of measurement itself can affect its result [2,3]. Com-
puter modeling of such processes becomes very important for the understanding
of such systems. Since creation and breaking of chemical bonds often involves
redistribution of the electronic wave function, the system must be described at
the quantum level. There are many processes that do not involve considerable
electron redistributions and they can be simulated at a simpler, classical level
– this is however out of scope of this article. Each electron – and interesting
systems consist of thousands of them – is described by its wave function deter-
mining the probability that the electron can be found at some point in space.
The total electronic wave function must fulfill additional conditions. Since the
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electrons are indistinguishable fermions, the total wave function must change
only sign when two electrons are swapped. This constraint leads to the simple
Slater determinant representation ansatz and in turn to the Hartree–Fock (HF)
model of the Schrödinger equation if only one determinant is used. The HF
model effectively simulates electron movement in an approximate, averaged field
of all other electrons and nuclei, and all motion correlation effects are neglected.
There have been many attempts to improve this by – for example – including
more determinants in the expansion, but they lead to considerably increased
computational cost [4]. One of the main advantages of the HF theory is that
the practical implementation can be made to scale linearly with the size of the
modeled system. An alternative to wave function theory is the so–called Density
Functional Theory (DFT). This theory avoids to some extent the complexity
associated with wave function theory by using the electronic density ρ(r) as the
primary variable. This variable choice automatically makes the electrons indis-
tinguishable – only the total density can be determined. The major challenge
of DFT is to determine the energy associated with a given density. The initial
obstacle related to the kinetic energy term was overcome by the theory of Kohn
and Sham (KS). This theory exploits the success of HF and introduces a con-
cept of orbitals so that the kinetic energy functional is evaluated in a manner
analogous to HF theory. Currently, many approximations exist for the remaining
exchange and correlation terms.

This paper is concerned with an effective way of representing electron density
in HF and KS theories. The density ρ(r) is usually represented by a matrix
expansion

ρ(r) =
K∑

p,q=1

Dpqbp(r)bq(r) (1)

where Dpq are elements of the density matrix D and {bp(r)} is a set of K basis
functions. Common choices for the basis set include plane wave functions, Slater
functions e−αr, or Gaussian functions e−αr2

, the two latter ones multiplied by
an angular part and centered at the atoms. The objective of such calculations is
to minimize the total HF/KS energy E expressed in terms of the one–electron
operator matrix H1, the two–electron matrix F2el and – in case of DFT – an
exchange–correlation term Exc

E = Tr [H1D] +
1
2
Tr [F2elD] + Exc . (2)

The matrix H1 that includes kinetic energy and nuclear attraction terms depends
only on the chosen basis set and atom charges and positions. The matrix F2el
and the scalar Exc both depend on the trial electron density. From now on, the
total HF/KS potential matrix F = H1 + F2el will be referred to as the Fock
matrix. In case of DFT, an additional exchange–correlation term Fxc is added
to F . HF/KS calculations are done in cycles, each of them involving two time
consuming steps: a) evaluation of the Fock matrix for a trial electron density
and b) search for the corresponding density matrix. These cycles are performed
until self–consistence is reached. The formation of the new density matrix in
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step b) traditionally uses the so–called aufbau principle: The Fock matrix F is
diagonalized to obtain its eigenpairs. The eigenvectors Cocc associated with the
smallest eigenvalues are combined to obtain the density matrix D:

FCocc = εSCocc → D = Cocc(Cocc)T (3)

where S is the basis set overlap matrix. This operation scales cubically with the
problem size and becomes the bottleneck for large systems. A method that takes
advantage of the existing sparsity in the F matrix is needed. Several algorithms
have been proposed for this purpose [5,6,7,8,9,10,11,12]. All of them compute
the solution iteratively by repeated matrix–matrix multiplications. The perfor-
mance is therefore closely connected to the efficiency of the multiplications. The
multiplications can scale linearly if multiplications by zeros which are present
in sparse matrices are avoided. Multiplication may result in new small elements
appearing but this fill–in can be prevented by filtering out small elements. A
systematic filtering algorithm will control the error propagation and contain it
under the user–requested threshold.

This paper presents a unique combination of algorithms that provide a ro-
bust framework for sparse matrix operations and enable linear scaling in density
purification methods. First, a trace–correcting purification (TC2) algorithm is
reviewed and some of its computational aspects are described. We then dis-
cuss sparsity properties of the involved matrices and review shortly an efficient
method for the error control crucial for the TC2 algorithm. Next, we introduce
the Hierarchic Matrix Library that was used to implement this algorithm. Fi-
nally, we present some benchmarks of this library.

The benchmark systems presented in this article are water droplets with up
to 888 molecules, generated by molecular dynamics at 300 K. All benchmarks
were performed on an Intel Xeon EM64T 3.4 GHz and 3–21G basis set was used
unless stated otherwise.

2 Trace–Correcting Purification

Our work with sparse matrix algebra was motivated by the need for fast and
reliable matrix operations in density matrix purification methods. Density ma-
trix purification has been proposed in a multitude of variants [8,9,10,11,12]. The
purification algorithms rely on the fact that the Fock matrix and the density
matrix share a common set of eigenvectors but have different eigenvalues. One
therefore applies a series of eigenvector conserving transformations to the Fock
matrix so that the eigenvalues corresponding to occupied eigenvectors converge
to 1 and the remaining eigenvalues converge to 0.

The trace–correcting purification algorithm (TC2), developed by Niklasson
[9], is not only the simplest one but is also very competitive when it comes to
performance measured in number of matrix–matrix multiplications required to
converge [9,11]. The TC2 algorithm assumes orthogonal basis set, i.e. the overlap
matrix S = I. Therefore, the generalized eigenvalue problem in Eq. 3 has to be
transformed to standard form. This can for example be achieved by a Cholesky
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decomposition of the overlap matrix S = UT U [13]. The purification algorithm
is then applied to Fort = U−T FU−1 resulting in a density Dort in orthogonal
basis which can be transformed back to the original basis by D = U−1DortU

−T .
This results in an additional cost of four extra matrix–matrix multiplications per
self–consistent field cycle plus the cost of one inverse Cholesky decomposition
of the overlap matrix. TC2 also requires upper and lower bounds lmax and
lmin of the eigenvalue spectrum which can be obtained using eg. the Gershgorin
theorem [14]. The algorithm is as follows:

compute P = (lmax*I - F)/(lmax - lmin)
while not converged

if(trace(P) > N) then
P := P*P

else
P := 2*P - P*P

end while

The final result of the purification is contained in P. The efficiency and relia-
bility of the purification algorithm depend on the representation of matrices and
the algorithms used for the matrix manipulations. In particular, two important
operations are repeated in each iteration of the procedure: 1) The symmetric
matrix square and 2) Truncation of small matrix elements. Both these opera-
tions are described later on in detail. The simplicity of the TC2 algorithm is very
appealing but one has to be aware of its drawbacks. One potential deficiency of
the TC2 algorithm is that the accumulated error grows exponentially during a
number of iterations – see eg. [10] and [15]. It is therefore crucial to diligently
control the truncation error. Also, degenerate eigenvalues at the band gap – for
which the diagonalization method would randomly pick some to be occupied –
cannot be automatically handled and require separate treatment.

3 Sparsity

One feature that distinguishes matrices appearing in HF and KS computations
is their rather limited sparsity. Sparsity patterns have previously been investi-
gated for linear alkanes [16]. These systems are very sparse and linear scaling
can therefore be achieved for relatively small systems. Three–dimensional dense
systems like the water droplets we are using for benchmarks in this article are
considerably more difficult to handle. The left panel of Figure 1 shows that the
matrices have thousands of nonzeros per row and that this value is still increas-
ing for 610 water molecules. While sparsity is larger in some cases, algorithms
have to be able to handle semi–dense cases as well. In all computations presented
in this article, the truncation of matrices was done so that, for given matrix A,
truncated matrix Ã, and threshold τ , ‖A − Ã‖F ≤ τ as described in section 4.
A threshold of τ = 10−4 gives errors in total HF/KS energies of about 10−5

Hartree.
Previous work within this field use a blocked compressed sparse row rep-

resentation [17] to store the non–vanishing submatrices. In this setting, basis
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Fig. 1. Left panel: Sparsity in Hartree–Fock computations. The droplet size ranges from
8 to 610 water molecules. Full matrix given as a reference. Right panel: Percentage of
nonzeros in the overlap matrix, the Fock matrix, and the density matrix for varying
truncation threshold τ . Matrices were computed for a water droplet with 610 water
molecules. The matrix size is 7930.

functions are grouped into atom [6] or multi–atom [18] blocks where atoms and
associated basis functions are reordered to group matrix elements associated
with atoms close in space. Sparsity is then considered at the block level and
dense block multiplications are performed using hardware–optimized linear al-
gebra libraries [19,20]. As a consequence, the block sizes are determined by the
chosen basis set and the molecular geometry. A problem with this approach is
that many linear algebra libraries perform considerably better for selected ma-
trix sizes. Additionally, different block sizes appearing in atom and multi–atom
based approaches lead to more substantial heap memory fragmentation which
makes it more difficult to optimally utilize available resources. These problems
can be avoided by choosing uniform block sizes as described later.

The most important matrices involved in HF and KS computations are the
overlap matrix, the Fock matrix, and the density matrix. The right panel of
Figure 1 shows an example of the sparsity of these three matrices for different
values of the truncation threshold τ . The matrices used in the right panel of
Figure 1 correspond to the largest matrix size in the left panel. We note that the
change in sparsity with varying truncation threshold is different for the three
matrices. This is because the sparsity in the overlap matrix is determined by
the basis set only, while for the other matrices, sparsity is also dependent on the
physical properties of the system.

4 Systematic Truncation of Small Elements

There exist several ways to maintain sparsity by dropping small matrix elements.
One appealing way is to explicitly take advantage of the matrix element mag-
nitude dependence on the distance between the corresponding basis function
centers [18,21]. A submatrix is dropped when the shortest distance between the
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two atom groups is greater than a predefined cutoff radius. It is, however, rarely
known which cutoff radius that will correspond to a certain accuracy and this
approach will therefore cause severe difficulties with error control. Apart from
risking larger errors than expected, one will usually also include submatrices
with negligible contribution, reducing in this way the efficiency in subsequent
matrix operations [15,22]. Another way to remove unnecessary submatrices is to
look at the maximum absolute element in the submatrix. The entire submatrix
is dropped if this element is smaller than a preselected threshold. In this way
one is able to strictly control the error. However, the error estimate obtained
with this approach is far from optimally tight[15].

Based on these observations, we have come to the conclusion that it is better
to formulate the truncation in terms of the norm of the entire matrix that one
is interested in. For example, if one is interested in a certain accuracy in the
total HF/KS energy, one should employ a truncation method that is based on
the Frobenius norm of the entire matrix. The idea is simple; while keeping the
error in the chosen norm below some requested threshold, as many submatrices
as possible should be removed. Also, the truncation should be fast. Our method
which we call a Systematic Small–Submatrix Selection Algorithm (SSSA) realizes
this idea [15]. The SSSA outline is the following: The norms of all nonzero
submatrices are computed and placed into a vector. Subsequently, the norms
are sorted in descending order. Finally, small submatrices are removed from the
end of this sorted vector as long as the sum of their norms is below the requested
threshold. Figure 2 shows that the careful filtering obtained by using the SSSA
algorithm together with the Frobenius norm keeps the total HF/KS energy error
at a predictable level.
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Fig. 2. Error in the final HF energy as a function of selected SSSA threshold and system
size. For systems affected by truncation errors, SSSA algorithm keeps their impact at
a strictly controlled level. The benchmark systems are water droplets. Basis set: STO–
3G. The largest system, with 3654 basis functions consists of 522 water molecules.
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5 Hierarchic Matrix Library

An optimal data structure for representation of sparse matrices appearing in
HF/KS calculations has to fulfill several conditions. Since the matrices are semi–
dense, the representation must not introduce much overhead. The representation
must allow for quick evaluation of norms as needed for SSSA and be generally
flexible to handle many matrix operations performed on matrices, like matrix
multiplications by ordinary and on–the–fly transposed matrices. We propose a
hierarchic matrix data structure that treats the matrix in several levels. At the
lowest level in the hierarchy, the matrix elements are real numbers just like in
the case of an ordinary full matrix. At higher levels, each matrix element is a
hierarchic matrix. This makes it possible to consider sparsity at several levels
in the hierarchy. If a submatrix is zero at a certain level in the hierarchy, it is
unnecessary to reference lower levels. We have realized this idea using generic
programming in C++ and called the resulting code library the Hierarchic Matrix
Library (HML). A somewhat simplified building block illustrating the idea of
HML is the following template:

template<typename Telement>
class Matrix {
Telement* elements;

};

Using this template one may define an ordinary full matrix type and a hier-
archic three-level matrix type as follows:

typedef Matrix<double> MatrixType;
typedef Matrix<Matrix<Matrix<double> > > ThreeLevelMatrixType;

At the lowest level we use a specialization that calls the Basic Linear Algebra
Subprograms (BLAS). In this way high performance is obtained if the program
is linked to a highly tuned BLAS implementation. The matrix–matrix multipli-
cation at higher levels was implemented by the straightforward triple for–loop.
Recursive algorithms have previously been used in dense matrix operations to
optimally utilize deep memory hierarchies[23]. Also in HML, cache hit rate could
possibly be improved by using some kind of cache oblivious algorithm combined
with a more careful selection of submatrix block sizes at higher levels. In all
benchmarks presented in this article the program was linked to Intel’s Math
Kernel Library (MKL).

Our reordering of basis functions is similar to the one proposed in Ref. [18] in
that it is based on distances in space between atom centers. We have, however,
chosen to keep the block size fixed rather than constraining it to match the num-
ber of basis functions on a set of atom centers. The reason for this is twofold: 1)
At the matrix sizes we are interested in – typically in the range 0 to 200 – BLAS
performance is often highly dependent on the matrix size. 2) Use of a uniform
block size reduces the probability of memory fragmentation. In Figure 3, timings
for two important matrix operations are plotted as functions of block size. The
investigated operations are general matrix–matrix multiply (gemm) and sym-
metric matrix square (sysq). The gemm operation is C = α op(A) op(B) + βC
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and the sysq operation is S = αT 2 + βS where α and β are scalars, A, B,
and C are general matrices, S and T are symmetric matrices, and op(A) = A
or op(A) = AT . Note that in this figure the block sizes have been chosen as a
multiple of 4 since MKL’s gemm operation is optimized for such matrix sizes.
Scanning block sizes with step 1 would result in a highly jagged plot, with perfor-
mance drops up to 40%. This plot may look different for other underlying BLAS
libraries but suggests that the multiplication performance is fairly immune to
changes of the block size as long as the block size is in the range 24 to 64.
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Fig. 3. Sparse matrix–matrix multiplication performance for different choices of block
size and truncation threshold with fixed matrix size = 2756, with MKL’s full ma-
trix dgemm implementation used as reference. The benchmarks were performed on
an overlap matrix from a HF/KS calculation on a water droplet containing 212 wa-
ter molecules. Left panel: Matrix–matrix multiply (dgemm). Right panel: Symmetric
matrix square (dsysq).

6 Performance

An advantage with the hierarchic data structure compared to the blocked com-
pressed sparse row representation is that symmetry in matrices can easily be
utilized, often increasing the computational speed and reducing the memory us-
age by a factor of 2. This can also be seen in Figure 3 where the time for a sysq
operation for all block sizes is less than 55% of the time for a gemm operation.
In the context of hierarchic matrices this is achieved by recursive computation of
symmetric matrix squares (sysq), symmetric rank–k matrix updates (syrk), sym-
metric matrix–matrix multiplies (symm), and matrix–matrix multiplies (gemm).
Figure 4 displays the performance of the TC2 algorithm using HML compared
to the traditional diagonalization method. It can be seen that purification can
be used for all matrix sizes, not only for large ones, without significant loss
of performance. This is achieved thanks to the limited overhead in the HML
implementation.
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Fig. 4. Benchmark of the trace–correcting purification algorithm implemented with
routines from the Hierarchic Matrix Library (HML) (truncation threshold τ = 10−4)
compared to diagonalization with the Math Kernel Library’s dsygv

7 Summary and Conclusions

We have presented a unique combination of theoretical methods, algorithms
and data representation that allows to efficiently store and process matrices
appearing in HF and KS theories. Our implementation uses a hierarchic data
structure to efficiently store and access elements of sparse matrices, maintaining
the truncation error under a requested threshold. This data structure makes it
possible to implement many interesting algorithms in an efficient and transparent
manner. As an example of such an algorithm, we have chosen the purification
algorithm that thanks to our implementation can be used for robust and efficient
calculations of electron density matrices in the HF and KS theories. Benchmarks
that we present show that purification as implemented by us is competitive to
the diagonalization method, becoming superior already for 4000 basis functions,
even for dense, three–dimensional systems like water droplets, while maintaining
high accuracy.
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Abstract. A highly efficient ab initio tight-binding-like approximate
density-functional quantum mechanical method has recently been de-
veloped by us. In this method, the integrals related to the exchange-
correlation part are obtained by higher order many-center expansions
and all the integrals can be obtained by the interpolation of the look-up
tables. The speed of the calculation is also enhanced by using a better
way to choose the integrals in the look-up tables. It is shown that the
calculated molecular equilibrium geometries and the reaction energies for
hydrogenation reactions are very close to those from the usual density
functional theory calculations.

1 Introduction

Electronic structure calculations are essential in the study of the properties of
molecules and materials. In the past decades, many electronic structure calcu-
lation methods have been developed. Of the methods, those developed from the
density functional theory (DFT)[1,2,3] have become very popular. Currently,
DFT methods can be used to study a system of up to about 100 atoms with
considerable accuracy. Despite such great advance, DFT calculations are still
very time-demanding. For systems of several hundred atoms or more, such cal-
culations are far too slow to be applied in practice. In recent years, tremendous
progresses have been made in developing efficient and reliable approximate elec-
tronic structure calculation methods that can be used for a wide variety of
purposes, for example, for modeling the forces on atoms in atomistic molecular
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dynamics computer simulations. One of such advances is the development of
ab initio tight-binding-like (AITB) electronic structure methods which can be
hopefully used as a general tool for electronic structure calculations[4,5,6]. In
this paper, we outline our recent work on the development of such an accurate
yet highly efficient AITB method.

2 Theoretical Development

AITB methods usually start from the Harris-Foulkes functional[7,8] which is
equivalent to expanding the electron-electron interactions in the Kohn-Sham
energy functional with respect to a reference density ρ̃, keeping only the zero-th
order approximation and the first order correction, and neglecting the second
order and higher order corrections. In order to make the calculations simpler
and faster, we made a further simplification of the Harris-Foulkes functional.
The simplified functional is given as

EHF =
Nocc∑

i

fiεi − 1
2

∫ ∫
ρ̃ (r1) ρ̃ (r2)

r12
dr1dr2

+ Exc

[
ρ(0)

]
−

∫
ρ(0)(r)Vxc

(
ρ(0)(r)

)
dr + VI−I , (1)

with

Vxc (r) =
δExc [ρ (r)]

δρ (r)
, (2)

where fi is the occupation number on orbital i. Exc is the exchange-correlation
energy functional and Vxc is the so-called exchange-correlation potential. ρ is
the electron density. VI−I is the ion-ion interaction term. The orbital energy εi

is found from the following one-electron orbital equation:
[
− 1

2∇2
1 + Vext (r1) +

∫
ρ̃ (r2)
r12

dr2 + Vxc

(
ρ(0)(r1)

)]
| ψi (r1)〉 = εi| ψi (r1)〉 ,

(3)
where Vext is the external potential. Compared to the original Harris-Foulkes
functional[7,8], our simplification is in the exchange-correlation part. Eq.(1) is
equivalent to expanding the Coulomb and exchange-correlation interaction terms
in the Kohn-Sham energy functional with respect to ρ̃ and ρ(0), respectively, and
neglecting all the second order and higher order corrections. Thus, the error in
the total energy caused by such simplification is also only in the second order
and would have only a minor effect on the calculation results.

The reference electron densities ρ̃ and ρ(0) we used are super-positions of
spherically distributed atomic-like densities having the forms

ρ̃ (r) =
∑

I

ρ̃I (rI), (4)
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and
ρ(0) (r) =

∑

I

ρ
(0)
I (rI), (5)

respectively, with
ρ̃I (rI) = ρ

(0)
I (rI) + ΔnIfI (rI) , (6)

where ρ
(0)
I is the valence electron density of neutral atom I and fI(rI) corre-

sponds to the density of a single electron in the highest occupied atomic orbital.
rI = |r−RI| is the distance between r and atomic site RI. ΔnI can be considered
as the net number of electrons that atom I obtains in a molecular system and
is determined by

∂EHF

∂ΔnI
= 0. (7)

Eq.(7) leads to a set of {ΔnI} required in solving eq.(3). Therefore, in practical
calculation, {ΔnI} and eq.(3) are solved self-consistently.

Under the LCAO-MO approximation, molecular orbitals are linear combina-
tions of atomic orbitals, that is,

ψi =
∑

μ

Cμiφμ, (8)

where {φμ} represent atomic orbitals. The coefficients {Cμi} and the orbital
energies εi can be obtained by solving the following equation self-consistently:

FC = SCε, (9)

with
Sμυ = 〈φμ|φυ〉 , (10)

and

Fμυ = 〈φμ| − 1
2∇2 |φυ〉 + 〈φμ| Vion |φυ〉

+ 〈φμ (r1)|
∫ ρ̃(r2)

r12
dr2 |φυ (r1)〉 + 〈φμ (r)| VXC

(
ρ(0) (r)

)
|φυ (r)〉

= 〈φμ| − 1
2∇2 |φυ〉 + 〈φμ|

∑
I

V
(PP )
I |φυ〉 + 〈φμ (r1)|

∑
I

∫ ρ
(0)
I (r2)
r12

dr2 |φυ (r1)〉

+
∑
I

ΔnI 〈φμ (r1)|
∫ fI (r2)

r12
dr2 |φυ (r1)〉 + 〈φμ (r)| VXC

(
ρ(0) (r)

)
|φυ (r)〉 ,

(11)
where V

(PP )
I is the pseudo-potential due to the nucleus and core electrons of

atom I.
In this work, ρ

(0)
I and fI (r) are all expanded as linear combinations of 1S type

gaussians by least-square fittings. Vext corresponds to the norm-conserving sepa-
rable dual-space pseudo-potential devised by Goedecker, Teter, and Hutter[9] for
DFT calculations. The atomic orbitals {φμ} are also expressed as linear combi-
nations of primitive gaussians. Therefore, it is clear that all the integrals, except
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for those related to the exchange-correlation potential and energy functional,
can be expressed as closed forms and calculated analytically.

For the calculation of integrals related to the exchange-correlation potential or
energy functional, the approximation of many-center expansion is adopted. For
the off-center integrals, the same expansion formula as that given by Horsfield[5]
is used, that is

〈
φIα

∣∣Vxc

(
ρ(0)

)∣∣ φJβ

〉
=

〈
φIα

∣∣∣Vxc

(
ρ
(0)
I + ρ

(0)
J

)∣∣∣ φJβ

〉

+
∑

K(�=I,J)

〈
φIα

∣∣∣Vxc

(
ρ
(0)
I + ρ

(0)
J + ρ

(0)
K

)
− Vxc

(
ρ
(0)
I + ρ

(0)
J

)∣∣∣ φJβ

〉
.

(12)

For the on-site integrals, we developed an improved many-center expansion
scheme by including higher order terms in the original expressions of Horsfield.
The improved integrals are given as

〈
φIα

∣∣∣Vxc

(
ρ(0)

)∣∣∣φIβ

〉
=

〈
φIα

∣∣∣Vxc

(
ρ
(0)
I

)∣∣∣ φIβ

〉

+
∑

J( �=I)

〈
φIα

∣∣∣Vxc

(
ρ
(0)
I + ρ

(0)
J

)
− Vxc

(
ρ
(0)
I

)∣∣∣ φIβ

〉

+ δVIα,Iβ , (13)

∫
ρ
(0)
I (r) εXC

(
ρ(0) (r)

)
dr =

∫
ρ
(0)
I (r) εXC

(
ρ
(0)
I (r)

)
dr

+
∑

J( �=I)

∫
ρ
(0)
I (r)

[
εXC

(
ρ
(0)
I (r) + ρ

(0)
J (r)

)
− εXC

(
ρ
(0)
I (r)

)]
dr

+ δEXC,I , (14)

with

δVIα,Iβ ≈ 1
2

∑

J( �=I)
K(�=I,J)

〈φIα|Vxc

(
ρ
(0)
I + ρ

(0)
J + ρ

(0)
K

)
+ Vxc

(
ρ
(0)
I

)

− Vxc

(
ρ
(0)
I + ρ

(0)
J

)
− Vxc

(
ρ
(0)
I + ρ

(0)
K

)
|φIβ〉, (15)

and

δEXC,I ≈ 1
2

∑

J( �=I)
K( �=I,J)

∫
ρ
(0)
I (r) [εXC

(
ρ
(0)
I (r) + ρ

(0)
J (r) + ρ

(0)
K (r)

)
+ εXC

(
ρ
(0)
I (r)

)

− εXC

(
ρ
(0)
I (r) + ρ

(0)
J (r)

)
− εXC

(
ρ
(0)
I (r) + ρ

(0)
K (r)

)
]dr. (16)
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Fig. 1. Geometry used in the look-up tables for three-center integrals. A, B, and C
denote atoms.

In the above equations, α and β denote atomic orbitals and I, J , and K denote
atoms. εXC is the exchange-correlation energy density. δVIα,Iβ is the correction
for the on-site potential integral and δEXC,I is the correction for the energy
integral.

In practical AITB calculations, the integrals required are often obtained by
finding the corresponding integrals in local coordinate systems through the in-
terpolation of the look-up tables and then by transforming the integrals from
the local coordinate systems to the molecular coordinate system. Except in those
for the one-center integrals, in look-up tables are integrals calculated on a pre-
defined mesh of inter-atomic distances in the local coordinate systems. The ge-
ometry used in the tables is shown in Figure 1. The parameters ri, sj , and tk in
the mesh are determined by the following equations

ri = rmax − (rmax − rmin)
ln (Nr + 1 − i)

ln (Nr)
, (17)

sj = smax − (smax − smin)
ln (Ns + 1 − j)

ln (Ns)
, (18)

and

tk = tmax − (tmax − tmin)
ln (Nt + 1 − k)

ln (Nt)
(19)

Usually, when ri = rmax, or sj = smax, or tk = tmax, most of the integrals
approach to some values that can be neglected. The exceptions are those of the
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form 〈φμ (r1)|
∫ fJ (r2)

r12
dr2 |φυ (r1)〉. For these integrals, a similar treatment to

that outlined in Ref([10]) is used.

3 Results

Based on the method outlined above , we have written a Fortran AITB calcula-
tion program using BLYP [11,12] Generalized Gradient Approximation (GGA)
for the exchange-correlation functional. In our current implementation, the mini-
mal basis set using only the valence atomic orbitals as basis functions is adopted.
Some preliminary results are listed in Tables 1 to 3.

Table 1. Equilibrium geometries (bond lengths in Å and angles in degrees) for selected
molecules

Molecule Symmetry Parameter DFT a This Work Exp.
H2 D∞h R(HH) 0.823 0.823 0.742

CH4 Td R(CH) 1.164 1.156 1.092
C2H2 D∞h R(CC) 1.297 1.255 1.203

R(CH) 1.154 1.139 1.061
C2H4 D2h R(CC) 1.409 1.422 1.339

R(CH) 1.169 1.158 1.085
� (HCH) 115.9 116.4 117.8

C2H6 D3d R(CC) 1.583 1.572 1.531
R(CH) 1.171 1.162 1.096

� (HCH) 107.1 107.1 107.8
NH3 C3v R(NH) 1.104 1.118 1.012

� (HNH) 105.7 100.7 106.7
HCN C∞v R(CN) 1.258 1.232 1.153

R(CH) 1.119 1.146 1.065
CH2NH Cs R(CN) 1.362 1.338 1.273

R(CHsyn) 1.190 1.170 1.103
R(CHanti) 1.181 1.167 1.081

R(NH) 1.141 1.133 1.023
� (HsynCN) 128.2 127.4 123.4
� (HantiCN) 118.3 118.9 119.7

� (HNC) 109.0 109.0 110.5
CH3NH2 Cs R(CN) 1.498 1.533 1.471

R(CHtr) 1.194 1.171 1.099
R(CHg) 1.177 1.165 1.099
R(NHa) 1.100 1.118 1.010

� (NCHtr) 117.7 116.7 113.9
� (HgCH′

g) 106.4 107.0 108.0
� (HNH) 108.7 101.1 107.1

a Frozen core
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Table 2. Equilibrium geometries (bond lengths in Å and angles in degrees) for selected
molecules

Molecule Symmetry Parameter DFTa This Work Exp.
N2 D∞h R(NN) 1.257 1.195 1.098

N2H2 C2h R(NN) 1.342 1.310 1.252
R(NH) 1.190 1.153 1.028

� (HNN) 113.5 113.4 106.9
N2H4 C2 R(NN) 1.563 1.535 1.449

R(NHint) 1.132 1.127 1.021
R(NHext) 1.132 1.127 1.021

� (NNHint) 103.4 103.3 106.0
� (NNHext) 103.4 103.3 112.0

Θ(HintNNHext) 75.2 77.0 91.0
H2O C2v R(OH) 1.102 1.093 0.958

� (HOH) 99.3 99.6 104.5
H2O2 C2 R(OO) 1.617 1.512 1.452

R(OH) 1.134 1.109 0.965
� (OOH) 97.2 102.2 100.0

Θ(HOOH) 139.0 116.7 119.1
CO C∞h R(CO) 1.320 1.254 1.128

H2CO C2v R(CO) 1.349 1.309 1.208
R(CH) 1.199 1.188 1.116

� (HCH) 114.9 114.5 116.5
CH3OH Cs R(CO) 1.530 1.508 1.421

R(CHtr) 1.176 1.166 1.094
R(CHg) 1.184 1.173 1.094
R(OH) 1.108 1.096 0.963

� (OCHtr) 107.1 106.8 107.2
� (HgCH′

g) 107.5 107.4 108.5
� (COH) 104.4 105.5 108.0

a Frozen core

These results cover the equilibrium geometries for some molecules (See Ta-
bles 1 and 2), and the reaction energies for hydrogenation reactions (See Table
3). For comparison, we also listed the results from the usual frozen-core DFT cal-
culations and experiment. In the frozen-core DFT calculations, the same (BLYP)
exchange-correlation functional and basis set are used with the effects of the nu-
clei and core electrons modeled by a compact effective-core potential of Stevens
et.al.[13]. The frozen-core DFT calculations are carried out by GAUSSIAN98[14].
The experimental values are from Reference([15,16]).

From the tables, we can see that the AITB results are quite close to those from
the usual frozen-core DFT calculations. Both types of theoretical calculations
give similar trends. For the molecular equilibrium geometries, both the AITB
and DFT calculations give, for most molecules, longer bond lengths and smaller
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Table 3. Selected reaction energies (in kcal/mol) for hydrogenation reactions

Reaction DFTa This work HF/STO-3G Exp.
C2H6+H2 → 2CH4 18 17 19 19
C2H4+2H2 → 2CH4 72 66 91 57
C2H2+3H2 → 2CH4 137 119 154 105

CH3OH+H2 → CH4+H2O 17 18 16 30
H2O2+H2 → 2H2O 32 28 31 86

H2CO+2H2 → CH4+H2O 47 45 65 59
CO+3H2 → CH4+H2O 74 57 72 63

N2+3H2 → 2NH3 25 19 36 37
N2H2+2H2 → 2NH3 52 48 75 68
N2H4+H2 → 2NH3 31 26 28 48

HCN+3H2 → CH4+NH3 81 73 97 76
CH3NH2+H2 → CH4+NH3 17 21 20 26
CH2NH+2H2 → CH4+NH3 57 55 78 64
a Frozen core

bond angles. For the reaction energies for hydrogenation reactions, the AITB
results are in general closer to those from the frozen-core DFT than to those
from the Hartree-Fock approach with STO-3G as basis set.

4 Conclusion

In this paper, we have presented a reliable, yet highly efficient tight-binding-
like approximate density-functional electronic structure calculation method. It
is shown that the calculated molecular equilibrium geometries and the reaction
energies for hydrogenation reactions are very close to those from the accurate
results based on the density functional theory (DFT).
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Abstract. Protein folding simulations have contributed significantly to
our understanding of the problem, since it is difficult to study individual
molecules during the folding process. We have recently performed folding
simulations of Chignolin, a decapeptide (Seibert et al., J. Mol. Biol. 354
(2006) p. 173) and introduced a new algorithm for deriving kinetics infor-
mation as well as thermodynamics from the trajectories (Van der Spoel
& Seibert, Phys. Rev. Lett. 96 (2006), p. 238102). Here we investigate
the algorithm further and show that the folding reaction for Chignolin
is a two-state folding reaction, in accord with experimental data.

1 Introduction

The replica exchange molecular dynamics (REMD) method [1,2,3] allows for
coupling multiple simulations run in parallel. In this manner simulations can
travel between different temperatures (Fig. 1). By using a Metropolis criterion
based on the potential energy, the conformations that have low energy are ef-
fectively sorted down, such that one obtains a larger population of low-energy
structures at low temperature than at high temperature. In the limit of very long
simulations one will obtain an equilibrium population at each temperature, and
hence temperature dependent properties can in principle be determined [4,5,6].
REMD has been used frequently for protein folding simulations [7,4,8,6,9,10,11],
and this is also the context in which we apply it. There are other computational
approaches to the protein folding problem which we will not discuss here since
they have recently been reviewed extensively by Snow et al. [12].

Although REMD in itself is a very useful tool, it was hitherto not possible
to use the time-dimension in the simulations. That is, it was problematic to
interpret the causality in the simulation quantitatively due to the fluctuating
temperatures (Fig. 2). We have recently introduced a new algorithm that does
exactly that: follow the simulations, including the intrinsic temperature jump,
and deduct kinetic and thermodynamic information from these trajectories [13].
In this paper we focus on the inner workings of the algorithm, and demonstrate
the power of the method on new simulation data. Finally, we discuss applications
outside the field of protein folding simulations.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 109–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Schematic representation of the replica-exchange algorithm [1]. The cross de-
notes the trajectory of a simulation in time and temperature. The peptide structures
exemplify the “sorting” with native structures at low T and extended (or otherwise
non-native) structures at high T.
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Fig. 2. Trajectory in temperature of one of the replicas in a 16-replica simulation of
Chignolin [11]

2 Methods

2.1 Simulation Details

A linear peptide with sequence GYDPETGTWG, corresponding to the Chigno-
lin peptide [14] was constructed using the PyMOL program and solvated with
888 water molecules and 2 Na+ ions. A rhombic dodecahedron box with peri-
odic image distance of 3.4 nm was used. The energy of the system was minimized
with the steepest descent algorithm, and a 200 ps simulation was performed dur-
ing which the positions of the protein atoms were restrained. This system was
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subsequently used as a starting conformation for the replica exchange [1,2,3]
MD simulations. The OPLS force field [15] was used with TIP4P water [16].
16 replicas were used with temperatures of 275, 282, 289, 296, 305, 313, 322,
331, 340, 350, 360, 371, 382, 394, 406, 419 K respectively. Simulations were 510
ns. To maintain the temperatures at the chosen levels and the pressure at 1
bar, Berendsen weak coupling [17] was used, with coupling constants of 0.1 ps
for the temperature and 1 ps for the pressure. A twin range cut-off of 0.9/1.4
nm for Van der Waals interactions was applied and the smooth particle mesh
Ewald algorithm [18] was used for Coulomb interactions, with a switching dis-
tance of 0.9 nm. Neighbor lists were utilized and updated every fifth integration
step. Constraints were used for bond lengths using the LINCS algorithm for
the protein [19] and SETTLE [20] for the water. In addition two classical single
temperature trajectories of 1.8 resp. 2.0 μs were generated at 300 K, and sin-
gle trajectories of 510 ns at 277 K and 367 K respectively. All simulations and
analysis were performed using the GROMACS software [21,22,23].

2.2 Kinetics Analysis

For Chignolin we have M = 20 simulation trajectories of the same protein under
identical conditions except for temperature. Now, let Fm(t) be a binary indicator
of folding, i.e. Fm(t) = 1 corresponds to trajectory m being folded at time t,
and Fm(t) = 0 corresponds to a not-folded state, and assume we can determine
Fm(t) from each conformation in our trajectories. An example Fm(t) might be
the criterion that the RMSD to the native state is less than a certain cut-
off. From any state Fm(t) we can determine the change using the reactive flux
correlation:

dFm(t)
dt

= kfUm(t) − kuFm(t) (1)

where kf is the rate constant for folding (u → f), ku is the rate constant for
unfolding (f → u) and U is either the unfolded state [1-F ] or another state close
to the folded state. We adopt the notion that the rate constants are related to
activation energies EA and prefactors A:

ku = Aue−βEu
A , kf = Af e−βEf

A (2)

where β = 1/kBT with kB Boltzmann’s constant and T the temperature. If we
rewrite Eqn. 1 with the explicit time dependence of the temperature, we have
for each trajectory m:

dFm(t)
dt

= Af e−βm(t)Ef
AUm(t) − Aue−βm(t)Eu

AFm(t) (3)

Since β changes stochastically with time, this equation can not be integrated an-
alytically. We can however integrate it numerically, average over the trajectories,
and define the integral Φ(t) as:

Φ(t) =
1
M

M∑

m=1

∫ t

0

dFm(τ)
dt

dτ (4)
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with which we can define a fitting parameter χ2:

χ2 =
1
N

N∑

t=1

[Φ(t) − F (t)]2 (5)

where F (t) = 〈Fm(t)〉 i.e. the average fraction folded protein in all the simu-
lations. χ2 can be minimized numerically [24] with respect to Ef

A, Eu
A, Af and

Au. In this manner the parameters that describe the kinetics are optimized to
the change in the fraction of folded proteins with time, which implies that this
analysis can be applied to any set of MD simulations.

The algorithm can be extended by defining an intermediate state I(t). The
root mean square deviation of the simulated structure with respect to the ex-
perimental structure can be used as a criterion, since there are two minima, one
at 0.18 nm and one at 0.295 nm (see Fig. 1 in ref. [13]). In that case we define
two coupled reactions:

dIm(t)
dt

= kuiUm(t) − kiuIm(t) (6)

dFm(t)
dt

= kif Im(t) − kfiFm(t) (7)

The four rate constants are now defined by four energies and four prefactors. If
we equate the integral of Eqn. 6 to I(t) we can define a new fitting parameter
θ2:

θ2 =
1
N

N∑

t=1

[Φ(t) − F (t)]2 + [I(t) − I(t)]2 (8)

and these eight parameters can be optimized in order to minimize θ@2 by inte-
grating both equations simultaneously.

3 Results and Discussion

We have recently reported simulations of the complete folding of the polypeptide
Chignolin [14] from the extended state to the native conformation [11] along with
detailed analysis of the energy landscape in three dimensions. Using the novel
method described above and in ref. [13] it was possible to obtain kinetics informa-
tion from 20 heterogeneous trajectories. This new algorithm, which was inspired
by the hydrogen-bond kinetics analysis due to Luzar and Chandler [25,26,27],
allows for the analysis of relaxation mechanisms in general, but here we restrict
ourselves to protein folding.

In the algorithm, the reactive-flux correlation term is used to determine the
change in a property. The present method introduces two new techniques, first
the inclusion of the explicit time dependence in the analysis, and second the
optimization technique in which the integral of the desired property is fitted to,
rather than the property itself. In this manner we ensure that the kinetics of fold-
ing as it occurs in the simulation is reproduced at all intermediate times rather
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than just the equilibrium constant. For two-state reactions, like folding of Chig-
nolin [14], we can extrapolate the results (activation energies) and constants to
different temperatures and hence obtain faithful melting curves. However, there
is considerable discussion in the literature as to whether two-state folding re-
actions really exist, or whether experimental methods are not sensitive enough
to discriminate different rates of folding and/or discern intermediates that may
be on the folding pathway even in case of the folding of very simple proteins
like Chignolin. In order to test the proposition that folding follows a two-state
reaction in our simulations of Chignolin, as can be inferred from the NMR ex-
periments of Honda et al. [14], we re-analyzed the simulation results with an
explicit intermediate state. The development of the intermediate state I(t) and
the folded state F (t), as well as the function fitted to them I(t) and Φ(t) are
plotted in Fig. 3. The energy terms and prefactors obtained in this analysis are
given in Table 1 .
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Fig. 3. Build up of a fraction folded and b fraction intermediate (average over the 20
Chignolin simulations). The fit to Eqn. 5 is given in a, and the fits to Eqn. 8 in a and
b for folded and intermediate fractions respectively.

Both Φ(t) and I(t) are slightly out of phase with the direct simulation (Fig. 3),
due to the very nature of the rate equations (Eqns. 1 and 6). When minimizing
Eqn. 5 we obtain a final χ2 = 0.1 where with Eqn. 8 we obtain a final θ2 = 0.38.
Since we are summing twice the number of deviations with Eqn. 8, we expect
that θ2 ≤ 2χ2, but in fact θ2 is larger, indicating that the fit is not as good
when using intermediates. Indeed, the activation energies between intermediate
and folded states Efi and Eif are both 2 kJ/mol (Table 1), i.e. less than kBT
at room temperature, and hence the barrier between intermediate and folded is
negligible in this model. Furthermore, we find that the melting temperature in
the model with intermediates is 360 K vs. 340 K in the two-state model and
312 K experimentally [14]. The fact that the match with experiment is less good
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Table 1. Values for activation energies (EA) and prefactors A obtained by minimizing
either χ2 (Eqn. 5, top) or θ2 (Eqn. 8, bottom). The time constants corresponding to
room temperature kinetics are given as well (298.15 K).

A (1/ps) E (kJ/mole) τ (μs)
U→F 9.3e-5(0.1) 11.2(1) 1.0(0.3)
F→U 0.094(0.01) 30.7(1) 2.6(0.4)
I→U 9.3e-5(0.2) 9.7(2) 0.5(0.1)
U→I 1.0e-4(0.1) 18.8(2) 19(2)
I→F 3.6e-5(0.3) 2.1(0.5) 0.06(0.02)
F→I 3.7e-5(0.3) 2.0(0.5) 0.06(0.02)

is no proof that the three-state model is not suitable to explain the simulation
results. However, this observation, in combination with the comparison between
θ2 and χ2 and the unreasonably low barriers between intermediate and folded
state, indicates strongly that the kinetics in the simulation is best described by a
two-state model. On the other hand, we have also shown how the kinetics model
can be applied to processes governed by a three-state model.

The method could in principle be applied to many other fields of Science
where processes can be followed in time directly using simulation. A particularly
powerful feature of the method is that it operates on the time derivative of an
observable that is, the change in a variable. This implies that a combination of
starting conformations be used, like, for instance, the REMD simulations of Gar-
cia and Onuchic [5] who used a mixture of unfolded and folded conformations.
The fundamental observation that we should study the changes in “foldedness”,
rather than starting many simulation from the unfolded state, as is done by
Pande et al. using distributed computing techniques [28,29,30], makes that it
suffices to have a limited amount of heterogeneous simulation data. For protein
folding, it is obvious that the trajectories have to be sufficiently long, in relation
to the folding time. For Chignolin, we had a total of 10μs, an order of magni-
tude larger than the estimated folding time (1.0 μs [13]). This may serve as a
useful guideline for determining how much trajectory is needed. In summary,
we think that the proposed kinetics method will bring computational studies of
protein folding with full atomic detail, and in explicit solvent within reach of a
departmental computer cluster.
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Abstract. The QZ algorithm reduces a regular matrix pair to general-
ized Schur form, which can be used to address the generalized eigenvalue
problem. This paper summarizes recent work on improving the perfor-
mance of the QZ algorithm on serial machines and work in progress on a
novel parallel implementation. In both cases, the QZ iterations are based
on chasing chains of tiny bulges. This allows to formulate the majority of
the computation in terms of matrix-matrix multiplications, resulting in
natural parallelism and better performance on modern computing sys-
tems with memory hierarchies. In addition, advanced deflation strategies
are used, specifically the so called aggressive early deflation, leading to
a considerable convergence acceleration and consequently to a reduction
of floating point operations and computing time.

1 Introduction

The QZ algorithm is the most widely used method for computing all n eigenval-
ues λ of a regular matrix pair (A, B) with A, B ∈ R

n×n, which satisfy

det(A − λB) = 0.

The QZ algorithm was developed by Moler and Stewart in [19] and relies on
computing orthogonal matrices Q and Z such that (S, T ) = (QT AZ, QT BZ)
is in real generalized Schur form, i.e., S is quasi-upper triangular with 1 × 1
and 2 × 2 blocks on the diagonal, while T is upper triangular. This equivalence
transformation preserves the eigenvalues of (A, B), which then can be easily
extracted from the block diagonals of S and T . The LAPACK [2] implementation
of the QZ algorithm is mainly based on [19], with some improvements proposed
in [13,22,24]. It consists of the following subroutines:

DGGBAL performs an optional preliminary balancing step [23] aiming to improve
the accuracy of subsequently computed eigenvalues.
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Swedish Foundation for Strategic Research under grant A3 02:128. This research
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(HPC2N).
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DGGHRD reduces a general matrix pair (A, B) to Hessenberg-triangular form, i.e.,
it computes in a finite number of steps orthogonal matrices Q1 and Z1 such
that H = QT

1 AZ1 is upper Hessenberg while T = QT
1 BZ1 is upper triangular.

DHGEQZ reduces (H, T ) further, by applying single- and double-shift QZ itera-
tions combined with deflations, to real generalized Schur form.

DTGSEN and DTGEVC post-process the output of DHGEQZ to compute selected
eigenvectors and deflating subspaces [12] of (A, B).

Additionally, there are a number of support and driver routines for solving
generalized eigenvalue problems. The focus of the improvements described in
the following are the QZ iterations and deflations implemented in DHGEQZ, see
also [1,11]. Improvements to DGGBAL, DGGHRD and DTGSEN, which are also consid-
ered for inclusion in the next LAPACK release, can be found in [8,15,16,18,21].

The rest of this paper is organized as follows. Section 2 is concerned with
techniques intented to decrease the execution time of the QZ algorithm on serial
machines: chains of tightly coupled tiny bulges [5,11,17] and aggressive early
deflation [6,11]. In Section 3, it is shown how these techniques can be employed
to derive a parallel variant of the QZ algorithm. Numerical experiments, reported
in Section 4, illustrate the performance of Fortran implementations based on the
ideas presented in this paper.

2 Improvements to the Serial QZ Algorithm

Let us consider a regular matrix pair (H, T ) in Hessenberg-triangular form. By a
preliminary deflation of all infinite eigenvalues [19], we may assume without loss
of generality that T is nonsingular. In the following, we only describe the two
improvements of the QZ algorithm proposed in [11] that make our implemen-
tation perform so well in comparison with existing implementations. However,
it should be emphasized that for a careful re-implementation of LAPACK’s QZ
algorithm one also needs to reinvestigate several somewhat detailed but never-
theless important issues, such as the use of ad hoc shifts to avoid convergence
failures and the optimal use of the pipelined QZ iterations described in [8] for
addressing medium-sized subproblems.

2.1 Multishift QZ Iterations

The traditional implicit double-shift QZ iteration [19] starts with computing the
vector

v = (HT−1 − σ1I)(HT−1 − σ2I), (1)

where I denotes the n × n identity matrix and σ1, σ2 ∈ C are suitably chosen
shifts. Next an orthogonal matrix Q (e.g., a Householder reflector [9]) is com-
puted such that QT v is mapped to a scalar multiple of the first unit vector e1.
This transformation is applied from the left to H and T :

H ← QT H, T ← QT T.
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Bulge chasing window

Deflation window

Fig. 1. Illustration of a multishift QZ step with aggressive early deflation

The Hessenberg-triangular structure of the updated matrix pair is destroyed in
the first three rows and the rest of the implicit QZ iteration consists of reducing
it back to Hessenberg-triangular form without touching the first row of H or T .
Due to the special structure of (H, T ), this process requires O(n2) flops and can
be seen as chasing a pair of 3 × 3 bulges along the subdiagonals of H and T
down to the bottom right corner, see [19,24]. If the shifts are chosen to be the
eigenvalues of the 2 × 2 lower bottom submatrix pair of (H, T ) then typically
the (n − 1, n − 2) subdiagonal entry of H converges to zero. Such a subdiagonal
entry is explicitly set to zero if it satisfies

|hj+1,j | ≤ u(|hjj | + |hj+1,j+1|), (2)

where u denotes the unit roundoff. This criterion not only ensures numerical
backward stability but may also yield high relative accuracy in the eigenvalues
for graded matrix pairs, see [11] for more details. Afterwards, the QZ iterations
are continued on the deflated lower-dimensional generalized eigenvalue problems.

The described QZ iteration performs O(n2) flops while accessing O(n2) mem-
ory. This poor computation/communication ratio limits the effectiveness of the
QZ algorithm for larger matrices. An idea which increases the ratio without
affecting the convergence of QZ iterations, has been extrapolated in [11] from
existing techniques for the QR algorithm, see, e.g., [5]. Instead of only one bulge
pair corresponding to one double shift, a tightly coupled chain of bulge pairs
corresponding to several double shifts is introduced and simultaneously chased.
This allows the use of level 3 BLAS without a significant increase of flops in the
overall QZ algorithm.

The implementation of such a multishift QZ iteration is illustrated in Figure 1.
In the beginning of a chasing step, the bulge chain resides in the top left corner
of the bulge chasing window. Each bulge is subsequently chased downwards
until the complete bulge chain arrives at the bottom right corner of the window.
During this process only the window parts of H and T are updated. All resulting
orthogonal transformations are accumulated and applied in terms of matrix-
matrix multiplications (GEMM) to the rest of the matrix pair.
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2.2 Aggressive Early Deflation

Another ingredient, which may drastically lower the number of iterations needed
by the QZ algorithm, is aggressive early deflation introduced in [6] and extended
in [1,11]. Additionally to the classic deflation criterion (2), the following strategy
is implemented. First, H and T are partitioned

(H, T ) =

⎛
⎝

⎡
⎣

H11 H12 H13
H21 H22 H23
0 H32 H33

⎤
⎦ ,

⎡
⎣

T11 T12 T13
0 T22 T23
0 0 T33

⎤
⎦
⎞
⎠ ,

such that H32 ∈ R
m×1 and H33, T33 ∈ R

m×m (typical choices of m are between
40 and 240). Then the matrix pair (H33, T33), which corresponds to the deflation
window illustrated in Figure 1, is reduced to real generalized Schur form. By
applying the corresponding left orthogonal transformation to H32, a spike is
introduced in H . If the trailing d ≤ m spike elements can be safely set to zero
(see [6] for various criteria) then the bottom right d × d submatrix pair can
be deflated. Otherwise, the Schur form of (H33, T33) is reordered to move other,
untested eigenvalues to its bottom right corner, see [11] for more implementation
details.

3 A Parallel QZ Algorithm

Parallel distributed memory (DM) algorithms and implementations for reducing
a matrix pair to Hessenberg-triangular form have been presented in [1,7]. In this
contribution, we consider the remaining part of the QZ algorithm, QZ iterations.
Our new parallel variants are based on the LAPACK [2] implementation of the
QZ algorithm as well as the blocked serial variants described in [8,11]. In order
to gain better performance and scalability, we employ the following extensions:

– Use of several small bulges introduced and chased down the diagonals of H
and T in a blocked manner.

– Accumulation of orthogonal transformations in order to apply them in a
blocked manner, leading to delayed updates.

– Use of the aggressive early deflation technique described in Section 2.2.

Given a Hessenberg-triangular matrix pair (H, T ), a parallel QZ iteration is
divided into three major operations, which are implemented in separate routines:
(1) deflation check; (2) bulge introduction; (3) bulge chasing. In the following,
we give a brief description of these operations.

3.1 Parallel QZ Step – Deflation Check

The deflation check routine searches and tests for deflated eigenvalues at the
bottom right corners of H and T using the aggressive early deflation technique,
see [6,11]. This routine also returns the shifts, calculated eigenvalues from a
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bottom right submatrix pair of H and T within the current deflation window,
see Figure 1, needed to start up a new bulge introduction and chase iteration.

The deflation check is performed by all processors and therefore communica-
tion is required before all processors have the required data. The output of the
deflation check is, beside the deflated window, two orthogonal matrices which
contain the accumulated equivalence transformations. If deflation was successful,
these transformations are applied to the right and above the deflation window.
The update is performed in parallel using GEMM operations. Some nearest
neighbor communication is required to be able to perform the multiplications.
The subsequent QZ iterations are restricted to the deflated submatrix pair, also
called the active submatrix pair.

3.2 Parallel QZ Step – Bulge Introduction

The introduction of bulges takes place at the top left corner of the active sub-
matrix pair. The number of bulges that can be created depends on how many
shifts were returned from the last deflation check. At most #shifts/2 bulges are
created using information from the top left corner of (H, T ) to compute the first
column of the shift polynomial.

After a bulge has been introduced it has to be chased down some steps in
order to give room for a new bulge. If N < n bugles are to be introduced the
first bulge is chased N ·(nH+1) positions, where nH is the size of the Householder
transformation, the second (N − 1) · (nH + 1) positions and so forth (nH = 3
in general). The chasing consists of applying Householder transformations to
(H, T ) from the left and right. We limit the update of (H, T ) to a window of
size NB × NB. The orthogonal updates are also applied to two matrices U and
V , initially set to the identity matrix. This way we can introduce all bulges and
after that update the remaining parts of (H, T ) by using GEMM operations
with U and V to complete the calculation of the corresponding equivalence
transformation (QT HZ, QT TZ).

The window of size NB × NB is held by all processors. Communication is
therefore required to send the data to all the processors. The subsequent update
is performed in parallel where every processor updates its corresponding portion
of (H, T ). The communication in the update part is limited to nearest neighbor
processors, interchanging matrix border elements (row and column data) to be
able to perform the GEMM operations independently in parallel.

3.3 Parallel QZ Step – Bulge Chasing

The introduced bulges are repeatedly moved together within a bulge chasing
window, see Figure 1, of size NB × NB. The movement begins by moving the
first introduced bulge until the bottom of the bulge chasing window. This is then
repeated by moving each bulge the same number of steps. As in the introduction
phase the bulge movement arises from applying pairs of (left and right) House-
holder transformations. Moreover, the update of (H, T ) is again limited to the
window of size NB × NB and the update of the remaining parts is performed
afterwards in parallel as described in Section 3.2.
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4 Numerical Experiments

In the following, we briefly report on numerical experiments performed on a
Linux cluster Sarek at HPC2N, consisting of 190 HP DL145 nodes, with dual
AMD Opteron 248 (2.2GHz) and 8 GB memory per node, connected in a Myrinet
2000 high speed interconnect. The AMD Opteron 248 has a 64 kB instruction
and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache
(16-way associative).

4.1 Serial Results

First, we tested a random 2000 × 2000 matrix pair reduced to Hessenberg-
triangular form. LAPACK’s DHGEQZ requires 270 seconds, while the multishift
QZ algorithm described in Section 2.1 with 60 simultaneous shifts requires 180
seconds (on machines with smaller L2 cache this reduction was observed to be
even more significant). Applying aggressive early deflation with deflation win-
dow size 200 reduced the execution time further, to remarkable 28 seconds. This
significant reduction of execution time carries over to other, practically more
relevant examples. Table 1 contains a list of benchmark examples from [11] with
order n ≥ 1900.

Table 1. Selected set of matrix pairs from the Matrix Market collection [3], the Ober-
wolfach model reduction benchmark collection [14], and corner singularities computa-
tions [20]

# Name n Brief description Source
1 HEAT 1900 Heat conduction through a beam [14]
2 BCSST26 1922 Seismic analysis, nuclear power station [3]
3 BEAM 1992 Linear beam with damping [14]
4 BCSST13 2003 Fluid flow [3]
5 CIRC90 2166 Circular cone, opening angle 90 degrees [20]
6 FICH1227 2454 Fichera corner, Dirichlet boundary conditions [20]
7 BCSST23 3134 Part of a 3D globally triangularized building [3]
8 MHD3200 3200 Alfven spectra in magnetohydrodynamics [3]
9 BCSST24 3562 Calgary Olympic Saddledome arena [3]

10 BCSST21 3600 Clamped square plate [3]

We compared the performance of three Fortran implementations of the QZ
algorithm: DHGEQZ (LAPACK), KDHGEQZ (pipelined QZ iterations [8]), MULTIQZ
(multishift QZ iterations + aggressive early deflation). From Figure 2, which
shows the execution time ratios DHGEQZ/KDHGEQZ and DHGEQZ/MULTIQZ, it can
be observed that MULTIQZ is 2–12 times faster than LAPACK. It should be noted
that aggressive early deflation can also be used to decrease the execution times
of DHGEQZ and KDHGEQZ, see [11] for more details.



Parallel Variants of the Multishift QZ Algorithm 123

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

S
pe

ed
up

Matrix pair

DHGEQZ/KDHGEQZ
DHGEQZ/MULTIQZ

Fig. 2. Performance comparison on Sarek for of three serial implementations of the QZ
algorithm. The test matrices used are from Table 1.

Fig. 3. Execution times for ScaLAPACK’s QR for a 4096 × 4096 random Hessenberg
matrix and parallel QZ for a 4096 × 4096 random Hessenberg-triangular matrix pair

4.2 Parallel Results

A preliminary Fortran implementation of the described parallel variant of the
QZ algorithm has been developed based on BLACS and ScaLAPACK [4].

Figure 3 gives a brief but representative impression of the obtained timings. It
can be seen from Figure 3 that the new parallel variant of the QZ algorithm is sig-
nificantly faster than the ScaLAPACK implementation of the QR algorithm [10].
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(Note that the traditional QZ algorithm takes roughly twice the computational
effort of the QR.) This effect can be contributed to the use of blocking tech-
niques and aggressive early deflation. In Table 2, we display performance results
on Sarek for 1 up to 16 processors of the three stages in reducing a regular ma-
trix pair to generalized Schur form. Stage 1 reduces a regular (A, B) to block
upper Hessenberg-triangular form (Hr, T ) using mainly level 3 (matrix-matrix)
operations [1,8]. In Stage 2, all but one of the r subdiagonals of Hr are set
to zero using Givens rotations, leading to (H, T ) in Hessenberg-triangular form
[1,8]. Finally, Stage 3 computes the generalized Schur form (S, T ) by applying
our parallel QZ implementation. The overall speedup for the complete reduc-
tion to generalized Schur form is over

√
p, where p is the number of processors

used. From the performance results presented it can be seen that the scalability
of the parallel QZ (Stage 3) is improvable; this issue will be subject to further
investigation.

Table 2. Sample performance results on Sarek for 1 up to 16 processors of the three
stages in reducing a regular matrix pair to generalized Schur form

Configuration Stage 1 Stage 2 Stage 3 Total
N Pr Pc NB Time Time Time Time SP

1024 1 1 160 5.8 19.5 13.3 38.5 1.0
1024 2 1 160 3.3 12.4 11.5 27.2 1.4
1024 2 2 160 2.8 7.8 11.8 22.3 1.7
2048 1 1 160 55.1 188.3 67.8 311.1 1.0
2048 2 2 160 21.2 64.6 62.5 148.3 2.1
2048 4 2 160 13.8 37.1 49.9 100.8 3.1
2048 4 4 160 14.0 28.6 43.5 86.1 3.6
2048 8 2 160 11.9 28.5 43.3 83.7 3.7
4096 1 1 160 551.3 1735.4 494.1 2780.7 1.0
4096 2 2 160 166.9 475.5 365.9 1008.3 2.8
4096 4 2 160 99.3 294.7 303.2 679.2 4.1
4096 4 4 160 97.6 245.6 248.2 591.4 4.7
4096 8 2 160 78.9 204.9 231.4 515.2 5.4
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Waśniewski, J., Dongarra, J.J. (eds.) PARA 1998. LNCS, vol. 1541, pp. 95–103.
Springer, Heidelberg (1998)

8. Dackland, K., K̊agström, B.: Blocked algorithms and software for reduction of a
regular matrix pair to generalized Schur form. ACM Trans. Math. Software 25(4),
425–454 (1999)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

10. Henry, G., Watkins, D.S., Dongarra, J.J.: A parallel implementation of the non-
symmetric QR algorithm for distributed memory architectures. SIAM J. Sci. Com-
put. 24(1), 284–311 (2002)

11. K̊agström, B., Kressner, D.: Multishift variants of the QZ algorithm with ag-
gressive early deflation. Report UMINF-05.11, Department of Computing Science,
Ume̊a University, Ume̊a, Sweden, 2005, SIAM J. Matrix Anal. Appl. (to appear)

12. K̊agström, B., Poromaa, P.: Computing eigenspaces with specified eigenvalues of a
regular matrix pair (A, B) and condition estimation: theory, algorithms and soft-
ware. Numer. Algorithms 12(3-4), 369–407 (1996)

13. Kaufman, L.: Some thoughts on the QZ algorithm for solving the generalized
eigenvalue problem. ACM Trans. Math. Software 3(1), 65–75 (1977)

14. Korvink, J.G., Evgenii, B.R.: Oberwolfach benchmark collection. In: Benner, P.,
Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems.
Lecture Notes in Computational Science and Engineering, vol. 45, pp. 311–316.
Springer, Heidelberg (2005)

15. Kressner, D.: Numerical Methods and Software for General and Structured Eigen-
value Problems. PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany
(2004)

16. Kressner, D.: Block algorithms for reordering standard and generalized Schur
forms, 2005, ACM Trans. Math. Software (to appear)

17. Lang, B.: Effiziente Orthogonaltransformationen bei der Eigen- und Sin-
gulärwertzerlegung. Habilitationsschrift (1997)

18. Lemonnier, D., Van Dooren, P.: Balancing regular matrix pencils, 2004 SIAM J.
Matrix Anal. Appl. (to appear)

19. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue prob-
lems. SIAM J. Numer. Anal. 10, 241–256 (1973)

20. Pester, C.: CoCoS – computation of corner singularities. Preprint SFB393/05-03,
Technische Universität Chemnitz (2005), See
http://www.tu-chemnitz.de/sfb393/

21. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S.: An efficient algorithm for computing the
Hessenberg-triangular form. Technical report ICC 2006-05-01, Universidad Jaime
I, Castellón, Spain (2006)

http://www.tu-chemnitz.de/sfb393/


126 B. Adlerborn, B. K̊agström, and D. Kressner

22. Ward, R.C.: The combination shift QZ algorithm. SIAM J. Numer. Anal. 12(6),
835–853 (1975)

23. Ward, R.C.: Balancing the generalized eigenvalue problem. SIAM J. Sci. Statist.
Comput. 2(2), 141–152 (1981)

24. Watkins, D.S., Elsner, L.: Theory of decomposition and bulge-chasing algorithms
for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl. 15, 943–967
(1994)



Parallel Algorithms and
Condition Estimators for

Standard and Generalized Triangular
Sylvester-Type Matrix Equations

Robert Granat and Bo Kågström
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Abstract. We discuss parallel algorithms for solving eight common stan-
dard and generalized triangular Sylvester-type matrix equation. Our par-
allel algorithms are based on explicit blocking, 2D block-cyclic data
distribution of the matrices and wavefront-like traversal of the right
hand side matrices while solving small-sized matrix equations at different
nodes and updating the rest of the right hand side using level 3 opera-
tions. We apply the triangular solvers in condition estimation, developing
parallel sep−1-estimators. Some experimental results are presented.
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1 Introduction

We consider the following standard Sylvester-type matrix equations: the
continuous-time Sylvester equation (SYCT)

AX − XB = C, (1)

the discrete-time Sylvester equation (SYDT)

AXBT − X = C, (2)

the continuous-time Lyapunov equation (LYCT)

AX + XAT = C, (3)

and the discrete-time Lyapunov equation (LYDT)

AXAT − X = C, (4)

where A of size m×m, B of size n×n and C of size m×n or m×m are general
matrices with real entries.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 127–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



128 R. Granat and B. K̊agström

We also consider the following generalized Sylvester-type matrix equations:
the generalized coupled Sylvester equation (GCSY)

(AX − Y B, DX − Y E) = (C, F ), (5)

where A and D of size m × m, B and E of size n × n and C and F of size m × n
are general matrices with real entries, the generalized Sylvester equation (GSYL)

AXBT − CXDT = E, (6)

where A and C of size m × m, B and D of size n × n and E of size m × n
are general matrices with real entries, the continuous-time generalized Lyapunov
equation (GLYCT)

AXET + EXAT = C, (7)

where A, E and C of size m × m are general matrices with real entries, and the
discrete-time generalized Lyapunov equation (GLYDT)

AXAT − EXET = C, (8)

where A, E and C of size m × m are general matrices with real entries.
Solvability conditions for equations (1)-(8) can be formulated in terms of the

standard or generalized eigenvalues of the involved matrices or regular matrix
pairs, see, e.g., [15,16]. For (G)LYCT/(G)LYDT a symmetric right hand side C
implies a symmetric solution X .

SYCT, LYCT and GCSY are called one-sided because the undetermined X
(or X and Y ) is multiplied by another matrix from one side only. SYDT, LYDT,
GSYL, GLYCT and GLYDT are called two-sided [15,16].

In this contribution, we assume that all left hand side coefficient matrices or
matrix pairs are (quasi-)triangular, i.e, in real or generalized Schur form (see,
e.g., [5]). If this is not the case, we utilize Bartels–Stewart’s method [2] for
reducing the matrix equation to triangular form by orthogonal transformations:

1. Reduce the known left hand side matrices (or matrix pairs) of equations
(1)-(8) to real (generalized) Schur form.

2. Update the right hand side matrix (or matrix pair) with respect to the Schur
decompositions.

3. Solve the resulting triangular matrix equation.
4. Transform the computed solution matrix (or matrix pair) back to the original

coordinate system.

Based on our previous work with parallel solvers for triangular matrix equa-
tions (see, e.g., [8,9,10]), we now focus on developing a complete set of parallel
algorithms and library routines for solving the reduced matrix equations corre-
sponding to equations (1)-(8). Besides being an integral part in solving general
large scale matrix equations, these solvers are applied to condition estimation of
the matrix equations themselves as well as for different subspace problems with
applications in control theory. In this contribution, we present some of this work
in progress. The final goal is a complete library of ScaLAPACK-style routines
called SCASY for solving general as well as reduced (triangular) standard and
generalized Sylvester-type equations (1)-(8).
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2 Blocked Methods for Solving Reduced Matrix
Equations

We focus on step 3 above for solving the reduced matrix equations. Assuming
m = n, this is an O(n3) operation. We apply explicit blocking (see below) to
reformulate each matrix equation problem into as much level 3 BLAS operations
as possible. In the following, the (i, j)th block of a partitioned matrix, say X , is
denoted Xij .

Let mb and nb be block sizes used in an explicit block partitioning of the
matrices A and B in SYCT, respectively. In turn, this imposes a similar block
partitioning of C and X (which overwrites C). Then Da = �m/mb� and Db =
�n/nb� are the number of diagonal blocks in A and B, respectively. Now, SYCT
can be rewritten in block-partitioned form as

AiiXij − XijBjj = Cij − (
Da∑

k=i+1

AikXkj −
j−1∑

k=1

XikBkj), (9)

for i = 1, 2, . . . , Da and j = 1, 2, . . . , Db [10].
For LYCT we use a similar approach: Partition A and C by rows and columns

using a single block size mb and rewrite LYCT as

AiiXij + XijA
T
jj = Cij − (

Da∑

k=i+1

AikXkj +
Da∑

k=j+1

XikAT
jk), (10)

reformulating our single LYCT problem into smaller SYCT (i �= j) and LYCT
(i = j) problems and level 3 updates in the right hand side C. Moreover, if C is
symmetric, we rewrite (10) for the main diagonal blocks Cii as

AiiXii + XiiA
T
ii = Cii − (

Da∑

k=i+1

AikXT
ik + XikAT

ik), (11)

which defines a sum of SYR2K-operations, which are as fast as regular GEMM-
operations when implemented as a GEMM-based level 3 BLAS [18,19].

We block the two-sided standard equations SYDT and LYDT similarly:

AiiXijB
T
jj − Xij = Cij −

(Da,Db)∑

(k,l)=(i,j)

AikXklB
T
jl, (k, l) �= (i, j) (12)

and

AiiXijA
T
jj − Xij = Cij −

(Da,Da)∑

(k,l)=(i,j)

AikXklA
T
jl, (k, l) �= (i, j). (13)

Notice that the blocking of LYDT decomposes the problem into several smaller
SYDT (i �= j) and LYDT (i = j) equations.
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The same method of explicit blocking is applied to the generalized matrix
equations (5)-(8).

All linear matrix equations considered can be rewritten as an equivalent large
linear system of equations Zx = y, where Z is the Kronecker product repre-
sentation of the corresponding Sylvester-type operator. For example, SYCT (1)
corresponds to ZSYCT = In ⊗ A − BT ⊗ Im, x = vec(X), y = vec(C) (see also
Section 4). These formulations are only efficient to use explicitly when solving
small-sized problems in kernel solvers, see, e.g., LAPACK’s DLASY2 and DTGSY2
for solving SYCT and GCSY and the kernels of the RECSY library [15,16,17].

3 Parallel Algorithms for Triangular Matrix Equations

The parallel algorithms for SYCT presented in [24,10,8,9] were based on the
following basic ideas: Utilize explicit blocking and 2D block cyclic distribution
of the matrices over a rectangular Pr×Pc process grid, following the ScaLAPACK
conventions [3], and compute the solution by a wavefront-like traversal of the
block diagonals of the right hand side matrix where several solutions of diagonal
subsystems are computed in parallel, broadcasted along the corresponding block
rows and columns, and used in level 3 updates of the rest of the right hand side.
This is illustrated for SYCT in Figure 1. Notice that the solution X overwrites
the right hand side C blockwise.

The algorithms are adapted to the symmetric LYCT by wavefront-like traver-
sal of the anti-diagonals of the right hand side matrix while solving for the lower
(or upper) triangular part of the solution. The situation is described in Figure
2. However, our solvers must be able to solve non-symmetric LYCT problems as
well since symmetry cannot be assumed in condition estimation algorithms (see
Section 4).

For two-sided standard matrix equations SYDT/LYDT the main difference
from the SYCT/LYCT cases are the need for an extra buffer for storing interme-
diate sums of matrix products caused by a more complex data dependency (see
equations (12)-(13)) which will, assuming m = n, cause any trivially blocked
solver to use O(n4) flops. We illustrate with the following explicitly blocked
SYDT system:

⎧
⎪⎪⎨

⎪⎪⎩

A11X11B
T
11 − X11 = C11 − A11X12B

T
12 − A12(X21B

T
11 + X22B

T
12)

A11X12B
T
22 − X12 = C12 − A12X22B

T
22

A22X21B
T
11 − X21 = C21 − A22X22B

T
12

A22X22B
T
22 − X22 = C22.

(14)

From (14) we observe that by computing X21B
T
11 + X22B

T
12 before multiplying

with A12 and by computing X22B
T
12 only once we avoid redundant computations.

Consequently, for SYDT/LYDT we broadcast each subsolution Xij in the process
row corresponding to block row i and a sum of matrix products in the process
column corresponding to block column j.

The generalized matrix equations are solved as follows: for GCSY the SYCT
methodology is used except for the fact that we are now working with two
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Fig. 1. The SYCT wavefront: stan-
dard, one-sided, non-symmetric. Yel-
low blocks correspond to already solved
blocks, the blocks with bold borders
correspond to the current position of
the wavefront, blocks with the same
color are used together in subsys-
tems solves or GEMM-updates, stripe-
colored blocks are involved in several
rounds of GEMM-updates correspond-
ing to the same block diagonal. The
wavefront direction is indicated by the
arrow. Each subsolution is broadcasted
in the corresponding block row and col-
umn.

Fig. 2. The symmetric LYCT wave-
front: standard, one-sided, symmetric.
Each subsolution (i.e., a block of the
solution matrix X) located outside
the main block anti-diagonal is broad-
casted in the corresponding block row
and column and the block row corre-
sponding to its transposed position.

equations at the same time. The methods of SYDT and LYDT are generalized
for GSYL and GLYCT/GLYDT, respectively, in a similar fashion by using two
extra buffers for storing intermediate sums of matrix products.

We remark that in a trivially blocked solver for the two-sided Lyapunov equa-
tions, we may reformulate the updates of the main block diagonal of C in terms
of SYR2K-operation, as in the LYCT case. However, this is not possible when
we use the intermediate sums of matrix products to reduce the complexity.

4 Condition Estimators for Triangular Matrix Equations

We utilize a general method [11,12,20] for estimating ‖A−1‖1 for a square ma-
trix A using reverse communication of A−1x and A−T x, where ‖x‖2 = 1. In
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particular, for SYCT this approach is based on linear system ZSYCTx = y (see
Section 1 and Table 1) which is used to compute a lower bound of the inverse of
the separation between the matrices A and B [27]:

sep(A, B) = inf
‖X‖F =1

‖AX − XB‖F = σmin(ZSYCT) = ‖Z−1
SYCT‖−1

2 . (15)

The quantity (15) is used frequently in perturbation theory and error bounds
(see, e.g., [13]). The exact value can be computed at the cost O(m3n3) flops by
the SVD of ZSYCT but its inverse can be estimated much cheaper by solving a
few (normally around five) triangular SYCT equations to the cost O(m2n+mn2)
flops [20].

Table 1. The Kronecker product representations of Z� and ZT
� considered in condition

estimation of the standard and generalized matrix equations (1)-(8)

Acronym (ACRO) Z� ZT
�

SYCT In ⊗ A − BT ⊗ Im In ⊗ AT − B ⊗ Im

SYDT B ⊗ A − Im·n BT ⊗ AT − Im·n
LYCT Im ⊗ A + A ⊗ Im Im ⊗ AT − AT ⊗ Im

LYDT A ⊗ A − Im2 AT ⊗ AT − Im2

GCSY
[

In ⊗ A −BT ⊗ Im

In ⊗ D −ET ⊗ Im

] [
In ⊗ AT In ⊗ DT

−B ⊗ Im −E ⊗ Im

]

GSYL B ⊗ A − D ⊗ C BT ⊗ AT − DT ⊗ CT

GLYCT A ⊗ A − E ⊗ E AT ⊗ AT − ET ⊗ ET

GLYDT E ⊗ A + A ⊗ E ET ⊗ AT + AT ⊗ ET

This estimation method is applied to all matrix equations by considering the
corresponding Kronecker product representation of the associated Sylvester-type
operator (see Table 1). However, notice that condition estimation of GCSY is
not as straightforward as for the uncoupled equations, since transposing ZGCSY
is not just a matter of transposing all involved left hand side matrices (excluding
the solution), but requires a different algorithm (see, e.g., [21]).

The condition estimator in [20] was based on the serial LAPACK-routine
DLACON [1]. The parallel version we use is implemented in ScaLAPACK [3,26] as
the auxiliary routine PDLACON.

In our parallel estimators, we compute Pc different estimates independently
and concurrently, one for each process column by taking advantage of the fact
that PDLACON requires a column vector distributed over a single process column as
right hand side, and we form the global maximum by a scalar all-to-all reduction
[7] in each process row (which is negligible in terms of execution time). The
column vector y in each process column is constructed by performing an all-to-all
broadcast [7] of the local pieces of the right hand side matrix or matrices in each
process row, forming Pc different right hand side vectors. Altogether, we compute
Pc different estimates (lower bounds of the associated sep−1-function) and choose
the largest value at the same cost in time as computing only one estimate.
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5 Experimental Results

Our target machine is the 64-bit Opteron Linux Cluster sarek with 192 dual
AMD Opteron nodes (2.2 GHz), 8Gb RAM per node and a Myrinet-2000 high-
performance interconnect with 250 MB/sec bandwidth. All experiments where
conducted using the Portland Group’s pgf77 1.2.5 64-bit compiler, the com-
piler flag -fast and the following software: MPICH-GM 1.5.2 [23], LAPACK 3.0
[22], GOTO-BLAS r0.94 [6], ScaLAPACK 1.7.0 [26], BLACS 1.1patch3 [4] and
RECSY 0.01alpha [25] (used as node solvers). All experiments are conducted in
double precision arithmetic.

Table 2. Condition estimation of GSYL invoking PGSYLCON on sarek using the blocksize
64. All timings are in seconds. For this table, (A,C) and (B, D) are chosen as random
upper triangular matrices with specified eigenvalues as λ

(i)
(A,C) = i and λ

(i)
(B,D) = −i,

respectively. The known solution X is a random matrix with uniform distribution in
the interval [−1, 1].

m = n Pr × Pc Time iter est Ra Rr Ea Er

1024 1 × 1 12.7 5 0.6E-03 0.2E-06 0.1E+01 0.1E-11 0.2E-14
1024 2 × 2 7.4 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
1024 4 × 4 3.9 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
1024 8 × 8 2.1 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
2048 1 × 1 86.6 5 0.3E-03 0.1E-05 0.1E+01 0.3E-11 0.2E-14
2048 2 × 2 48.3 5 0.3E-03 0.1E-05 0.1E+01 0.2E-11 0.2E-14
2048 4 × 4 21.9 5 0.3E-03 0.1E-05 0.1E+01 0.3E-11 0.2E-14
2048 8 × 8 9.7 5 0.3E-03 0.1E-05 0.1E+01 0.2E-11 0.2E-14
4096 1 × 1 923.9 7 0.2E-03 0.1E-04 0.1E+01 0.7E-11 0.3E-14
4096 2 × 2 503.3 7 0.2E-03 0.1E-04 0.1E+01 0.6E-11 0.2E-14
4096 4 × 4 193.8 7 0.2E-03 0.1E-04 0.1E+01 0.6E-11 0.2E-14
4096 8 × 8 77.5 7 0.2E-03 0.1E-04 0.1E+01 0.8E-11 0.3E-14
8192 1 × 1 5302.4 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 2 × 2 2625.9 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 4 × 4 904.5 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 8 × 8 331.4 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14

In Table 2, we present performance results for the parallel GSYL condition
estimator PGSYLCON solving well-conditioned problems using the corresponding
parallel triangular GSYL solver PTRGSYLD. For this table, iter is the number of
iterations and calls to the triangular solver PTRGSYLD, est is the lower bound
estimate of sep−1[GSYL], Ra, Rr, Ea and Er correspond to the absolute and
relative residual and error norms and are computed as follows:

Ra = ‖E − AX̃B + CX̃D‖, (16)
Rr = (ε−1

machRa)/((‖A‖‖B‖ + ‖C‖‖D‖)‖X̃‖ + ‖E‖), (17)

Ea = ‖X − X̃‖, (18)
Er = Ea/‖X‖. (19)
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Fig. 3. Execution time profile of PGSYLCON on sarek using the blocksize 64. The results
are typical for what we found using multiple (4 × 4) processors to solve the problem.
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Fig. 4. Parallel speedup of PTRGSYLD on sarek using the blocksize 64

Here, εmach(≈ 2.2 × 10−16) is the relative machine precision and X and X̃ are
the known and the computed solutions, respectively. The relative residual norm
is computed in the 1-norm and the absolute residual and the error norms are
computed in the Frobenius norm, respectively. Ideally, the relative residual norm
should be of O(1) [21], which is fulfilled remarkably well for this set of test
problems. The high absolute residual norm results emerge from the large norms
(O(n3/2)) of the known left hand side matrices. The stable value of est depends
on that exactly the same problem is generated and solved for every value of
m = n.
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An execution time profile of PGSYLCON is presented in Figure 3. The major
part of the work is spent in the triangular solver, which is called around five (5)
times (see Table 2). The influences of PDLACON and the all-to-all broadcast of the
right hand side in each process row on the total execution time are diminished as
the problem size grows. This implies that any effort on improving the condition
estimator should concentrate on the triangular solver.

A representative selection of parallel speedup results for the triangular GSYL
solver is presented in Figure 4. The algorithms for the other equations (see
Section 1) have similar good qualitative behavior.
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Abstract. Routines exist in LAPACK for computing the Cholesky fac-
torization of a symmetric positive definite matrix and in LINPACK there
is a pivoted routine for positive semidefinite matrices. We present new
higher level BLAS LAPACK-style codes for computing this pivoted fac-
torization. We show that these can be many times faster than the LIN-
PACK code. Also, with a new stopping criterion, there is more reliable
rank detection and smaller normwise backward error. We also present
algorithms that update the QR factorization of a matrix after it has had
a block of rows or columns added or a block of columns deleted. This
is achieved by updating the factors Q and R of the original matrix. We
present some LAPACK-style codes and show these can be much faster
than computing the factorization from scratch.

1 Pivoted Cholesky Factorization

1.1 Introduction

The Cholesky factorization of a symmetric positive definite matrix A ∈ R
n×n

has the form A = LLT , where L ∈ R
n×n is a lower triangular matrix with

positive diagonal elements. If A is positive semidefinite, of rank r, there exists
a Cholesky factorization with complete pivoting ([7, Thm. 10.9], for example).
That is, there exists a permutation matrix P ∈ R

n×n such that PT AP has a
unique Cholesky factorization

PT AP = LLT , L =
[

L11 0
L12 0

]
,

where L11 ∈ R
r×r is lower triangular with positive diagonal elements.
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1.2 Algorithms

In LAPACK [1] there are Level 2 BLAS and Level 3 BLAS routines for com-
puting the Cholesky factorization in the full rank case and without pivoting.
In LINPACK [3] the routine xCHDC performs the Cholesky factorization with
complete pivoting, but effectively uses only Level 1 BLAS. For computational
efficiency we would like a pivoted routine that exploits the Level 2 or Level 3
BLAS. The LAPACK Level 3 algorithm cannot be pivoted, so we instead start
with the Level 2 algorithm. The LAPACK ‘Gaxpy’ Level 2 BLAS algorithm is:

Algorithm 1. This algorithm computes the Cholesky factorization A = LLT of
a symmetric positive definite matrix A ∈ R

n×n, overwriting A with L.

Set L = lower triangular part of A
for j = 1: n

(∗) L(j, j) = L(j, j) − L(j, 1: j − 1)L(j, 1: j − 1)T

(#) if L(j, j) ≤ 0, return, end % Quit if A not positive definite.
L(j, j) =

√
L(j, j)

% Update jth column
if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j) − L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end
if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)
end

end

This algorithm requires n3/3 flops. We can introduce pivoting into Algo-
rithm 1, for L = (�ij), by finding the largest possible �jj at (∗) from the re-
maining n − j + 1 diagonal elements and using it as the pivot. We find

q = min
{
p : L(p, p) − d(p) = max

j≤i≤n
{L(i, i) − d(i)}

}
, (1.1)

where d is a vector of dot products with

d(i) = L(i, 1: j − 1)L(i, 1: j − 1)T , i = j: n, (1.2)

and swap rows and columns q and j, putting the pivot �qq into the lead position.
This is complete pivoting.

For computational efficiency we can store the inner products in (1.2) and
update them on each iteration. This approach gives a pivoted gaxpy algorithm.
The pivoting overhead is 3(r + 1)n − 3/2(r + 1)2 flops and (r + 1)n − (r + 1)2/2
comparisons, where r = rank(A).

The numerical estimate of the rank of A, r̂, can be determined by a stopping
criterion at (#) in Algorithm 1. At the jth iteration if the pivot, which we will
denote by χ

(j)
jj , satisfies an appropriate condition then we set the trailing matrix

L(j: n, j: n) to zero and the computed rank is j − 1. Three possible stopping
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criteria are discussed in [7, Sec. 10.3.2]. The first is used in LINPACK’s code for
the Cholesky factorization with complete pivoting, xCHDC. Here the algorithm is
stopped on the kth step if

χ
(k)
ii ≤ 0, i = k: n. (1.3)

In practice r̂ may be greater than r due to rounding errors. In [7] the other two
criteria are shown to work more effectively. The first is

‖S̃k‖ ≤ ε‖A‖ or χ
(k)
ii ≤ 0, i = k: n, (1.4)

where S̃k = A22 − AT
12A

−1
11 A12, with A11 ∈ R

k×k the leading submatrix of A, is
the Schur complement of A11 in A, while the second related criterion is

max
k≤i≤n

χ
(k)
ii ≤ εχ

(1)
11 , (1.5)

where in both cases ε = nu, and u is the unit roundoff. We have used the
latter criterion, preferred for its lower computational cost. We do not attempt
to detect indefiniteness, the stopping criteria is derived for semidefinite matrices
only. See [8] for a discussion on this.

We derive a blocked algorithm by using the fact that we can write, for the
semidefinite matrix A(k−1) ∈ R

n×n and nb ∈ N [4],

A(k−1) =
[

A
(k−1)
11 A

(k−1)
12

AT (k−1)

12 A
(k−1)
22

]
=

[
L11 0
L21 In−nb

] [
Inb

0
0 A(k)

] [
L11 0
L21 In−nb

]T

,

where L11 ∈ R
nb×nb and L21 ∈ R

(n−nb)×nb form the first nb columns of the
Cholesky factor L of A(k−1). Now to complete our factorization of A(k−1) we
need to factor the reduced matrix

A(k) = A
(k−1)
22 − L21L

T
21, (1.6)

which we can explicitly form, taking advantage of symmetry.
From this representation we can derive a block algorithm. At the kth step we

factor nb columns, by applying a pivoted Algorithm 1 to the leading principal
nb ×nb submatrix of A(k) and then update the trailing matrix according to (1.6)
and continue.

At each step the Level 2 part of the algorithm requires (n − (k − 1)nb)n2
b

flops and the Level 3 update requires (n − knb)3/3 flops. The Level 3 fraction is
approximately 1 − 3nb/2n.

1.3 Numerical Experiments

Our test machine was a 1400MHz AMD Athlon. Using ATLAS [2] BLAS and the
GNU77 compiler version 3.2 with no optimization. We tested and compared four
Fortran subroutines: LINPACK’s DCHDC, DCHDC altered to use our stopping crite-
rion, and LAPACK-style implementations of a level 2 pivoted Gaxpy algorithm
(LEV2PCHOL) and level 3 pivoted Gaxpy algorithm (LEV3PCHOL) .
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We first compared the speed of the factorization of the LINPACK code and
our Level 2 and 3 routines for different sizes of A ∈ R

n×n. We generated random
symmetric positive semidefinite matrices of order n and rank r = 0.7n. For
each value of n the codes were run four times and the mean times are shown
in Figure 1. We achieve a good speedup, with the Level 3 code as much as 8 times
faster than the LINPACK code. Our level three code achieves 830 MFlops/sec
compared to the LINPACK code with 100 MFlops/sec.

We also compared the speed of the unpivoted LAPACK subroutines against
our Level 3 pivoted code, using full rank matrices, to demonstrate the pivoting
overhead. The ratio of speed of the pivoted codes to the unpivoted codes varies
smoothly from 1.6 for n = 1000 to 1.01 for n = 6000, so the pivoting overhead
is negligible in practice for large n (recall that the pivoting overhead is about
3rn − 3/2r2 flops within the O(n3) algorithm). The use of the pivoted codes
instead of the unpivoted ones could be warranted if there is any doubt over
whether a matrix is positive definite.

We tested all four subroutines on a further set of random positive semidefinite
matrices, this time with pre-determined eigenvalues, similarly to the tests in [6].
For matrices of rank r we chose the nonzero eigenvalues in three ways:

– Case 1: λ1 = λ2 = · · · = λr−1 = 1, λr = α ≤ 1
– Case 2: λ1 = 1, λ2 = λ3 = · · · = λr = α ≤ 1
– Case 3: λi = αi−1, 1 ≤ i ≤ r, α ≤ 1

Here, α was chosen to vary κ2(A) = λ1/λr. For each case we constructed a set
of 100 matrices by using every combination of:

n = {70, 100, 200, 500, 1000},
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κ2(A) = {1, 1e+3, 1e+6, 1e+9, 1e+12},

r = {0.2n, 0.3n, 0.5n, 0.9n},

where r = rank(A). We computed the relative normwise backward error

‖A − P̂ L̂L̂T P̂T ‖2

‖A‖2
,

for the computed Cholesky factor L̂ and permutation matrix P̂ .

Table 1. Maximum normwise backward errors

n 70 100 200 500 1000
DCHDC 3.172e-13 1.498e-13 1.031e-12 2.823e-12 4.737e-11
DCHDC with (1.5) 7.778e-15 9.014e-15 1.810e-14 7.746e-14 1.991e-13
LEV2PCHOL 4.633e-15 9.283e-15 1.458e-14 7.290e-14 1.983e-13
LEV3PCHOL 4.633e-15 9.283e-15 1.710e-14 8.247e-14 2.049e-13

There was little difference between the normwise backward errors in the three
test cases; Table 1 shows the maximum values over all cases for different n.
The codes with the new stopping criterion give smaller errors than the original
LINPACK code. In fact, for all the codes with our stopping criterion r̂ = r,
and so the rank was detected exactly. This was not the case for the unmodified
DCHDC, and the error, r̂ − r, is shown in Table 2.

Table 2. Errors in computed rank for DCHDC

n 70 100 200 500 1000
min 0 0 1 4 4
max 10 12 16 16 19

The larger backward error for the original DCHDC is due to the stopping cri-
terion. As Table 2 shows, the routine is often terminated after more steps than
our codes, adding more nonzero columns to L̂.

1.4 Conclusions

Our codes for the Cholesky factorization with complete pivoting are much faster
than the existing LINPACK code. Furthermore, with a new stopping criterion
the rank is revealed much more reliably, and this leads to a smaller normwise
backward error. For more detailed information on the material in this section
see [8]. For details of a parallel implementation see [9].
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2 Updating the QR Factorization

2.1 Introduction

We wish to update efficiently the QR factorization

A = QR ∈ R
m×n,

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper trapezoidal. That is
we wish to find Ã = Q̃R̃, where Ã is A with rows or columns added or deleted.
We seek to do this without recomputing the factorization from scratch. We will
assume that A and Ã have full rank.

We consider the cases of adding blocks of rows and columns and deleting
blocks of columns. This has application to updating the least squares problem
where observations or variables are added or deleted. Where possible we derive
blocked algorithms.

2.2 Adding a Block of Rows

If we add a block of p rows, U ∈ R
p×n, just before the kth row of A we can write

Ã =

⎡
⎣A(1: k − 1, 1: n)

U
A(k: m, 1: n)

⎤
⎦

and we can define a permutation matrix, P , such that

PÃ =
[

A
U

]
,

and [
QT 0
0 Ip

]
PÃ =

[
R
U

]
. (2.1)

Thus to find Ã = Q̃R̃, we can define n Householder matrices to eliminate U to
give

Hn . . . H1

[
R
U

]
= R̃,

so we have

Ã =
(

PT

[
Q 0
0 Ip

]
H1 . . . Hn

)
R̃ = Q̃R̃.

The Householder matrix, Hj ∈ R
(m+p)×(m+p), will zero the jth column of U .

Its associated Householder vector, vj ∈ R
(m+p), is such that

vj(1: j − 1) = 0, vj(j) = 1,
vj(j + 1: m) = 0,

vj(m + 1: m + p) = x/(rjj − ‖ [ rjj xT ] ‖2), where x = U(1: p, j).

We can derive a blocked algorithm by using the representation of the product
of Householder matrices in [10].
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2.3 Deleting a Block of Columns

If we delete a block of p columns, from the kth column onwards, from A, we can
write

Ã = [ A(1: m, 1: k − 1) A(1: m, k + p: n) ]

and then
QT Ã = [ R(1: m, 1: k − 1) R(1: m, k + p: n) ] . (2.2)

Thus we can define n − p − k + 1 Householder matrices, Hj ∈ R
m×m, with

associated Householder vectors, vj ∈ R
(p+1) such that

vj(1: j − 1) = 0, vj(j) = 1,

vj(j + 1: j + p) = x/((Q̃T Ã)jj − ‖
[
(Q̃T Ã)jj xT

]
‖2),

where x = QT Ã(j + 1: j + p, j),
vj(j + p + 1: m) = 0.

The Hj can be used to eliminate the subdiagonal of QT Ã to give

(Hn−p . . . HkQT )Ã = Q̃T Ã = R̃,

where R̃ ∈ R
m×(n−p) is upper trapezoidal and Q̃ ∈ R

m×m is orthogonal.

2.4 Adding a Block of Columns

If we add a block of p columns, U ∈ R
m×p, in the kth to (k + p − 1)st positions

of A, we can write

Ã = [A(1: m, 1: k − 1) U A(1: m, k: n) ]

and

QT Ã =

⎡
⎣R11 V12 R12

0 V22 R23
0 V32 0

⎤
⎦ ,

where R11 ∈ R
(k−1)×(k−1) and R23 ∈ R

(n−k+1)×(n−k+1) are upper triangular.
Then if V32 has the (blocked) QR factorization V32 = QV RV ∈ R

(m−n)×p we
have [

In 0
0 QT

V

]
QT Ã =

⎡
⎣ R11 V12 R12

0 V22 R23
0 RV 0

⎤
⎦ .

We then eliminate the upper triangular part of RV and the lower triangular part
of V22 with Givens rotations, which makes R23 full and the bottom right block
upper trapezoidal. So we have finally

G(k + 2p − 2, k + 2p − 1)T . . . G(k + p, k + p + 1)T G(k, k + 1)T

. . . G(k + p − 1, k + p)T

[
In 0
0 QT

V

]
QT Ã = R̃,

where G(i, j) are Givens rotations acting on the ith and jth rows.
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2.5 Numerical Experiments

We tested the speed of LAPACK-style implementations of our algorithms for
updating after adding (DELCOLS) and deleting (ADDCOLS) columns, against LA-
PACK’s DGEQRF, for computing the QR factorization of a matrix.
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Fig. 2. Comparison of speed for DELCOLS with k = 1 for different m

We tested the codes with m = {1000, 2000, 3000, 4000, 5000} and n = 0.3m,
and the number of columns added or deleted was p = 100. We timed our codes
acting on QT Ã, the starting point for computing R̃, and in the case of adding
columns we included in our timings the computation of QT U , which we formed
with the BLAS routine DGEMM. We also timed DGEQRF acting on only the part
of QT Ã that needs to be updated, the nonzero part from row and column k
onwards. Here we can construct R̃ with this computation and the original R.
Finally, we timed DGEQRF acting on Ã. We aim to show our codes are faster than
these alternatives. In all cases an average of three timings is given.

To test our code DELCOLS we chose k = 1, the position of the first column
deleted, where the maximum amount of work is required to update the factor-
ization. We timed DGEQRF on Ã, DGEQRF on (QT Ã)(k: n, k: n−p) which computes
the nonzero entries of R̃(k: m, p + 1: n) and DELCOLS on QT Ã. The results are
given in Figure 2. Our code is much faster than recomputing the factorization
from scratch with DGEQRF, and for n = 5000 there is a speedup of 20. Our code is
also faster than using DGEQRF on (QT Ã)(k: n, k: n−p), where there is a maximum
speedup of over 3. LAPACK’s QR code achieves around 420 MFlops/sec, our’s
gets 190MFlops/sec, but can’t use a blocked algorithm for better data reuse.

We then considered the effect of varying p with DELCOLS for fixed m = 3000,
n = 1000 and k = 1. We chose p = {100, 200, 300, 400, 500, 600 700, 800}. As
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Fig. 4. Comparison of speed for ADDCOLS with k = 1 for different m

we delete more columns from A there are fewer columns to update, but more work
is required for each one. We timed DGEQRF on Ã, DGEQRF on (QT Ã)(k: n, k: n−p)
which computes the nonzero entries of R̃(k: m, k: n − p) and DELCOLS on QT Ã.
The results are given in Figure 3. The timings for DELCOLS are relatively level
and peak at p = 300, whereas the timings for the other codes obviously decrease
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with p. The speedup of our code decreases with p, and from p = 300 there is
little difference between our code and DGEQRF on (QT Ã)(k: n, k: n − p).

To test ADDCOLS we generated random matrices A ∈ R
m×n and U ∈ R

m×p.
We set k = 1 where maximum updating is required. We timed DGEQRF on Ã and
ADDCOLS on QT Ã, including the computation of QT U with DGEMM. The results are
given in Figure 4. Here our code achieves a speedup of over 3 for m = 5000 over
the complete factorization of Ã. Our code achieves 55 MFlops/sec compared to
LAPACK’s 420 MFlops/sec, but we use Givens rotations and only have a small
fraction that uses a blocked algorithm. We do not vary p as this increases the
work for our code and DGEQRF on (QT Ã)(k: m, k: n + p) roughly equally.

2.6 Conclusions

The speed tests show that our updating algorithms are faster than computing
the QR factorization from scratch or using the factorization to update columns
k onward, the only columns needing updating. For more detailed information on
the material in this section see [5]. Further work planned is the parallelization
of the algorithms.
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Abstract. Linear algebra algorithms commonly encapsulate parallelism
in Basic Linear Algebra Subroutines (BLAS). This solution relies on the
fork-join model of parallel execution, which may result in suboptimal per-
formance on current and future generations of multi-core processors. To
overcome the shortcomings of this approach a pipelined model of parallel
execution is presented, and the idea of look ahead is utilized in order to
suppress the negative effects of sequential formulation of the algorithms.
Application to one-sided matrix factorizations, LU, Cholesky and QR,
is described. Shared memory implementation using POSIX threads is
presented.

1 Introduction

The standard approach to parallelization of numerical linear algebra algorithms
for shared memory systems, utilized by the LAPACK library [1,2], is to rely on
parallel implementation of BLAS [3]. It is a proven method to extract parallelism
from Level 3 BLAS routines. However, as the number of processors or cores
grows, practice shows that parallelization of Level 1 and 2 routines is unlikely
to yield speedups and can even result in slowdowns. As a result, Level 1 and
2 BLAS portions of the algorithms decrease the benefits of parallelization and
limit achievable performance. A more flexible approach is required to address
new generations of multi-core processors, which are expected to have tens, and
possibly hundreds, of cores in near future.

The technique of look ahead can be used to remedy the problem by overlapping
the execution of less efficient operations with the more efficient ones. Also, the
use of different levels of look ahead is investigated and the idea of dynamic look
ahead is discussed, where the algorithm execution path is decided at runtime.

Many of the ideas presented in this paper are already well known. Notably,
an early application of dynamic operation scheduling in matrix factorization was
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introduced by Agarwal and Gustavson in parallel implementation of LU [4] and
Cholesky factorization [5] for IBM 3090. Extensive discussion of the concept of
look ahead with static scheduling was presented by Strazdins [6]. Similar tech-
niques are also utilized in a recent work by Gustavson, Karlsson and Kågström
on Cholesky factorization using packed storage [7]. Although the concept has
been known for a long time, it never received a close look on its own. In particu-
lar the authors are not aware of any work, which would stress the impact of the
depth of look ahead on performance and compare static and dynamic scheduling
techniques, as well as show clearly how the idea generalizes to different matrix
factorizations. This work attempts to fill the gap.

2 Factorizations

The LU factorization with partial row pivoting of an m × n real matrix A has
the form

A = PLU,

where L is an m×n real unit lower triangular matrix and U is an n×n real upper
triangular matrix for m >= n, or L is an n×n real unit lower triangular matrix
and U is an m×n real upper triangular matrix for m <= n. P is a permutation
matrix. The description of the block algorithm can be found in [8,9]. In LAPACK
the double precision algorithm is implemented by the DGETRF routine. A single
step of the algorithm is implemented by a sequence of calls to the following
LAPACK and BLAS routines: DGETF2, DLASWP, DTRSM, DGEMM, where
DGETF2 factorizes a block of columns of the matrix (the panel) and DLASWP,
DTRSM, DGEMM apply appropriate transformations to the submatrix to the
right from the panel, which is the right-looking algorithm.

The Cholesky factorization of an n×n real symmetric positive definite matrix
A has the form

A = LLT ,

where L is an n × n real lower triangular matrix with positive diagonal el-
ements. The formulation of the block algorithm is analogous to the one for
LU factorization. In LAPACK the double precision algorithm is implemented
by the DPOTRF routine. A single step of the algorithm is implemented by
a sequence of calls to the following LAPACK and BLAS routines: DSYRK,
DPOTF2, DGEMM, DTRSM. Here, for simplicity, only the case of lower tri-
angular coefficient matrix is considered. In this case the routines DSYRK and
DGEMM apply a pending update and DPOTF2 and DTRSM perform the factor-
ization of a block of columns of the matrix (the panel), which is the left-looking
algorithm.

The QR factorization of an m × n real matrix A has the form

A = QR,
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where Q is an m × m real orthogonal matrix and R is an order n real upper
triangular matrix. The traditional algorithm for QR factorization applies a series
of elementary Householder matrices of the general form

H = I − τvvT ,

where v is a column vector and τ is a scalar. In the block form of the algorithm a
product of nb elementary Householder matrices is represented in the form [10,11]

H1H2 . . .Hnb = I − V TV T ,

where V is an m × nb real matrix (block of columns) whose columns are the
individual vectors v and T is an nb × nb real upper triangular matrix. For the
derivation of the blocked algorithm the reader is referred to the original papers
mentioned above. In LAPACK the double precision algorithm is implemented
by the DGEQRF routine. A single step of the algorithm is implemented by
a sequence of calls to the following LAPACK routines: DGEQR2, DLARFT,
DLARFB, where DGEQR2 and DLARFT operate on a block of columns of the
matrix (the panel) and DLARFB operates on the submatrix to the right from
the panel, which is the right-looking algorithm.

3 Parallelization

Block formulations of the three factorizations discussed, as well as many other
one-sided factorizations, follow a common scheme. In a single step of each algo-
rithm, first operations are applied to a single block of rows or columns, referred
to as the panel, then the result is applied to the remaining portion of the matrix.
The panel operations are usually implemented with Level 1 and 2 BLAS, and,
in most cases, achieve the best performance when executed on a single proces-
sor. As a result, it is most straightforward to use one dimensional partitioning
of work for parallel implementation, by cyclic assignment of blocks of rows or
blocks of columns to processors, depending on the orientation of the panel; this
is the approach used here.

It is a well known fact that matrix factorizations have left-looking and right-
looking formulations [4,8,12]. It has even been observed that transition between
the two can be done by automatic code transformations [13], although more
powerful methods than simple dependency analysis may be necessary. Another
well known fact is that the technique of look ahead can be used to significantly
improve the performance of matrix factorizations, a method based on performing
panel factorizations in parallel with the update to the remaining submatrix from
previous step of the algorithm [6]. Also, look ahead can be of arbitrary depth
and an example of software utilizing this idea is the high performance LINPACK
benchmark (HPL) [14,15]. Look ahead is nothing else, but altering the order of
operations in the factorization. A great number of permutations are legal, as long
as algorithmic dependencies are not violated (Figure 1). It can be observed that
the right-looking and left-looking formulation of a matrix factorization are on two
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Fig. 1. Different variants of block LU factorization with 1D block cyclic work par-
titioning for a problem with the coefficient matrix of size 4 by 4 blocks. (PANEL -
operations involved in panel factorization, TRAIL - operations involved in updating
the remaining portion of the matrix).

opposite ends of a wide spectrum of possible execution paths, with look ahead
providing a transition between them. If the straight right-looking formulation
is regarded as one with look ahead of zero, then the left-looking formulation
is equivalent to the right looking formulation with the maximum possible look
ahead for a given problem.

4 Arbitrary (Static) Look Ahead

Classic implementation of a one-sided matrix factorization follows the execution
pattern where the panel factorizations and the updates to the submatrix to the
right from the panel are sequentially ordered. Panel factorization is performed
by a single processor, while other processors are idle. Alternatively, when the
first block of columns (block of rows) from step J of the factorization has been
updated, one processor can perform panel factorization from step J + 1 on that
block, when the remaining processors continue applying the update from step
J , which decreases the idle time.

Panels can be factorized up to an arbitrary depth. When this depth is reached
an update has to be finished before another panel can be factorized. The order
of execution of operations is determined by the depth of look ahead and is static
throughout the execution of the factorization. Figure 2 shows the simplified code
implementing arbitrary (static) look ahead. At each step the cycle is followed by
checking dependencies and stalling if necessary, executing the operation, updat-
ing the progress, and making a transition to the next operation. The transition
is always known a priori based on the current stage and the depth of look ahead,
since the algorithm is static in nature.
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Fig. 2. Simplified code for one-sided factorizations with an arbitrary (static) look ahead

The deeper the depth, the less the processors stall at the end of the factor-
ization. This is because the necessary panel is readily available, when the time
comes to apply the update. At the same time, with deeper look ahead, stalls oc-
cur at the beginning of execution, where processors wait for a block of columns
(or rows) to be updated in order to apply a forth coming panel factorization.

5 Dynamic Look Ahead

Idea of dynamic look ahead comes from the observation that the benefits of deep
look ahead are obliterated by the stalls, or bubbles, at the beginning of the fac-
torization. Basic idea behind dynamic look ahead is to implement the left-looking
variant of the algorithm, where the panel factorizations are performed as soon
as possible, with a modification occuring when a panel factorization introduces
a stall. In such case an update to a block of columns of the right submatrix is
performed instead. The updating continues only until next panel factorization is
possible. As a result, dynamic look ahead is implemented by dynamic scheduling
of work at runtime. Figure 3 shows the simplified code implementing dynamic
look ahead. Here the steps of checking dependencies and making a transition
are merged into the step of fetching next task, where the choice of transition is
made dynamically at run-time depending on the progress of the execution.
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Fig. 3. Simplified code for one-sided factorizations with dynamic look ahead

6 Results

Results presented here were collected on a shared memory system with two 1.8
GHz dual-core AMD OpteronTM 265 processors. GOTO BLAS [16] version 1.05
was used, the most recent one at the time of writing this paper. Block size of 64
was used in all cases.

Figure 4 shows Gantt chart of execution of LU factorization using different
approaches ordered from top to bottom according to their relative performance.
On top is the right-looking version, where all but one processor are stalled by
the panel factorization. Below is the left-looking version, which can also be con-
sidered the right-looking version with maximum possible amount of look ahead.
Here stalls are eliminated at the end of factorization, but multiple bubbles are in-
troduced at the beginning. Next are right-looking factorizations with look ahead
of depth one and two. Lastly, at the bottom is the factorization with dynamic
look ahead.

Figure 5, 6 and 7 show performance results for LU factorization, Cholesky
factorization and QR factorization respectively.

The figures show clearly that the explicitly parallelized code benefits greatly
from look ahead. Small, but noticeable performance gains can be achieved by
choosing the proper depth of the static look ahead. Alternatively dynamic look
ahead can be used to yield the best performance in most cases. Also, for this
particular experiment, the code with look ahead outperforms the BLAS-parallel
code in all investigated cases.
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Fig. 4. Gantt chart of execution of different variants of LU factorization. From top
to bottom: right-looking (look ahead of depth zero), right-looking with maximum look
ahead (left-looking), right-looking with look ahead of depth one, right-looking with look
ahead of depth two, dynamic look ahead. Problem size n = 1536, block size nb = 64.
The graphs shows actual measurements (not a simulation). The white space in the
middle represents a region clipped for clarity due to the length of the full chart.

Fig. 5. Performance of different variants of LU factorization on two 1.8 GHz dual-core
AMD OpteronTM 265 processors (four cores total). The right graph shows magnifica-
tion of the region between n = 400 and n = 2000.
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Fig. 6. Performance of different variants of Cholesky factorization. on two 1.8 GHz
dual-core AMD OpteronTM 265 processors (four cores total). The right graph shows
magnification of the region between n = 650 and n = 2000.

Fig. 7. Performance of different variants of QR factorization on two 1.8 GHz dual-core
AMD OpteronTM 265 processors (four cores total). The right graph shows magnifica-
tion of the region between n = 400 and n = 2000.

Interesting observations can be made when comparing the explicitly paral-
lelized code without look ahead with the BLAS-parallel code, which in principle
should deliver similar performance. The main drawbacks of the explicitly paral-
lel code stem from the 1D partitioning used here. The first disadvantage comes
from the load imbalance introduced by such partitioning, which can be clearly
visible on the right portions of graphs on Figure 4. The second disadvantage
comes from the fact that in this case BLAS operations are invoked on narrow
portions of the coefficient matrices, which is likely to cause performance loss,
since typically bigger input translates to better BLAS performance. The better
asymptotic performance of the BLAS-parallel code for LU factorization can be
attributed to the two reasons mentioned above. It would be very desirable to
closely investigate the efficiency of BLAS depending on the shape of the input
arrays for different operation. This would, however, exceed the scope and space
of this publication.
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On the other hand, the main advantage of the explicitly parallel code is a
reduced number of synchronization points in the algorithm. In particular in
the update phase, each processor can apply all BLAS invocations to a column
without synchronization with other processors. Also, applying a set of BLAS
calls to a single column, potentially translates to data reuse between BLAS
operations. At the same time, in the case of the BLAS-parallel code, each call to a
BLAS operation requires forking and joining of threads, which may have a costly
overhead and diminishes the potential for data reuse between BLAS operations.
In particular, in the case of QR factorization, the update implemented by the
DLARFB routine consists of the biggest number of BLAS calls plus a portion
of sequential code, to which facts we attribute the worst performance of BLAS-
parallel code compared to the explicitly parallel code without look ahead.

7 Conclusions

The application of the technique of look ahead was discussed in two algorithmic
variants, with arbitrary (static) look ahead, where the algorithmic path is prede-
termined, and with dynamic look ahead, where the path is decided at runtime.
The results collected on a modern multi-core system showed strong advantages
of the idea of the look ahead in general.

For small number of cores the performance of dynamic look ahead can be
matched by static look ahead. Nevertheless, dynamic look ahead eliminates the
guesswork of setting the optimal depth of static look ahead. At the same time,
im most cases it achieves the best performance.

Also, since it may be slightly counterintuitive, it should be pointed out that
all of the techniques presented here deliver bit-wise identical results. Although
the order of operations change from the processor perspective, it does not change
from the perspective of each element of the input matrix.

8 Future Plans

The most important work envisioned in the future is application of the ideas
presented here to the case of 2D partitioning, which will become necessary for
load balancing with rapidly growing number of cores in multi-core processors.
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Abstract. We present two implementations of the inverse-free iteration
for spectral division that reduce the computational cost of the traditional
algorithm. One of the implementations is mainly composed of efficient
BLAS-3 operations, and can be employed for spectral division of large-
scale generalized eigenproblems on current computer architectures.

Keywords: Spectral division, generalized eigenproblem, matrix pencil,
orthogonal transformations.

1 Introduction

Consider the matrix pencil A−λE, where A, E ∈ R
n×n, and let Λ(A, E) denote

the set of generalized eigenvalues of the pencil, defined as

Λ(A, E) = {z ∈ C : det(A − zE) = 0}. (1)

In the spectral division problem we are interested in finding a pair of (orthogonal)
matrices U , V ∈ R

n×n such that

UT AV =
[

A11 A12
0 A22

]
, UT EV =

[
E11 E12
0 E22

]
, (2)

and Λ(A11, E11), Λ(A22, E22) are disjoint sets containing certain parts of Λ(A,
E). The spectral division has important applications in matrix diagonaliza-
tion, computation of deflating subspaces, and related problems such as linear-
quadratic optimal control and model reduction of dynamic linear systems [1,10].

There are several methods to compute the decomposition in (2). The tradi-
tional approach proceeds by first obtaining the generalized (real) Schur form of
the matrix pencil A−λE via the QZ algorithm [8], and then reordering the diag-
onal blocks of the matrices. This method, however, presents a major drawback
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in that the QZ algorithm is composed of fine-grain computations which usually
do not attain high performance on current computers. Recent advances in [4,5,6]
aim at avoiding the poor performance of the QR and QZ algorithms.

A different alternative is to use spectral projectors related with the matrix sign
and disk functions [3,7,9]. Iterative schemes resulting from this mainly consist
of matrix-matrix products, solution of linear systems, and orthogonal factoriza-
tions. These operations deliver high performance on modern computer architec-
tures.

In this paper we propose two variants of the inverse-free iteration for spectral
division [7] that significatively reduce its computational cost. The modifications
are based on a reordering of the orthogonal transformations that are applied
during the first stage of the iteration. As a result, one of the matrices in the
iteration is kept in (block) upper triangular form and the computational cost is
reduced by 32%. The first variant employs Givens rotations and results in an
algorithm composed of BLAS-1 computations. As in general this type of oper-
ations attains low performance on current computers, we also propose a block
generalization of this scheme that employs efficient (BLAS-3) Householder trans-
formations. Both variants rely solely on the use of orthogonal transformations;
therefore, their numerical accuracy can be expected to be similar to that of the
original algorithm. For a deep study on the practical numerical performance of
the inverse-free iteration as a spectral division tool, see [2,12].

The rest of the paper is structured as follows. In Section 2 we review the
inverse-free iteration for spectral division. Next, in Sections 3 and 4, we expose
the two variants of the iterative scheme that reduce the (theoretical) computa-
tional cost. The experimental results in Section 5 show that one of these variants
also reduces the execution time of the iteration. We conclude the paper with some
final remarks in Section 6.

2 The Inverse-Free Iteration for Spectral Division

In [7] Malyshev proposed the following “inverse-free” iteration to separate the
spectrum of a matrix pencil A − λE:

A0 ← A, Ak+1 ← QT
12Ak,

E0 ← E, Ek+1 ← QT
22Ek, k = 0, 1, . . . ,

(3)

where, at each iteration, Q12 and Q22 are obtained from the QR factorization
of the 2n × n matrix Mk

Mk :=
[

Ek

−Ak

]
= QkR̄k =

[
Q11 Q12
Q21 Q22

] [
Rk

0

]
. (4)

The convergence of this iteration is ultimately quadratic and the matrix pair
at convergence allows the computation of a spectral projector inside the open
unit disc [7]. Malyshev’s proposal included a stopping criterion that required the
computation of a matrix inverse and a subspace extraction technique which also
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involved this type of operation. Practical details on the inverse-free iteration
can be found in [2], where the iteration and the subspace extraction scheme
were modified to make them truly inverse-free. A new strategy for subspace
extraction was formulated in [12] which provides both U and V in (2) from a
single iteration, thus halving the cost of the algorithm proposed in [2].

The QR factorization in (4) is usually computed by applying n Householder
reflectors, H1, H2, . . . , Hn, to Mk, so that Qk = H1 · H2 · · · Hn. Let In and 0n

denote, respectively, the (square) identity matrix of order n and an n×n matrix
with all its entries equal to zero. The appropriate part of Qk can then be formed
by “accumulating” the reflectors in reverse order as

H1 · H2 · · · Hn

[
0n

In

]
= Qk

[
0n

In

]
=

[
Q12
Q22

]
.

The computational cost in flops (floating-point arithmetic operations) of the
iteration is reported in the column labeled as “Traditional” in Table 1. (The
entries in other columns of the table will be introduced later.) In the table and
also in later expressions for the computational costs we neglect lower-order terms.
Compared with other spectral division tools, the cost of the inverse-free iteration
is high. The computation of the generalized real Schur form via the QZ algorithm
roughly requires 81n3 flops (plus the cost of the reordering procedure). Thus, in
theory 6 inverse-free iterations are about as expensive as the QZ algorithm. The
difference with the generalized Newton iteration for the sign function is more
dramatic. By initially transforming the matrix pencil into BE − λ(UT

E AVE),
where BE = UT

E EVE is (bi)diagonal, the cost of the sign function-based scheme
is as low as 2n3 flops per iteration [11].

The inverse-free iteration requires storage for about 6 matrices of dimension
n × n each. This represents a larger storage cost than the QZ algorithm, which
employs only 4 matrices of the same dimension.

Table 1. Computational costs (in flops) of the algorithms for the inverse-free iteration

Step Traditional Givens- Blocked
based Householder

QR fact. 3n3 + n3/3 3n3 3n3

Accumulate Qk 6n3 3n3 3n3

Ak+1 ← QT
12Ak 2n3 n3 n3

Ek+1 ← QT
22Ek 2n3 2n3 2n3

Total 13n3 + n3/3 9n3 9n3

3 Reducing the Cost

In this section we illustrate how to reduce the cost of the inverse-free iteration.
Consider the QR factorization A = UARA, where UA is orthogonal and RA is
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upper triangular, and the matrix pencil A0 −λE0 = RA −λ(UT
AE), which shares

its spectrum with A − λE.
The key to reducing the cost of the iteration lies in exploiting and preserving

the upper triangular structure of the sequence of matrices {Ak}k=0,1,... during
the iteration. We next show how to do so by using Givens rotations for a simple
example involving 3 × 3 matrices. During the exposition, we will use Gi,j

l to
denote the l-th Givens rotation, which is applied at step l to rows i − 1 and i in
order to annihilate the (i, j) entry of

[
ET

k , − AT
k

]T .
Consider that before the computations in iteration k commence, the aug-

mented matrix Mk = [ET
k , AT

k ]T presents the following structure:

Mk =
[

Ek

−Ak

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×
× × ×
× × ×
0 × ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the symbol ‘×’ is used to denote a nonzero entry. Although using Givens
rotations we can reduce Mk to upper triangular form in many different orders, we
are particularly interested in QT

12 being upper triangular, so that Ak+1 ← QT
12Ak

remains upper triangular. Therefore, we first introduce a zero in the (4, 1) entry
of Mk by applying a Givens rotation that involves the 3rd and 4th rows :

G4,1
1

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×
× × ×
⊗ × ×
0 × ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×
× × ×
0 × ×
0 × ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

;

here, the symbol ‘⊗’ is used to mark the entry that is annihilated by the appli-
cation of G4,1

1 . We then continue by introducing zeros in the following order:

G3,1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×
⊗ × ×
0 × ×
0 × ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G2,1
3

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
⊗ × ×
0 × ×
0 × ×
0 × ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G5,2
4

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 × ×
0 × ×
0 ⊗ ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G4,2
5

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 × ×
0 ⊗ ×
0 0 ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

G3,2
6

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 ⊗ ×
0 0 ×
0 0 ×
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G6,3
7

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 0 ×
0 0 ×
0 0 ×
0 0 ⊗

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G5,3
8

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 0 ×
0 0 ×
0 0 ⊗
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G4,3
9

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×
0 0 ×
0 0 ⊗
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The application of a Givens rotation to a pair of vectors with q elements
requires 6q flops. Therefore, computing the QR factorization of Mk as described
above requires

∑n
j=1

∑n
i=1 6(n − j) ≈ 3n3 flops.

In order to construct the appropriate blocks of Q, we next proceed to apply
the rotations in reverse order to the matrix [0n, In]T . If we now use the symbol
‘⊕’ to denote those entries which become nonzero by the application of the last
Givens rotation, we have that the structure of this matrix is modified by the
successive accumulation of Givens rotations as follows:

G4,3
9

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
× 0 0
0 × 0
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G5,3
8

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
⊕ 0 0
× 0 0
0 × 0
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G6,3
7

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
× 0 0
× ⊕ 0
⊕ × 0
0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G3,2
6

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
× 0 0
× × 0
× × ⊕
⊕ ⊕ ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

G4,2
5

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
⊕ 0 0
× 0 0
× × 0
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G5,2
4

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
× 0 0
× ⊕ 0
× × 0
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G2,1
3

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
× 0 0
× × 0
× × ⊕
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ G3,1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

⊕ 0 0
× 0 0
× × 0
× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

G4,1
1

⎡
⎢⎢⎢⎢⎢⎢⎣

× 0 0
× ⊕ 0
× × 0
× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

× 0 0
× × 0
× × ⊕
× × ×
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As the top 3 × 3 block of Mk contains Q12, Ak+1 ← QT
12Ak remains upper

triangular.
The cost of accumulating Q in this manner is

∑n
i=1

∑n
j=1 6j ≈ 3n3 flops and

the total cost of one iteration is given in the column labeled as “Givens-based” in
Table 1 and represents a rough reduction of 32% with respect to the traditional
inverse-free iteration (via Householder reflectors). This cost could be further
reduced by using fast Givens rotations.

In this approach the lower triangular part of Ak holds the Householder vectors
from the initial factorization A = QARA. Given that a single rotation requires
the storage of 2 parameters (the sine and cosine of the rotation), and the ro-
tations need to be applied in reverse order, we also need storage space for 2n2

numbers. Half of this workspace can be obtained by reusing the entries of Mk

which are annihilated, while storage for approximately n2/2 numbers more is
available in the strictly upper triangular part of QT

12. This represents an in-
crease in n2/2 numbers with respect to the traditional implementation of the
inverse-free method.

Even with a reduction of 32% in the computational cost, we do not expect
the Givens-based algorithm to outperform the traditional implementation as the
application of Givens rotations is inherently a Level-1 BLAS operation, while
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the traditional algorithm employs much faster Level-3 BLAS kernels. Therefore,
the effect of the decrease in theoretical cost is blurred by the use of a type of
operation which attains a much lower performance on current architectures.

4 A High-Performance Algorithm

In this section we introduce a second algorithm that presents a theoretical cost
similar to that of the Givens-based algorithm, but which performs most of its
computations in terms of Level-3 BLAS operations.

As in the Givens-based algorithm, we start by computing the QR factorization
A = UARA, with UA orthogonal and RA upper triangular, so that the iteration
is initialized with the matrix pencil A0 − λE0 = RA − λ(UT

A E). The key to this
algorithm will be now to exploit and preserve a block upper triangular structure
in the sequence of matrices {Ak}k=0,1,... during the iteration.

For simplicity, we illustrate the algorithm for an example with n = 3 ·b. Thus,
Mk consists of 6 × 3 blocks of dimension b × b each; that is,

Mk =
[

Ek

−Ak

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13
M21 M22 M23
M31 M32 M33

M41 M42 M43
0 M52 M53
0 0 M63

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where all Mi,j ∈ R
b×b and we will not assume any special structure for the

diagonal blocks of Ak.
In our algorithm, we proceed to triangularize Mk by first computing the QR

factorization of the 2b × b matrix[
M31
M41

]
= U4,1

1

[
R31
0

]
.

By embedding the orthogonal matrix U4,1
1 into the appropriate coordinates of a

block diagonal matrix Q1 = diag
(
Ib, Ib, U

4,1
1 , Ib, Ib

)
, we have that

QT
1

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43

0 M52 M53

0 0 M63

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

R31 M̄32 M̄33

0 M̄42 M̄43

0 M52 M53

0 0 M63

⎤
⎥⎥⎥⎥⎥⎦

,

where R31 is upper triangular and all entries of M41 have been annihilated. Here-
after, we assume that Mk is overwritten with the application of the successive
orthogonal factors that are computed to reduce Mk to upper triangular form.
Thus, [

M32 M33
M42 M43

]
← U4,1

1

[
M32 M33
M42 M43

]
.
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Let us now use U i,j
l to denote the orthogonal factor from the QR factorization

of
[
MT

i−1,j, MT
i,j

]T . We next compute and apply a sequence of orthogonal matri-
ces U3,1

2 , U2,1
3 , U5,2

4 , U4,2
5 , U3,2

6 , U6,3
7 , U5,3

8 , and U4,3
9 , so that zeros are introduced

in Mk in the order specified in Figure 1.

M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43

M52 M53

M64

1

4

7

2

5

8

9

6

3

Fig. 1. Block partitioning of Mk (left) and the order in which blocks are annihilated by
the application of orthogonal matrices (right). Each orthogonal matrix U i,j

l annihilates
the elements in the lower triangle of Mi−1,j and the elements in the upper triangle of
Mi,j . For the diagonal blocks of Ak the elements in the lower triangle are annihilated
together with those in the upper triangle.

If we assume b � n, the cost of computing the QR factorization using this
blocked procedure is

∑n/b
j=1

∑n/b
i=1(3b3 + b3/3 + 6(nb2 − jb3)) ≈ 3n3 flops.

Consider Ql to be the 6b× 6b block diagonal matrix that embeds U i,j
l into its

(i−1)st and ith diagonal blocks. By accumulating the orthogonal transformations
required for the QR factorization of Mk in reverse order to [0n, In]T , we obtain
a matrix of the form

Q1Q2 · · · Q9

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
Ib 0 0
0 Ib 0
0 0 Ib

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

V11 0 0
V21 V22 0
V31 V32 V33

V41 V42 V43

V51 V52 V53

V61 V62 V63

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

Q12

Q22

]
.

Thus, the product Ak+1 ← QT
12Ak involves two block upper triangular matrices

with b × b diagonal blocks, QT
12 and Ak, so that the result is also block upper

triangular, with b × b diagonal blocks.
Provided b � n, the cost of the accumulation procedure is

∑n/b
j=1

∑n/b
i=1 6(jb3)

≈ 3n3 flops, and the (rough) overall cost of this algorithm is reported in the
column labeled as “Blocked Householder” in Table 1. Thus, the cost is (asymp-
totically) as low as that of the Givens-based algorithm, but we now enable the use
of Level-3 BLAS (at least) in the application of the orthogonal transformations.

The QR factorization of a 2b× b matrix requires space to keep approximately
b2/2+ b2 real numbers. As b2 real numbers can be stored overwriting the entries
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that are annihilated, we still need a workspace of dimension b2/2 for each tiny
factorization, and a total space of dimension

∑n/b
j=1

∑n/b
i=1(b

2/2) ≈ n2/2. However,
this space is available in the upper triangular part of the matrix that holds Q12
in the end.

In order to obtain a block triangular matrix Q12, the matrix partitioning
needs to be carefully done when n is not an exact multiple of the block size b.
In particular, any row partitioning that is performed in the first column block
of the matrix must be reproduced in the remaining blocks, starting from the
diagonal. Thus, if the first column block is partitioned into blocks with row sizes
b1, b2, b3, . . ., then any other column block of the matrix must be partitioned,
starting at the diagonal block, into blocks with the same row sizes. For simplicity,
we select b1 = b2 = b3 = . . . = b except, possibly, for the last block column.

5 Experimental Results

All the experiments in this section were performed using ieee double-precision
(real) arithmetic on random matrices. The following routines are included in the
evaluation of spectral division methods via the inverse-free iteration:

– dggdfsp. The traditional iterative scheme as described in Section 2.
– dggdfsg. The iteration with Givens rotations in order to introduce zeros in

the matrix pair as described in Section 3.
– dggdfsh. The iteration with Householder reflectors in order to introduce

zeros in the matrix pair as described in Section 4.

For completion, we also include a routine dggdfsx that performs the reduction
of the matrix pair to generalized real Schur form via the QZ algorithm followed by
a reordering of the generalized eigenvalues. The routine employs kernels available
in LAPACK 3.0 for the QZ algorithm and related computations.

We report the performance of the spectral division codes on two architectures:
the first platform, pentium, consists of an Intel Pentium4 processor@3.2 GHz
with 2048 KB of L2 cache; the second platform, itanium, is composed of an
Intel Itanium-2 processor@1.5 GHz with 256 KB/4 MB of L2/L3 cache. The
BLAS implementation in Goto BLAS 1.0 and MKL 8.0 were used, respectively,
on pentium and itanium.

Table 2 reports the execution time of all spectral division algorithms, includ-
ing dggdfsx, on random matrices with entries uniformly distributed in [−1, 1].
The column labeled as “#Iter.” reports the number of iterations required by the
algorithms based on the inverse-free iterative scheme. The results show that dg-

gdfsp and dggdfsh are competitive with the QZ-based algorithm. However, no
major conclusions should be extracted by comparing dggdfsx with the remain-
ing spectral division algorithms as the number of iterations of the inverse-free
iterative schemes is quite dependent on the specific problem data. Besides, recent
advances in the QR and QZ algorithms will surely change this ratio [4,5,6].

Figure 2 reports the MFLOPs (millions of flops per second) rate of the spectral
division algorithms based on the inverse-free iterative scheme using a normalized
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Table 2. Execution times of the spectral division algorithms on pentium (top) and
itanium (bottom)

n dggdfsx #Iter. dggdfsp dggdfsg dggdfsh

100 1.44E+00 13 7.13E−01 1.11E+00 7.21E−01
500 1.01E+02 15 6.56E+01 1.49E+02 5.57E+01

1000 6.80E+02 14 4.87E+02 1.11E+03 3.90E+02
1500 2.11E+03 16 1.80E+03 4.23E+03 1.41E+03
2000 4.92E+03 17 4.43E+03 1.06E+04 3.45E+03
2500 9.58E+03 16 8.20E+03 1.96E+04 6.31E+03

n dggdfsx #Iter. dggdfsp dggdfsg dggdfsh

100 1.23E−01 13 5.24E−02 3.22E−01 5.34E−02
500 1.01E+01 15 5.98E+00 3.36E+01 4.70E+00

1000 6.70E+01 14 4.61E+01 2.58E+02 3.35E+01
1500 2.21E+02 16 1.76E+02 1.06E+03 1.25E+02
2000 4.97E+02 17 4.34E+02 2.70E+03 3.18E+02
2500 9.56E+02 16 8.13E+02 5.08E+03 5.88E+02
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Fig. 2. Top: Normalized MFLOPs rate attained by the spectral division algorithms via
the inverse-free iteration for spectral division on pentium (left) and itanium (right).
Bottom: Speed-up attained by routine dggdfsh over the traditional iterative scheme
in dggdfsp on pentium (left) and itanium (right).
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flop count of 13.3n3 flops per iteration. The results show that, starting from n =
500, routine dggdfsh consistently outperforms dggdfsp by 20–40%, depending
on the architecture and the problem size.

6 Concluding Remarks

We have described two variants of the inverse-free iteration for spectral division
that reduce the theoretical cost of the traditional iterative scheme by 32%. The
second variant carries out most of its computation in terms of Level-3 BLAS
operation and clearly outperforms the traditional algorithm.

The reduction in the cost of the new algorithms narrows the gap between
the computational costs of the inverse-free iteration and other, much cheaper,
numerical tools for spectral division such as the sign function (via the Newton
iteration) or the QZ algorithm.

Acknowledgments

We thank Prof. Xiaobai Sun for fruitful discussions that lead us to the joint
derivation of the Givens-based algorithm.

References

1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM Publi-
cations, Philadelphia (2005)

2. Bai, Z., Demmel, J., Gu, M.: An inverse free parallel spectral divide and conquer
algorithm for nonsymmetric eigenproblems. Numer. Math. 76(3), 279–308 (1997)

3. Benner, P.: Contributions to the Numerical Solution of Algebraic Riccati Equations
and Related Eigenvalue Problems. Logos–Verlag, Germany (1997)

4. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I: Maintain-
ing well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23(4),
929–947 (2002)

5. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. SIAM J. Matrix
Anal. Appl. 23(4), 948–973 (2002)

6. K̊agström, B., Kressner, D.: Multishift variants of the QZ algorithm with aggressive
early deflation. SIAM J. Matrix Anal. Appl. 29(1), 199–227 (2006)

7. Malyshev, A.N.: Parallel algorithm for solving some spectral problems of linear
algebra. Linear Algebra Appl. 188/189, 489–520 (1993)

8. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue prob-
lems. SIAM J. Numer. Anal. 10, 241–256 (1973)

9. Roberts, J.D.: Linear model reduction and solution of the algebraic Riccati equa-
tion by use of the sign function. Internat. J. Control 32, 677–687 (1980)

10. Sima, V.: Algorithms for Linear-Quadratic Optimization, Pure and Applied Math-
ematics, vol. 200. Marcel Dekker, Inc., New York (1996)

11. Sun, X., Quintana-Ort́ı, E.S.: The generalized Newton iteration for the matrix sign
function. SIAM J. Sci. Comput. 24(2), 669–683 (2002)

12. Sun, X., Quintana-Ort́ı, E.S.: Spectral division methods for block generalized Schur
decompositions. Math. Comp. 73, 1827–1847 (2004)



CFD Applications for

High Performance Computing:
Minisymposium Abstract
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Thanks to time-dependent simulations such as Large Eddy Simulations but also
modelling more complex industrial flows, demands on HPC resources in CFD
have increased dramatically in recent years. Typical time-dependent simulation
uses large number of CPUs during long time (from weeks to months). Engineers
in industry are simulating more complex flows and more care is put on details
(such as representing all details in the geometry). All this would not be possi-
ble without cost efficient HPC resources in form of Linux clusters. This mini-
symposium will give an overview of HPC-intensive CFD applications covering
computation of flows in water turbines, flows around cars, trains and airplanes
and radiation heat transfer.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, p. 167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Some Experiences on the Accuracy and
Parallel Performance of OpenFOAM for

CFD in Water Turbines

H̊akan Nilsson

Department of Applied Mechanics, Div. of Fluid Dynamics,
Chalmers, SE-412 96 Gothenburg, Sweden

hani@chalmers.se
http://www.tfd.chalmers.se/~hani

Abstract. 50% of the electric power in Sweden is generated by water
power. Many of the power plants in Sweden are getting old and some
major refurbishments are coming up. Due to the development of numer-
ical methods and computer power the last decades Computational Fluid
Dynamics (CFD) is to a large extent used as a design tool for this pur-
pose. The general features of the flow in water turbines can be resolved
with todays methods and computational power, but in order to study the
flow in detail enormous HPC (High Performance Computing) facilities
and new methods are required.

The present work presents the water turbine field with its HPC re-
quirements, shows some state-of-the-art results from OpenFOAM CFD
analysis, and presents a parallel performance analysis on a Linux cluster
using an ordinary gigabit interconnect v.s. an Infiniband interconnect.

1 Water Turbines

Water turbines are designed to extract energy from the water flowing through
the water turbine runner. The availabe power is determined by the difference in
the elevation of the tail water and head water multiplied with the water mass
flow and gravity. In reaction turbines the flow enters the runner with a swirl and
the runner is designed to remove that swirl before the water enters the draft tube
(see Figure 1). The draft tube is a diffuser which recovers the static pressure and
leads the water towards the tail water.

1.1 HPC Requirements

Water turbines have complicated geometries where the flow in different parts
of the turbine influences the flow in other parts of the turbine. To be able to
set valid boundary conditions and to model the flow correctly it would thus be
ideal to include all the geometry from head water to tail water. The Reynolds
numbers in water turbine applications are always high, so the resolution of the
computational mesh must be fine where large gradients in the flow occur. These

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 168–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. CAD model of the Hölleforsen Kaplan turbine model and visualizations of the
flow in the runner and draft tube

requirements together yields an enourmously large mesh. In addition to this there
are both stationary and rotating parts in water turbines, which require rotor-
stator interaction and unsteady computations. The thin wakes after stayvanes,
guide vanes and runner blades affect the details of the flow and should also be
resolved. Close to the runner blades cavitation often occurs, and the numerical
methods to resolve those effects require even more cells and shorter time steps.
There is probably no limit on the HPC requirements for flow in water turbines
if all the important flow features should be appropriately predicted using CFD.

2 The OpenFOAM CFD Tool

The newly released OpenFOAM (Open Field Operation and Manipulation, www.
openfoam.org) tool has been used in the present study. OpenFOAM is an Open-
Source object oriented C++ tool for solving various partial differential equations
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(PDEs). It includes preprocessing (grid generator, converters, manipulators, case
setup), postprocessing (using OpenSource Paraview) and many specialized CFD
solvers are implemented. Some of the more specialized features that are included
in OpenFOAM, and which are important to the flow in water turbines are: slid-
ing grid, moving meshes, two-phase flow (Langrange, VOF, Euler-Euler) and
fluid-structure interaction. OpenFOAM runs in parallel using automatic/manual
domain decomposition. In addition to the source code, OpenFOAM gives access
to an international community of OpenFOAM researchers through the discussion
board at the OpenFOAM home page.

3 The Studied Cases

In the present work two parts of the Hölleforsen turbine model have been mod-
eled, the runner and the draft tube (see Figure 1). The two parts have been
modeled separately, but the aim is to simultaneously model all parts including
the spiral casing, the runner and the draft tube. The present runner computa-
tions have an inlet boundary condition from a previous computation of the flow
through the guide vanes. Steady computations have been made for both a peri-
odic part of the runner (1/5) and the whole runner. The present draft tube com-
putations have inlet boundary conditions from detailed Laser-Doppler Anemom-
etry (LDA) measurements. Both steady [1] and unsteady computations [2] have
been made for the draft tube. In all cases the standard k − ε turbulence model
is used. The sizes of the meshes used are, 450 000 cells for the periodic runner
computation, 2 240 000 cells for the full runner computation, and 1 000 000 cells
for the draft tube computations. These are all wall-function grids that do not
resolve the boundary layers in detail.

4 Results and Validation

The results from the present computations have been presented and validated
in detail in [2]. Some of these results and validations against measurements and
CFX-5 results are presented here also. The locations of the available measure-
ments [3] of the flow in the present cases are shown in Figure 2, and the names
of the measurement sections are used when presenting the results.

The dimensionless coefficients used in the validation are the velocity coefficient
(Cv), the pressure coefficient (Cp), the mean pressure recovery (Cprm) and the
energy loss coefficient (ζ).

The velocity coefficients, Cv, are the velocities normalized by Q/Ai, where
Q = 0.522m3/s is the volume flow and Ai is the area of each cross-section
(AIa = 0.15m2, AIb = 0.23m2). The tangential velocity component is positive
when the flow is co-rotating with the runner, and the axial velocity component
is positive in the main flow direction.

The pressure coefficient, Cp, is the local static pressure divided by the dynamic
pressure at section Ia, Pdyn,Ia = ρQ2/(2A2

Ia).
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Z

R

Above the blade

Section Ia

Section Ib

Fig. 2. Geometry and measurement sections. (Pictures from the Turbine-99 workshop
guidelines and from previous work).

The mean pressure recovery is defined as

Cprm =
1

ACS

∫ ∫
ACS

PdA − 1
AIa

∫ ∫
AIa

PdA

Pdyn,Ia
, (1)

where Pdyn,Ia = ρQ2/(2A2
Ia) is the dynamic pressure at cross-section Ia.

The energy loss coefficient is defined as

ζ =

∫ ∫
AIa

(
P + ρ |U |2

2

)
U · n̂dA −

∫ ∫
ACS

(
P + ρ |U |2

2

)
U · n̂dA

∣
∣
∣
∫ ∫

AIa
ρ |U |2

2 U · n̂dA
∣
∣
∣

. (2)

4.1 Integral Quantities

The integral quantities described in eqs. (1) and (2) are here used to validate
the steady draft tube computation. Figure 3 shows through-flow developments of
the mean pressure recovery factor and energy loss coefficient. The cross-section
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integrals are computed for a number of cross-sections perpendicular to the flow,
while keeping the reference integral at section Ia constant [1] (see Figure 2). The
figure shows that the integrated result from the present computation is almost
identical to the result from a CFX-5 computation [4].

The pressure coefficient at the upper and lower center lines (see Figure 2)
are compared with both the experimental data and the CFX-5 computation in
Figure 3. The two computations are almost identical, and they are close to the
experimental results.
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Fig. 3. Computed integral quantities between section Ia and the end of the draft tube
(a & b), and pressure coefficient distributions along the upper and lower centerlines (c
& d). The only difference that can be seen is in (b), where OpenFOAM gives a slightly
higher value at the end of the draft tube.

4.2 Velocity Distributions at Ia and Ib

Figure 4 compares the velocity coefficient distributions at cross-sections Ia and
Ib (see Figure 2) with the experimental results. Figure 4(a) shows two differ-
ent results from the measurements at cross-section Ia. This gives an indication
of the accuracy of the measurements. For the draft tube computations it was
recommended (Turbine-99) to use the results corresponding to the dashed lines
as inlet boundary condition. Thus the dashed lines in Figures 4(a) and (b) are
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Fig. 4. Velocity coefficient distributions. Markers: Measurements of axial (squares)
and tangential (triangles) velocity components. In (a) two different measurements are
shown, and the markers of each mesasurement are connected with solid lines and dashed
lines respectively. In (b) and (c): Dashed lines: steady draft tube, Solid lines: runner
without hub clearance, Dash-dotted lines: runner with hub clearance.

equivalent, and the measurement markers in Figures 4(b) and (c) correspond to
the solid line measurements in Figure 4(a). The choice of those measurements as
inlet boundary condition however doesn’t seem to give the correct behaviour of
the flow in the boundary layer at the hub. The solid lines in Figure 4(a) show that
the axial velocity has a local maximum close to the hub, which is important for
the development of the flow down to section Ib and throughout the draft tube.

Figures 4(b) and (c) compare the computational results with the experimental
results. The dashed line corresponds to the steady draft tube computation while
the dash-dotted and solid lines correspond to the runner computations with and
without a runner blade hub clearance respectively. It is shown that the runner
blade hub clearance produces an increase in the axial velocity close to the hub.
This effect is very important for how well the separation at the hub is modelled.
In Figure 4(c) the runner computation with the runner blade hub clearance
resembles the experimental results much better than the other results, which
is an effect of the small increase in axial velocity at section Ia. The velocity
distribution at section Ib is very important for the flow development in the
draft tube, and it is thus likely that the boundary condition for the draft tube
computation is inadequate.

For both runner computations the effect of the tip clearance flow can be seen as
a local maximum in the axial and tangential velocity profiles close to the shroud.
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5 Parallel Performance

A parallel performance test has been made using the draft tube case described
above, with about 106 cells. The decompositions of the domain into 2, 4, 8 and
16 subdomains were made using the automatic load-balanced decomposition
(Metis) in OpenFOAM. The Linux cluster was a 4 node Dual socket AMD
Opteron 280 (2.4 GHz, dual core) with 4GB DDR400 RAM, i.e. 4 cores (CPUs)
per node and a total of 16 cores (CPUs). Two different interconnects were tested,
a Gigabit Ethernet through an HP ProCurve 2824 Switch, and an Infiniband
(PCI-X) through a Silverstorm 9024 Switch. The SuSE Linux Enterprise Server,
Service pack 3 operating system was used. The analysis has been made together
with Peter Rundberg at Gridcore (www.gridcore.se).

The wall clock times were measured for three iterations, and the tests were
repeated several times. No I/O was included in the performance test. The wall
clock times are presented in Table 1. The table also shows the speed-up nor-
malized by the single CPU run for each configuration, and the speed-up when
using the Infiniband interconnect instead of the Gigabit interconnect (based on
the speed-up columns in the table).

Table 1. Parallel performance using 1Gbit Ethernet (ETH) and Infiniband (IBA)
interconnects. Packed vs. spread CPU distribution (the distribution of the processes
on the nodes)

# CPU # nodes ETH (s) IBA (s) ETH IBA IBA (speed−up)
ETH (speed−up)

(speed-up) (speed-up) (based on speed-up)

1 1 165 163 1.0 1.0 1.0
2 1 86 78 1.9 2.1 1.1
2 2 85 81 1.9 2.0 1.0
4 1 76 72 2.2 2.3 1.0
4 2 64 62 2.6 2.6 1.0
4 4 53 56 3.1 2.9 0.9
8 2 43 41 3.8 4.0 1.0
8 4 41 35 4.0 4.7 1.2

16 4 23 20 7.2 8.2 1.1

Table 1 shows that the execution time of the computations decreases as more
CPUs are used. When going from one to two CPUs the parallel speed-up is linear,
but when using more CPUs the parallel efficiency is significantly reduced. When
using 16 CPUs the parallel efficiency is 45% for the gigabit interconnect and 51%
for the Infiniband interconnect. Table 1 shows no significant difference between
the parallel runs using the different interconnects except when the computations
are distributed on as many nodes as possible. This can most clearly be seen
when using 8 CPUs on 2 and 4 nodes, where there is a 20% gain in using the
Infiniband interconnect when distributing the computation on 4 nodes instead of
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2 nodes. When distributing the processes on different nodes the computational
requirement for each node is reduced and the requirement of the communication
speed between the nodes is increased. When the computations are packed as
much as possible on each node, the effect of the interconnect between the nodes
is reduced. This effect could unfortunately not be further investigated for more
nodes since there was only four nodes available during the present work.

Here follows some additional remarks on the results shown in Table 1. There
is a small difference between the single CPU runs. Such differences are expected.
Many things can influence computational speeds to this order of magnitude
(∼1%). There is also a difference between the runs with 2 CPUs on 1 node. The
interconnect should not be important in this case. It has however been observed
that sometimes when running two processes on the same node they end up at the
same socket, which influences the computational speed to this order of magnitude
(∼10%). Later versions of the Linux kernel should have fixed this problem. An
effect related to this can be seen in Table 1, where the speed-up is increased if
the computations are spread over as many nodes as possible. Table 1 suggests
that IBA has a worse tendency than ETH when distributing the 4 CPU case on
different numbers of nodes. The more nodes involved, the more important is the
interconnect. The table however suggests that the Gigabit interconnect is the
best in the 4 CPU case.

6 Conclusions

This work has presented the water turbine field and its huge HPC requirements
when the flow in a complete water turbine is to be predicted in detail. With com-
plex geometries, high Reynolds numbers, turbulence, cavitation, and interaction
between rotating and stationary parts, the computer power of today is still far
from sufficient. By modeling parts of the physics and focusing the computations
on parts of the water turbine it is however feasible to get reasonably accurate
and useful solutions.

The OpenFOAM OpenSource tool was introduced and applied to CFD prob-
lems in the water turbine field. The results proved to be of the same accuracy
as those of commercial CFD solvers. OpenFOAM is a true competitor to both
commercial tools and in-house research codes. The major benefits of the Open-
FOAM tool are that it is free of charge, and that the complete source code is
available.

The parallel performance of OpenFOAM was analysed on a Linux cluster
using an ordinary gigabit Ethernet interconnect and an Infiniband interconnect.
The problem used for the analysis was the flow in a water turbine draft tube,
and the grid consisted of approximately 106 control volumes. The Infiniband
interconnect did not significantly improve the speed-up for this problem. The
largest improvement is observed when the problem is distributed on as many
CPUs as possible. When distributing the problem on 16 CPUs the Infiniband
interconnnect has a ∼10% speed-up compared with the corresponding gigabit
Ethernet interconnect computation. The parallel performance of OpenFOAM
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for the present problem was modest, with a parallel efficiency of approximately
50% when run on 16 CPUs.
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Abstract. Benchmarks are important tools for studying increasingly
complex hardware architectures and software systems.

Two seemingly common assumptions are that the execution time of
floating point operations do not change much with different input val-
ues, and that the execution time of a benchmark does not vary much
if the input and computed values do not influence any branches. These
assumption do not always hold.

There is significant overhead in handling denormalized floating point
values (a representation automatically used by the CPU to represent val-
ues close to zero) on-chip on modern Intel hardware, even if the program
can continue uninterrupted. We have observed that even a small fraction
of denormal numbers in a textbook benchmark significantly increases
the execution time of the benchmark, leading to the wrong conclusions
about the relative efficiency of different hardware architectures and about
scalability problems of a cluster benchmark.

1 Introduction

Benchmarks are important tools for studying increasingly complex systems1.
Understanding the characteristics of a benchmark is important to avoid drawing
the wrong conclusions from the results.

Due to changing hardware architectures, however, assumptions that were
made when the benchmark was created may no longer hold when moving the
benchmark to new architectures or even new implementations of the same ar-
chitecture.

We report on a problem where the execution time of a textbook benchmark
varied significantly depending on the computed floating point values, even when
the computed values were not used to influence any branches. We also show
how the performance characteristics of the benchmark could be misinterpreted,
wrongly indicating a scalability problem in the application or communication
subsystem, and how the problem could lead to the wrong conclusions about the
relative performance of a PowerPC and an Intel P4 computer.

1 Examples are increasing difference in latency between different levels of caches and
memory, and the introduction of Simultaneous Multithreading and Single-Chip Mul-
tiprocessors.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 178–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Trusting Floating Point Benchmarks 179

This paper continues as follows: section 2 describes normalized and denor-
malized representation of floating point, section 3 describes our benchmark and
section 4 our experiment result. Section 5 discusses the results, lessons learned
and provides some guidelines. Finally we conclude in section 6.

2 Floating Point Representation, Normalized and
Denormalized Form

The IEEE 754 standard for floating point[1] specify the representation and op-
erations for single precision (32-bit) and double precision (64-bit) floating point
values. This provides a finite amount of space to represent real numbers that
mathematically have infinite precision. Thus, computers only provide an ap-
proximation of floating point numbers, and a limited range of values that can be
represented. For single precision floating point, the range is about 1.18 · 10−38

to 3.40 · 1038 positive and negative.
One of the goals for the designers of the IEEE floating point standard was

to balance the resolution and magnitude of numbers that could be represented.
In addition, a problem at the time was handling applications that underflowed,
which is where the result of a floating point operation is too close to zero to
represent using the normal representation. In the 70s, it was common for such
results to silently be converted to 0, making it difficult for the programmer to
detect and handle underflow[2].

As a result, a provision for gradual underflow was added to the standard, which
adds a second representation for small floating numbers close to zero. Whenever
the result of a computation is too small to represent using normalized form, the
processor automatically converts the number to a denormal form and signals the
user by setting a status register flag and optionally trapping to a floating point
exception handler. This allows the programmer to catch the underflow, and use
the denormalized values as results for further computations that ideally would
bring the values back into normalized floating point ranges.

The processor automatically switches between the two representations, so
computer users and programmers rarely see any side effects of this, and op-
erations for normal values are also valid for any combination of normal and
denormal values. Many programmers may be unaware that their programs are
using denormalized values.

Goldberg gives a detailed description of denormalized numbers and many
other floating point issues in [3].

Instructions involving denormalized numbers trigger Floating Point Excep-
tions. Intel processors handle underflows using on-chip logic such that reason-
able results are produced and the execution may proceed without interruption
[4]. The programmer can unmask a control flag in the CPU to enable a software
exception handler to be called.

The Intel documentation [5], and documents such as Goldbergs [3], warn about
significant overhead when handling exceptions in software, but programmers may
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not expect the overhead to be very high when the floating point exceptions are
handled in hardware and essentially ignored by the programmer.

3 Experiments

3.1 Jacobi Iteration Benchmark

We first found the problem described in this paper in an implementation of a
well known algorithm for solving partial differential equations, Successive Over-
relaxation (SOR) using a Red-Black scheme. To simplify the analysis in this
paper, we use the Jacobi Iteration method, which has similar behavior to the
SOR benchmark.

(a) Square sheet
of metal repre-
sented as a matrix
of points.

Iteration  i Iteration i+1

(b) For each point, a new value is com-
puted based on the average of the cells
left, right, above, and below from the
previous iteration (colored black in the
figure).

Fig. 1. Heat distribution problem with the Jacobi iterative method. In a square sheet
of metal, the temperature along the edges is known (black points), and the temperature
for internal points (gray points) are computed based on the known values for the edges.

Figure 1 shows an example problem solved by Jacobi, where a sheet of metal
is represented as a matrix of points. The temperature along the edges is known,
while the temperature for the internal points is computed from the known values
of the boundary (black) points.

The Jacobi iteration method gradually refines an approximation by iterating
over the array a number of times, computing each internal point by averaging
the neighbors (see Figure 1(b)). Two arrays are used: one is the source array,
and the other is the target array where the results are stored. When the next
iteration starts, the roles of the arrays are swapped (the target is now the source
and vice versa).

A solution is found when the system stabilizes. The algorithm terminates when
the difference between the computed values in two iterations of the algorithm is
considered small enough to represent a solution.

The implementation used in this paper is a simplified version of Jacobi, run-
ning for a fixed number of iterations instead of checking whether the systems
has stabilized. This simplifies benchmarking and analysis.
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3.2 Methodology

The experiments were run on the following machines:

– Dell Precision Workstation 370, 3.2 GHz Intel Pentium 4 (Prescott) EMT64,
2GB RAM, running Rocks Linux 3.3.0 with Linux kernel 2.4.21 in 64-bit
mode.

– A cluster of 40 Dell Precision Workstation 370, configured as above, inter-
connected using gigabit Ethernet over a 48-port HP Procurve 2848 switch.

– Apple PowerMac G5, Dual 2.5 GHz PowerPC G5, 4GB DDR SDRAM,
512KB L2 cache per CPU, 1.25GHz bus speed.

– AMD Athlon 64 X2 4400+ 2.2GHz, 2GB DDR SDRAM, running Ubuntu
Linux 5.10 with kernel 2.6.12-10-k7-smp.

The results the Dell Precision machine have been verified using other Intel-
based computers showing similar overheads.

The benchmark was compiled with GCC version 3.3.5 with the flags “-Wall
-O3” on the Intel architecture. On the PowerMac, GCC 4.0.0 was used with the
same flags. Intels C-compiler, version 8.0, was also used with the same flags to
verify the results with a different compiler.

The execution time is measured by reading the wall-clock time before and
after the call to the Jacobi solver (using gettimeofday), and does not include
startup overhead such as application loading, memory allocation and array ini-
tialization. All benchmarks are executed with floating point exceptions masked,
so no software handlers are triggered.

The benchmarks were run with the following sets of input values:

– One that produce denormal numbers: the border points are set to 10.000,
and the interior points are set to 0.

– One that does not produce denormal numbers: the border points
are set to 10.000 and the interior points are set to 1.

– One of the benchmarks use an additional input set with all values in the
matrix initialized to a denormal number: 10−39.

In all cases, we run Jacobi for 1500 iterations with a 750x750 matrix.

4 Results

4.1 Impact of Denormal Numbers on Intel Prescott

The experiment was run on a Dell Precision WS 370. The benchmark was in-
strumented using the Pentium time stamp counters to measure the execution
time of each iteration of Jacobi (0-1500), and of the execution time of each row
in each iteration.

Experiments Without Denormalized Numbers. Figure 2 shows the ex-
ecution time of each iteration of Jacobi when no denormalized numbers occur
in the computation. Apart from a spike, the execution time is very stable, as
one would expect since the branches in the algorithm are not influenced by the
computed values.
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Fig. 2. Computation time for each iteration of Jacobi when no denormalized numbers
occur

Experiments with Denormalized Numbers. Figure 3 shows snapshots of
the matrix for four of the iterations of the algorithm. In the beginning, there is
only a narrow band of non-zero (blue) values. For each iteration, non-zero values
gradually spread further inwards in the matrix, but they do so by being averaged
with the zero-values in the array.

After a number of iterations, the values that make up the front edge of the
non-zero values are too small to represent using normalized floating point values,
and the CPU automatically switches over to denormalized form (shown as red
in the snapshots). The band of denormalized numbers grow in width and sweep
towards the center until they eventually disappear.

Figure 4 shows the execution time per iteration of Jacobi when denormalized
numbers occur in the computation (left). The figure also shows the number of
denormalized numbers in the result array for each iteration (right).

The number of denormalized numbers correspond directly with the execu-
tion time per iteration. When denormalized numbers occur, the execution time
rapidly increases, and after a while gradually decreases while the number of
denormalized numbers decrease. After a while, the last denormalized number
disappears and the execution time is back to normal. The jagged pattern on
the graph showing the number of denormalized numbers is also reflected in the
jagged pattern of the graph showing the execution time.

Figure 5 shows the execution time of each row of the matrix for the four
iterations that are shown in figure 3. The execution time for each row is clearly
correlated to the number of denormalized values in that row.

For the iteration with the highest number of denormalized results, iteration
338, about 3.88% of the internal numbers computed are in denormalized form.
This is also the iteration that takes the longest to execute, taking about 3.83
times longer than the average of iterations without denormalized numbers.
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Fig. 3. Graphical representation of the result matrices for four iterations of the JA-
COBI benchmark (iterations 0, 20, 200 and 600). Black represents 0-values, blue rep-
resents non-zero values, and red represents nonzero values in denormal form.
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Fig. 4. Left: execution time of each of 1500 iterations. Right: number of floating point
values in denormalized form stored in the result matrix on each iteration. Stored values
are counted rather than the number of operations due to the lack of performance
counters to count the number of denormal operations (see section 5.2).

4.2 Impact on Comparisons of PowerPC, AMD and Intel P4
Prescott

Table 1 shows that the Intel processor has higher overheads when handling denor-
malized numbers than the PowerPC machine, with a factor 70 between normal
and all denormal compared to a factor 3.65 on the PowerPC machine. This may
influence comparisons of architectures. As an example, consider the results of
the PowerPC denormal (5.40) and Intel denormal (13.44), which indicate that
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Fig. 5. Execution time for each row in the matrix for four iterations of the algorithm
(iterations 0, 20, 200 and 600). The effect of denormalized numbers is clearly visible
as rows with denormalized numbers have a higher execution time than rows without
denormalized numbers. The execution time depends on the number of denormalized
numbers (see lower left, which corresponds to the lower left picture in graph 3).

the PowerPC architecture is more efficient for the Jacobi algorithm. With the
dataset with normalized numbers, the difference is much smaller (5.04 vs. 5.33).

The problem is also significant for the comparison of AMD vs. Intel, where for
the denormal case, the AMD processor is faster than the Intel processor, while
for the normal case, the Intel processor is faster.

This indicates that when moving benchmarks across architectures, corner
cases that previously did not influence the benchmarks significantly may start
to have an impact, and the benchmarks may not work as originally planned even
if the computed results are identical.

4.3 Parallel Jacobi on a Cluster

Figure 6 shows the results of running parallelized implementation of Jacobi using
LAM-MPI 7.1.1 [6] using 1 to 8 nodes of the cluster. The implementation divides
the matrix into N bands, and each process exchange the edges of its band with
the neighbor processes bands.

The graph shows that the dataset with denormalized numbers influence the
scalability of the application, resulting in a speedup for 8 processes of 4.05 com-
pared to a speedup of 6.19 when the computation has no denormalized numbers.
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Fig. 6. Speedup of Jacobi on a cluster using 1-8
nodes

Table 1. Minimum and maximum
execution times of 5 runs of Jacobi

Machine + Dataset min max
Intel, normal 5.33 5.34
Intel, denormal 13.44 13.47
Intel, all denormal 371.73 373.05
AMD, normal 6.65 6.71
AMD, denormal 8.46 8.61
AMD, all denormal 88.38 88.99
PPC, normal 5.04 5.05
PPC, denormal 5.40 5.41
PPC, all denormal 18.42 18.43

The step like shape of the “Denormalized” graph is a result of the denor-
malized band of numbers that move through the rows (as shown in figure 5),
influencing at least one of the processes in every iteration. Since the processes
are globally synchronized, one process experiencing a tight band of denormalized
numbers will slow down the other processes.

This experiment shows that performance anomalies of floating point opera-
tions may cause an unaware programmer to attribute too much performance
overhead to the parallel algorithm or communication subsystem, as the main
change between the sequential and parallel version is the parallelized algorithm
and the added communication.

5 Discussion

Normally, users don’t care about the computed results in benchmarks as the
important part is to have a representative instruction stream, memory access and
communication pattern. The assumption is that the execution time of floating
point values do not change significantly when using different input values.

Textbooks don’t warn against using zero as an initial value for the equation
solving methods. One book (Andrews [7] page 535) even suggest that the inte-
rior values should be initialized to zero: “The boundaries of both matrices are
initialized to the appropriate boundary conditions, and the interior points are
initialized to some starting value such as zero”. A contributing factor is that
students are taught to use zero values for variables to help catching pointer
errors, unless they have a good reason for initializing otherwise.

5.1 Implication for Benchmarks and Automatic Application Tuning

Benchmarks may be vulnerable when varying execution time of floating point
operations can mask other effects. Worse even, wrong results from a benchmark
may make later analysis based on the data invalid.
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An example of automatic application or library tuning is ATLAS [8], where
performance measurements are used to automatically tune compilation of the
math kernel to a target architecture. If measurements are thrown off, the tuning
heuristics may select the wrong optimizations. We have not tested ATLAS for
any problems.

5.2 Remedies

Denormal values are well-known for people concerned about the accuracy of
applications. Some remedies may help or delay the problem: changing from single
precision to double precision delays the introduction of denormal values in our
Jacobi benchmark, though we have observed that the band of denormal values
will be wider when denormal numbers do occur, so the benefit may be limited.

Other remedies are architecture or compiler specific, such as enabling flush-to-
zero (FTZ) which converts denormal numbers to zero. Some current architectures
support it on-chip, while others have to support it through software, impacting
performance. FTZ may also influence the results of the application. On our Intel
computers, FTZ is handled in software for x87 instructions, though enabling
SSE instructions (-march=pentium4 -mfpmath=sse with GCC 4.1.2) allow us
to enable on-chip FTZ, resulting in a performance for the denormal data set that
is similar to the normal set. Initial experiments, however, indicate that handling
denormal numbers on-chip for SSE is twice as expensive as for x87 instructions.

For this particular benchmark, using nonzero values as initial values for the
internal points can remove the problem. The application would also benefit from
using multi-grid methods, which could reduce the problem of denormalized num-
bers considerably.

The floating point status register can be checked to detect if exceptions oc-
curred. If detected, the benchmark results should be considered suspect and
investigated, or a different data set should be used. Care must be taken to mask
exception types that should be expected, such as precision, which occurs when-
ever a number not representable with floating point is used and does not cause
any detectable overhead, such as 1/3. The problem is that checking for floating
point exceptions is a suggestion on the line of checking return values from func-
tion calls. Programmers, however, tend to forget checking the return values of
functions. It also requires that benchmark designers are aware of the problem.

Granularity is another problem. We have experimented with High Perfor-
mance Linpack [9], observing that it generates precision, underflow and denorm
op exceptions, but due to the granularity of the current method, we do not know
if there are enough of the denormal numbers to impact the benchmark.

A much better solution would be to use performance counter registers that
could count the number of denormal operations in the application. The Pow-
erPC processor has one such counter, but initial experiments with that have not
provided us with any stable results. The Intel processors did not have such a
performance counter. If we were to be granted a wish, it would be that hard-
ware designers introducing corner cases that causes high overheads would add a
corresponding performance counter for those corner cases.
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Lacking that, we are we are currently experimenting with the development
of tools that can check a benchmark for denormal numbers and other identified
performance anomalies. Two promising approaches are based on instrumenta-
tion of the Bochs emulator [10], and asking the compiler to generate calls to
an instrumented software floating point library rather than floating point in-
structions. The problem with the latter method is that it doesn’t catch inline
assembly code in benchmarks.

6 Conclusions

As architectures are getting increasingly complex and the cost of using different
components in the systems change, benchmarks may be difficult to create and
interpret correctly. Processor designers optimizing for the common case can in-
troduce unoptimized cases that, even if they occur infrequently, cost enough to
significantly impact applications, a point well made by Intel’s chief IA32 archi-
tect [11].

Benchmarks are often simplified versions of existing applications where the
results of the computations are not used since the goal of a benchmark is to
measure a systems behavior under a specific use. In these cases a programmer
may choose to ignore some of the guidelines for programming floating point
applications since the accuracy of unused results are not important, and since
the guidelines generally stress the problems around correctness and accuracy of
floating point values and operations.

We have shown that one concern, namely floating point exceptions, can easily
occur in a benchmark and cause significant overhead even when the exceptions
are masked off and handled internally in the CPU. Textbooks and well-known
guidelines for programmers contribute to setting the trap for programmers.

We have also shown how a benchmark influenced by floating point exceptions
in only a small fraction of the calculations may lead to the wrong conclusions
about the relative performance of two architectures, and how a benchmark may
wrongly blame the parallel algorithm or communication library for a performance
problem on the cluster when the problem is in the applications use of floating
point numbers.

In reflection of some of the observed behavior of our simple benchmark, we
suggest some guidelines for programmers designing and implementing bench-
marks.
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Abstract. This paper describes CoMPI, an extension to LAM/MPI,
which enables the user to configure collective operations by using the
high level programming language Scheme. A high level language is used
to achieve flexibility. When using CoMPI, applications do not have to
be modified or recompiled. We implemented the allreduce collective op-
eration in Scheme, preserving the original LAM/MPI algorithm as im-
plemented in C. We measured the performance and found that the over-
head using Scheme was insignificant. Using CoMPI to reconfigure the
allreduce communication pattern taking the network topology into ac-
count, significant improvement in performance on a multi-cluster was
achieved.

1 Introduction

This paper describes an extension to LAM/MPI[5] that enables the user to
configure collective operations by using Scheme[1], which is a high level general
purpose programming language in the Lisp family.

Currently, the operations that can be configured are broadcast, reduce, allre-
duce, gather and barrier, but the system is general enough to be extended with
other operations if that is required. Sophisticated reconfigurations can be done
without modifying or recompiling the application that is to be run.

We will show that high level languages, and Scheme in particular, could be
used in performance critical systems despite the general opinion that such lan-
guages are slow. This would be an improvement compared to the more conven-
tional way of writing extensions in low level languages like C, due to the fact
that many details can be hidden or abstracted away in languages like Scheme.

We will also use CoMPI to show that reconfiguration of collective operations
in MPI could result in better scaling when running in multi-cluster1 environ-
ments.

The goal of CoMPI is to provide an efficient framework for experimenting
with collective operations in LAM/MPI. It was largely inspired by the PATHS[2]
system which uses Python to set up a runtime environment for parallel applica-
tions.
1 In this paper, multi-cluster is defined as a collection of clusters connected by high

latency or low bandwidth links.
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2 LAM/MPI Background Information

LAM/MPI is an open source implementation of the MPI specification[8] main-
tained by the LAM team at Indiana University. Extensions to LAM/MPI are
written as plug-in modules[11] that follow a specification called System Service
Interface[10]. Multiple classes of SSIs exist for interfacing to various parts of
LAM. CoMPI is implemented as a Collective Operations SSI module[9], which
may be selected by the user at runtime.

After this work was done, LAM/MPI has largely been superseded by a new
MPI implementation called Open MPI2, which has a similar architecture for
plug-ins. We thus believe that CoMPI could be ported to Open MPI, but have
not yet looked into the details of this.

3 Architecture of CoMPI

The idea behind CoMPI is that when a collective operation is invoked, a hash
table lookup is done to check if a suitable routine, a coll-op closure,3 exists to
perform the given operation. If no such closure exists, a coll-op creator function
is invoked to create one. The newly created coll-op closure will then be invoked
and also cached for reuse later.

Each supported collective operation has at least one coll-op creator. By de-
fault, creators are supplied for each collective operation to mimic the behavior
of native LAM.

The most primitive way to configure operations, would be for the user to
attach additional coll-op creators to each of the collective operations. Coll-op
creators are invoked in reverse order of installation (the latest installed is invoked
first) until one of them returns a closure. They may also be chained by having
one creator calling the next in the list. Chaining may be useful to create wrappers
for profiling or debugging.

The interface between the MPI API layer and CoMPI consists of functions
called coll-op trampolines which are invoked by LAM when the application does a
collective operation. The trampolines are responsible for looking up and invoking
coll-op closures.

4 Configuration of Communication

The default LAM/MPI collective operations module, lam basic, uses two differ-
ent schemes depending on the size of a group: for small groups (four or less), the
communication is based on a linear scheme (all processes communicate directly
with the root process). For larger groups, the communication is organized as a
binomial spanning tree[12]. Figure 1 shows the broadcast tree used by lam basic
in a cluster with 32 nodes.
2 http://www.open-mpi.org
3 A closure in Lisp terminology is an object containing a function and the lexical

environment (e.i. local variable bindings) in which the function was created.

http://www.open-mpi.org
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Fig. 1. Broadcast tree for a cluster with 32 nodes

If we assume a homogeneous cluster were the bandwidth and latency between
nodes are more or less the same independent of which two nodes are communi-
cating, a binomial tree is very efficient as it utilizes the parallelism in a switched
network. But in a multi-cluster environment or in a cluster with SMP nodes,
where there may be links between the clusters with lower bandwidth and higher
latency than the intra-cluster links, this configuration may turn out to be very
inefficient.

The problem is that when multiple messages are sent across the inter-cluster
links simultaneously, these links could easily be saturated if the bandwidth is
limited compared to the intra-cluster links. If messages are sent sequentially (i.e.
at different levels in the tree), this will result in the total latency for sending all
messages being the sum of the latency for each individual message. In figure 2 the
nodes making up the different clusters have been grouped together, and we can
easily see that a significant number of messages are sent across the inter-cluster
links, which would greatly reduce the performance of the operation.
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Fig. 2. Broadcast tree mapped to actual cluster layout

One way to improve this is to organize the communication between the nodes
in a pattern that matches the underlying network topology in the most optimal
way[7,4]. Figure 3 shows a broadcast tree where the nodes within each of the
clusters are arranged as separate binomial trees. Communication between the
clusters is now limited to only two messages.
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We can realize this by using a coll-op creator to CoMPI that considers the
underlying network topology when creating coll-op closures. The network topol-
ogy could potentially be automaticlly detected, but in the current version of our
code the user has to manually specify it in a configuration file, by grouping nodes
belonging to the same cluster.

5 Implementation Details

CoMPI is written almost entirely in Scheme, with only a small amount of glue
code in C. The Scheme implementation used is Bigloo4, which is particularly
suited because of its efficient compiler and ease of integration. The compiler
produces C code as its intermediate stage and is thus portable to all archi-
tectures which LAM/MPI is available on. It also contains useful extensions to
standard Scheme[1] such as Common Lisp like macros, type annotations (static
type declarations), foreign function interface and a module system.

Figure 4 shows the coll-op trampoline for the operation MPI Bcast. The func-
tion find-coll-op-closure is called to locate or, if necessary, to create a coll-op
closure. The parameters comm and root are used to identify a coll-op closure that
implements the operation for the MPI communicator and operation root.

Finally, the returned coll-op closure is invoked with the remaining parameters,
which would perform the actual operation.

(define (bcast::int buff::buffer count::int
datatype::datatype root::int comm::comm)

(with-coll-op (comm)
(let ((bcast (intern-coll-op-closure BLKMPIBCAST comm root)))

(bcast buff count datatype))))

Fig. 4. Coll-op trampoline for MPI Bcast

Figure 5 shows an example of a simple coll-op creator5 that implements
linear broadcast communication. The name of the defined coll-op creator is
4 http://www-sop.inria.fr/mimosa/fp/Bigloo/
5 This is actually the default callback creator for broadcast, which would be invoked

if none of the more specific creators return a coll-op closure.

http://www-sop.inria.fr/mimosa/fp/Bigloo/
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linear-bcast and BLKMPIBCAST is a tag identifying the operation. The list
(comm root) contains the parameters passed from the MPI layer.

The rank of the process is found from the communicator. If the rank matches
the root, the helper function create-psend-closure (create parallel send clo-
sure) is called to create a closure that will send messages to each of the other
processes in parallel. Otherwise a closure that calls receive first is created. A
coll-op closure for broadcast takes three parameters; a buffer with the message
to send, the size of the message and a data type. Coll-op closures for other
operations may take different kind of parameters.

(define-coll-op-creator BLKMPIBCAST linear-bcast (comm root)
"Coll-op creator for linear broadcast"
(let ((rank (comm-rank comm)))
(if (= rank root)

;; Root sends to all except to it selves
(let ((dests (remq! root (range 0 (comm-size comm)))))

(create-psend-closure dests BLKMPIBCAST comm))
;; All other receive from root
(lambda (buff::buffer count::int datatype::datatype)

(recv buff count datatype root BLKMPIBCAST comm
MPI-STATUS-IGNORE)))))

Fig. 5. Coll-op creator for linear MPI Bcast

A special kind of coll-op closures are wrappers which, as the name suggests,
wraps around other more specific closures. The closure to be wrapped is created
by invoking call-next-creator from within a wrapper creator. Wrappers may,
among other things, be used to modify the behavior of the inner closures or to
log information. Figure 6 shows an example of a wrapper which will measure
the time spent in the inner coll-op closure, i.e. the time taken to execute the
operation.

(define-coll-op-creator BLKMPIBCAST bcast-timer (comm root)
(let ((bcast (call-next-creator))

(rank (comm-rank comm)))
(lambda ()

(let ((rt (time (bcast root))))
(printf "time spend in broadcast by rank ~a: ~a ms~%" rank rt)))))

Fig. 6. Coll-op creator wrapping MPI Bcast with a timer

6 CoMPI Advantage

One of the advantages with CoMPI is the possibility to configure and exper-
iment with MPI without having to recompile applications. The user does not
even need to have access to the source code of the application he is running.
LAM/MPI already has some options which may be used at runtime to configure
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and customize the environment, but the strength of CoMPI lies in the use of a
high level programming language. By not having to think about low level details
such as memory management, the task of trying out different configurations may
become much simpler than if he were to use a language like C. Also by not having
to stick with a limited customization language, but having access to a general
purpose language gives the system great flexibility. For simpler configurations,
CoMPI has a set of built in coll-op creators which let the user specify the
network topology based on node ranks or IP numbers.

7 Experiments

A simple experiment was conducted to determine if the performance of CoMPI

is comparable to that of native LAM when using the same algorithms, and that
the choice of implementation language did not have a negative impact on per-
formance. In addition we’re running the same benchmark with a communication
pattern configured to match the underlying network layout.

The hardware platform used for these experiments consists of three intercon-
nected clusters, each having the following configuration:

– 28 Dell 370 P4 Prescott, 3.2GHz, 2GB RAM
– 38 Dell 370 P4 Prescott 64 EMT, 3.2GHz, 2GB RAM
– 44 Dell 360 P4 Prescott 3.2GHz, 2GB RAM

In addition, each cluster has a front-end computer identical to the cluster nodes,
except that it has an extra network card for external communication. The nodes
of the clusters and the front-ends are interconnected using TCP/IP over Ethernet
through 1Gb switches. All communication to and from a cluster goes through the
front-end computer. The front-end computers are connected to each other and
the outside world, through a dedicated switch. One of the switches is configured
to operate as two logical switches through virtualization, but as far as we know
this should have no impact on the performance of the benchmarks.

Each cluster uses IP addresses from the private 10.0.0.0 range and is not
reachable from outside of the front-ends. To allow routing between nodes from
different clusters, IP tunnels are set up between the front-ends. This adds to the
inter-cluster latency, increasing it from 100 to 300–500 microseconds as measured
with ping. The effective bandwidth through the front-ends is about 400Mbps.

Figure 7 shows the code run in the experiment. The code measures the average
execution time of 1000 MPI Allreduce operations, with buffer sizes from 1 to
50000 elements. To make sure that the correct sum is computed, the code also
checks the result of each iteration.

Figure 8 shows the result of running the global sum benchmark. The following
experiments were done:

Native LAM/MPI (lam basic). The experiment was run using LAM/MPI’s
native logarithmic broadcast and reduce trees.
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t1 = get_usecs ();
for (i = 0; i < ITERS; i++) {
MPI_Allreduce (&i, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (ghit != (i* size))

printf ("oops at %d. %d != %d\n", i, ghit, (i * size));
}
t2 = get_usecs ();

Fig. 7. Global reduction benchmark

CoMPI using the lam basic algorithm and tree used above. The exper-
iment was run using CoMPI with the same algorithm as lam basic.

CoMPI with hierarchical mapping. In this experiment we used a hierarchi-
cal mapping which minimizes the inter-cluster communication. This mimics
the asymmetric algorithm used by MagPIe[7], which is basically a reduce
followed by a broadcast.

8 Discussion

As Figure 8 shows, the overhead of CoMPI is insignificant compared to native
LAM/MPI (lam basic) when both systems use the same communication pat-
tern. With a hierarchical mapping, the performance of CoMPI is significantly
better than lam basic. The main factor contributing to this, is probably the lim-
ited inter-cluster bandwidth. The network latency in our setup is relatively small
(more than two orders of magnitude) compared to the total time per iteration,
and should not have any significant impact on the result.

In addition to the experiment described in the paper, we have also done some
informal testing with other collective operations, in particular broadcast, reduce
and barrier. We have done this to get an indication if it would be possible
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to achieve similar results with other operations. The results of this have been
inspiring, which is not unexpected considering that the algorithms for these
operations are similar to allreduce.

9 Related Work

CoMPI was originally inspired by PATHS[2] and the discoveries done in [4]
and [3] about how performance in LAM/MPI could be improved in clusters
with SMP nodes. PATHS uses Python as its runtime configuration language
and a tuple space system for inter-process communication. The main difference
between PATHS and CoMPI is that the former doesn’t use MPI directly, but
emulates its behavior in respect to collective operations.

MagPIe [7] is an implementation of MPI especially designed for multi-clusters
with wide area network connections. The collective operations in MagPIe are
optimized for long latency links using both asymmetric (tree based) and sym-
metric algorithms. The hierarchical mapping used in CoMPI mimics MagPIe’s
asymmetric algorithm. We have not compared the performance of CoMPI to
MagPIe, since, in this paper, we only wanted to document the impact of our
modifications of LAM.

Compiled Communication[6] (CC-MPI) describes a method to optimize clus-
ter communication by utilizing information available at compile time using a
modified C compiler. CC-MPI and CoMPI share some of the same basic ideas
about doing as much static optimization as possible. In CC-MPI this happens
when the application is compiled, while in CoMPI when an operation is invoked
for the first time. With CoMPI, other configurations can be tested without re-
compiling the application.

10 Conclusions

We have shown that a high level scripting language can be well suited for use in
the infrastructure of high performance clusters, by using Scheme to implement
a collective operations module for LAM/MPI.

We have also created a flexible framework, CoMPI, which may be used for
experimentation with, and optimization of, collective operations in LAM/MPI
without having to modify existing applications.

When running experiments, the observed overhead by using CoMPI is negli-
gible compared to the native collective operations module in LAM. By reconfig-
uring the communication pattern to match the actual network layout, substantial
increase in performance was achieved.

In future work, we plan to extend CoMPI to include all collective operations
available in MPI, and make improvements to the current code base to improve
usability and stability. We are also planning to implement dynamic reconfigura-
tion based on performance data gathered during program execution.



Collective Operations in LAM/MPI Using Scheme 197

References

1. Abelson, H., et al.: Revised5 report on the algorithmic language Scheme. ACM
SIGPLAN Notices 33(9), 26–76 (1998)

2. Bjørndalen, J.M., Anshus, O., Larsen, T., Vinter, B.: Paths – integrating the prin-
ciples of method-combination and remote procedure calls for run-time configura-
tion and tuning of high-performance distributed application. In: Norsk Informatikk
Konferanse, pp. 164–175 (November 2001)

3. Bjørndalen, J.M., Anshus, O., Vinter, B., Larsen, T.: Configurable collective com-
munication in lam-mpi. In: Proceedings of Communicating Process Architectures
2002, Reading, UK (September 2002)

4. Bjørndalen, J.M., Anshus, O., Vinter, B., Larsen, T.: The Performance of Config-
urable Collective Communication for lam/mpi in clusters and multi-clusters.. NIK
2002, Norsk Informatikk Konferanse, November, 2002. Kongsberg, Norway (2002)

5. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI. In:
Proceedings of Supercomputing Symposium, pp. 379–386 (1994)

6. Karwande, A., Yuan, X., Lowenthal, D.K.: Cc–mpi: a compiled communication
capable mpi prototype for ethernet switched clusters. In: PPoPP ’03: Proceedings
of the ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 95–106. ACM Press, New York (2003)

7. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe:
MPI’s collective communication operations for clustered wide area systems. ACM
SIGPLAN Notices 34(8), 131–140 (1999)

8. MPI Specification Documents, http://www.mpi-forum.org/docs/docs.html
9. Squyres, J.M., Barrett, B., Lumsdaine, A.: MPI collective operations system ser-

vices interface (SSI) modules for LAM/MPI. Technical Report TR577, Indiana
University, Computer Science Department (2003)

10. Squyres, J.M., Barrett, B., Lumsdaine, A.: The system services interface (SSI)
to LAM/MPI. Technical Report TR575, Indiana University, Computer Science
Department (2003)

11. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Don-
garra, J.J., Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 2840, pp. 379–387. Springer,
Heidelberg (2003)

12. The LAM/MPI Team: LAM/MPI User’s Guide. Technical report, Indiana Univer-
sity, Pervasive Technology Labs (2004)

http://www.mpi-forum.org/docs/docs.html


A Load Balancing Strategy for Computations on
Large, Read-Only Data Sets

Jan C. Meyer and Anne C. Elster

Norwegian University of Science and Technology,
Dept. of Computer and Information Science,

Sem Sælands v.7-9, NO-7491 Trondheim, Norway
{Jan.Christian.Meyer, elster}@idi.ntnu.no

Abstract. As data repositories grow larger, it becomes increasingly dif-
ficult to transmit a large volume of data and handle several simultaneous
data requests. One solution is to use a cluster of workstations for data
storage. The challenge, however, is to balance the system load, since
these requests may appear and change continuously.

In this paper, a new method for load balancing requests on such large
data sets is developed. The motivation for our method is systems where
large geological data sets are rendered in real-time by a homogeneous
computational cluster. The goal is to expand this system to accommodate
multiple simultaneous clients. Our method assumes that the large input
sets may be examined in advance, and uses simple, continuous functions
to approximate the discrete costs associated with each data element.
Finally, we show that partitioning a data set using our method involves
very little overhead.

1 Background

1.1 Motivation

This work originates from the need to adapt the load balancing scheme of a
server which renders images of geological data sets in real-time to suit a multi-
user environment. The original system statically divided its input data in order
to distribute the load on a computational cluster, but permitted only one user
to access the data at a time. This approach would be ill-suited for a multi-user
environment, since it spreads the load from each user across the entire array of
machines without regard to their differing requirements.

With multiple simultaneous clients, each client may request a different part of
the data sets to be rendered with a chosen analysis function. Thus, the compu-
tational load from each client may vary significantly. A real-time load balancing
approach is required such that the total load is distributed evenly on the cluster,
resulting in a similar framerate for all clients.

The objective of this project is to develop a fast balancing method, given that
each client will demand rendering of large amounts of contiguous data. We also
assume that the number of clients is small relative to the size of the data sets,
since typically the original system is scaled such that the requirements of a single
client represent a significant load.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 198–207, 2007.
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1.2 Taxonomy of Load Balancing Approaches

We adopt the following classification of load balancing methods from Piersall and
Elfayoumy [1]. In general, methods may be classified in terms of three broad cat-
egories: static methods, which embed a predetermined partitioning of the load in
the description of the balanced task, semi-static methods, which estimate balance
at program initialization, and dynamic methods, which continually reconfigure
the load during run time.

Dynamic load balancing further breaks down into the following phases:

1. Load evaluation estimates whether to perform balancing.
2. Profitability determination compares the cost of rebalancing with the

projected benefits.
3. Work transfer calculation determines which tasks may be transferred in

order to balance the load.
4. Task selection selects which of the transfers from the previous phase to

carry out.
5. Task migration carries out the work transfer finally decided upon.

Our approach is discussed as a dynamic method in these terms, but is partly
semi-static due to its use of precomputed information about data sets.

1.3 Related Work

A significant body of work exists to examine the balancing of loads which consist
of streams of small requests. This is conventionally modelled as a set of balls
(requests) to be put into bins (available hardware). Mitzenmacher, Richa and
Sitaraman [4] give an overview of this field, and describe proof techniques for
establishing probabilistic bounds on the characteristics of different approaches
to this problem.

The balls and bins model is turned around when the task to be performed
outgrows the capacity of a single computer, so that the problem must be parti-
tioned. Such partitioning is related to the algorithm solving the problem, which
admits another diverse set of techniques.

Munasinghe and Wait [2] propose an approach which utilizes a discrete ideal
load measure, and explore the adaptivity of a system where load changes are
detected by the individual node, and adjustments are propagated throughout a
heterogeneous cluster.

Watts and Taylor [3] attempt to develop a general dynamic load balancing
application, and test its application to two different problems. Their approach
proves to be restricted in application, but improvements are suggested, and the
relevant class of systems is identified.

Piersall and Elfayoumy [1] present an application framework for dynamic load
balancing of image processing applications. The framework is general in being
platform-neutral, but it is application specific in the sense that it expresses load
in terms of columns of image data.
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Fig. 1. Finding boundary points in the data set for unit loads on 2 out of 4 machines

Rosenvinge, Elster, and Banino [6] explore the scheduling of master/worker
structured applications on heterogeneous systems with background load, and
develop a monitor strategy in which worker nodes report measured runtimes to
the master.

Overeinder, Sloot, Heederik and Hertzberger [5] propose to handle load bal-
ancing in middleware, with library support to partition problems.

2 An Overview of Our Approach

Our method is based on approximating a discrete, empirically measured cost of
computation by a continuous, integrable function. The system load may then be
idealized as the integral of this function, as opposed to the sum of its discrete
values. The virtue of this approximation is that evaluating a definite integral
can be computationally very cheap compared to evaluating a series.

Fig. 1 shows the following:

1. To derive a unit load measure, our approximation of the execution costs
must be integrated across the entire data domain in use.

2. This computes the load modelled as the area under the cost approximation,
which may be divided by the number of machines in the cluster (|M |).

3. By using the definite integral of the cost approximation and fixing the lower
bound at the beginning of the domain, one can obtain an expression for load
in terms of the upper bound. This can be used to compute the upper bound
of a unit load, and this load can be assigned to the first machine in the
cluster (M1).

4. Having a domain interval for the first machine, we can now fix the lower
bound of the integral at its top, and proceed to find an interval for the
second machine to work on, etc.
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3 Model

This section introduces a simplified theoretical model of a distributed-memory
parallel computer, a data set, and a program to run on this set. The model is
restricted to homogeneous and fully interconnected computational clusters.

The following notation is introduced to distinguish the invocation of a function
f from its value. The invocation of f with the ordered parameter set X ′ =<
x1, x2, ..., xn > will be denoted

λf(X ′) = λf(x1, x2, ..., xn). (1)

Alternatively, λf is used for brevity where parameters are obvious or irrelevant.
The system as a whole can now be modelled in terms of a set of machines

M = {M1, M2, ..., Mk}, a set of data items X = {x1, x2, ..., xn}, a program
expressed as a set of functions F = {f1, f2, ..., fm}, corresponding cost functions
which map function invocations to the run time they require

ci(λfi) : (F, X) → R
+, (2)

and a transfer constant T which expresses the time required to move a data
subset X ′ ⊂ X from one machine to another, i.e. (T · |X ′|) ∈ R

+.
With a model of the system in place, its behavior will be treated in terms of

queries and work distributions.
A query q is a finite, unordered set of function invocations:

q = {λfa(X1), λfb(X2), ..., λfj(Xn)} (3)

such that X1 ∪ X2 ∪ ... ∪ Xn ⊆ X and 1 ≤ a, b, ..., j ≤ m.
A work distribution W is a finite, unordered set of ordered pairs, each associ-

ating a machine with a function invocation:

W = {(Mα, λfa), (Mβ , λfb), ..., (Mγ , λfj)} (4)

such that 1 ≤ α, β, ..., γ ≤ |M | = k and 1 ≤ a, b, ..., j ≤ m.
Given a set of queries Q = {q1, q2, ..., qn} and a work distribution W , let WQ

denote the projection of W into a set of function applications. W will then satisfy
Q if and only if q1 ∪ q2 ∪ ... ∪ qn ⊆ WQ, that is, W satisfies Q when it assigns
every function invocation in Q to a machine in M .

4 Semi-static Load Balancing Method

The basic observation which underlies this work is that the load arising from a
query set Q can be written as the sum of costs of its function invocations, i.e.

Σc′i(λfi(Xj)) | λfi(Xj) ∈ Q. (5)

Assuming that the discrete c′i may be approximated by some continuous func-
tion ci which shares its characteristics, we propose that the load due to fi
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may be approximated by
∫

ci(λfi(X))dX , which can be split into definite in-
tegrals

∫ xj+1

xj

ci(λfi(X))dX +
∫ xj+2

xj+1

ci(λfi(X))dX + · · · +
∫ xk

xk−1

ci(λfi(X))dX (6)

covering the parts of the domain relevant to Q.
Deciding upon a balanced work distribution W which satisfies Q amounts to

finding bounds such that the values of these definite integrals are equal, and as-
signing all points between bounds to the same machine. Note that this effectively
imposes a strictly increasing order on the domain, and that we can therefore
speak of ”neighboring” machines as those working on adjacent subdomains in
this order.

Our method exploits this representation of computational loads for efficiency
through the empirical measurement of discrete cost functions and network trans-
fer speeds, and off-line construction of appropriate functions for cost approxima-
tion. Furthermore, the following technique for determining a work distribution
W from a query set Q is proposed:

1. Consider Q, and determine which X ′ ⊆ X are involved.
2. Compute total cost of Q by integrating all relevant cost functions across X ′,

i.e. evaluate Σi

∫
ci(λfi(X ′

i)).
3. Divide the total load by |M | to find a unit load.
4. Begin at the lower bound of X ′, and determine successive upper bounds

throughout the the domain, using the integral of the cost approximation.
5. Construct W by assigning each bounded subproblem to a machine in M .

Construction of Approximate Cost Functions

Simple continuous functions can be integrated analytically much faster than by
numerical approaches. Estimating the cost of a function where run time depends
strongly on the parameter values of each invocation, and these vary greatly
throughout the set, may create a problem.

One way to address this problem follows from the fact that our model makes
no assumption regarding the resolution of the measurements from which the
cost function is synthesized. This affords flexibility in the construction, since a
subdomain which displays great variability may be characterized by local be-
havior when it is dominant. While this will introduce some inaccuracy with load
estimates, it can maintain a reasonable representation of the cost involved in
assigning the local section to a single machine.

The negative impact of this technique is greater when a partition boundary
falls in a region where the cost function is a coarser measure of actual cost. The
cost of some inexpensive points will be overestimated, and the resulting skew
in overall balance will reflect the chosen precision of the cost function in that
region. The best tradeoff between the cost function’s accuracy and complexity
will be application-specific, but we note that as long as the size of the data set
outscales the number of machines and queries by several orders of magnitude,
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Fig. 2. Two overlapping queries and their intersection

there is considerable freedom to tailor cost approximations with limited impact
on accuracy.

5 Dynamic Load Balancing Method

The semi-static technique just described limits dynamic behavior, both for bet-
ter and worse - freedom of choice is restricted in terms of tuning dynamic op-
eration, but the the problem of selecting tasks for transfer is greatly simpli-
fied.

The dynamic features of our approach are driven by data locality. This is to
minimize communication, because of its cost compared to that of computation.
Data for the function applications of different queries may overlap, as illustrated
in Fig. 2. The total cost function will reflect this by an increase in the intersection,
meaning that a unit load will span fewer elements in this region after integration.
Correspondingly, a machine hosting data points in this region is responsible for
computing the functions from all relevant queries on those elements, and the set
of elements with lighter load will be proportionally smaller.

This consideration is the reason why data access must be read-only. The
situation would be severely complicated by overlapping queries which could write
different values to a point in their intersection.

Note that the presence of an intersection introduces a discontinuity in the
total cost function, while it remains locally integrable on either side of this dis-
continuity. The location of the intersection is known from the query set, and
the integrals of the separate functions are already known. Due to the linearity
of integration, this suggests that boundaries for a partition spanning this dis-
continuity may be found by integrating up to the intersection, and using it as a
lower bound for the sum-of-integrals inside the intersection. This can derive an
upper bound corresponding to what remains of the unit load, with the overhead
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of computing two sums of functions at either end of an intersection. In the worst
case, this overhead will be proportional to the number of queries.

5.1 Load Evaluation

Load evaluation must initially determine whether the query set has changed
since the load was last balanced, which amounts to examining present query set,
and comparing it to the last query set.

If a difference is found, load evaluation must facilitate profitability determi-
nation by finding a better partitioning of the present query set by using the
integrals of the predetermined cost functions.

5.2 Profitability Determination

In case the queried domain has expanded, new data items must be brought into
the computation irrespective of profitability, to keep the system functional.

Otherwise, comparing the previous partitioning with the new estimated parti-
tioning of the altered load yields a set of differences in terms of data points. The
cost of proceeding without rebalancing can be computed from integrating the
cost functions of the present query set on the intervals indicated by the previous
partitioning.

To determine whether it is profitable to rebalance the load, we consider the
network transfer rate T in our model.

Rebalancing is profitable if and only if the time lost to transferring data is
smaller than the estimated time won by rebalancing.

5.3 Work Transfer Calculation

The work involved in work transfer calculation has mostly been covered by the
load evaluation phase. The remaining work breaks down into these points:

1. Review the results of the load evaluation, and determine if any machines
have been deprived of their entire workload due to changes in the query set.

2. If any such machine exists, it should be assigned the domain segments which
cause the greatest imbalance of its neighbors. As mentioned before, if a new
query has arrived, that must take priority here.

3. If a total reassignment of machines has occurred, the boundaries of the |M |
subdomains in the data domain must be recomputed to adjust for the update.

5.4 Task Selection

Due to the order imposed on the data set, and the procedure described so far, we
already know how far lower and upper bounds must be shifted for each machine
in order to restore balance, which gives us the transfer set.

This simple selection of a transfer set is an effect of only considering domain
neighbors for work exchange - Watts and Taylor [3] point out that the general
problem of task selection is NP-complete. As we cannot guarantee the optimality
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of the selected transfer set without examining every possible transfer combina-
tion, the data set order is used (and thus, maintained) without proof of being the
optimal choice. This saves effective computation time otherwise lost to finding
an optimal set. At this stage, the balance already computed has been evaluated
for profitability, and has been found to save time even if it may not be optimal.

5.5 Task Migration

As each participating computer has two neighbors in the ordered domain, task
migration amounts to exchanging boundary areas on all machines in parallel,
proceeding in two phases; one for the upper neighbor, one for the lower.

6 Experimental Results

As the dynamic features of the proposed method mostly follow from the semi-
static features, it is essential to show that the cost approximation is an effective
and efficient load measure. Two experiments are presented, indicating that the
semi-static features require negligible runtime, and that effectiveness is related to
the precision of the approximating function. Dynamic behavior is not examined
empirically.

Both experiments attempt to partition the work load of deciding primality
of natural numbers on the domain [2, 107] by trial division. The purpose of the
work load itself is purely illustrative. Primality by trial division was chosen for
its nonuniform runtime across the domain: Best and worst cases of run time vary
from 1 to

√
n trial divisions, and cases are mixed throughout the domain in an

undetermined pattern.
As discussed in subsection 4, we construct the cost function by measuring

performance over intervals, and approximating cost by the locally dominating
behavior. We therefore expect run time at a point n to grow approximately with√

n, and with noise due to the variable density of primes.

6.1 Preparations

The preparations for the experiments consisted of timing executions of the trial
division method. As indicated above, timings were collected from repeated calls
across a small interval, to elicit some measure of predictability from each sample
point. These can then be approximated by a simple integrable function.

6.2 Experiment 1

The first experiment attempted to approximate the run times purely by scaling
the square root function to match the empirical values (c(λf(x)) = a ·

√
x). This

cost function was analytically integrated, and the resulting expression was solved
directly with respect to upper bounds.

Dividing the load in 2 through 8 partitions resulted in the balance detailed
in Table 1. The greatest difference column details the difference between the
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Table 1. Results from experiments 1 and 2

Parts E1 Run time Greatest diff. Imbalance E2 Run time Greatest diff. Imbalance
2 24.438 s 2.008 s 8.21 % 23.508 s 0.141 s 0.60 %
3 16.828 s 2.039 s 12.12 % 15.672 s 0.117 s 0.75 %
4 12.836 s 1.625 s 12.66 % 11.820 s 0.195 s 1.65 %
5 10.430 s 1.524 s 14.61 % 9.695 s 0.492 s 5.07 %
6 8.875 s 1.453 s 16.37 % 8.141 s 0.453 s 5.56 %
7 7.688 s 1.407 s 18.30 % 7.211 s 0.609 s 8.45 %
8 6.820 s 1.406 s 20.62 % 6.267 s 0.556 s 8.87 %

queries which took the shortest and longest time, while imbalance is the greatest
difference as a fraction of total run time.

The time required to compute the partitioning of the domain was recorded
using the same system clock as the measurement of the run times, but did not
register at all on the time scale of the computation. We hence claim that the
performance impact of such a balancing method upon a real-time system working
on this scale would be insignificant.

6.3 Experiment 2

The second experiment was motivated by the fact that inaccuracies in the first
approximation resulted in an imbalance of 1

5 of total run time already by an 8-
way partitioning. While the test load was selected to be nonuniform, it was still
possible to create a better approximation, as the deviations between theoretical
and empirical values were known.

The second experiment increased precision by examining these deviations and
introducing a linear correction term into the approximation (c(λf(x)) = a ·

√
x+

b · x + d).
As witnessed by the results in Table 1, this small improvement in approxi-

mation more than halved the level of imbalance in the resulting partitionings in
the worst cases.

The resulting integral was not as easily solved with respect to boundaries as
previously, so in place of a direct solution, a Newton/Raphson iterative scheme
for finding roots was employed. Some performance penalty was expected for this,
but in practice the timing of the balancing routine itself was still impossible to
measure on the same scale as the rest of the computation.

7 Conclusions and Further Work

We have demonstrated that we can find a load balanced partitioning of a com-
plex, static, nonuniform dataset with almost no overhead. Hence, our method is
considered usable under soft real-time requirements. Preprocessing is necessary
to find an efficiently computable expression for computational loads.

The developed method fits our motivating application, as the data sets it
renders are immutable at run-time, and large relative to the number of clients.
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Load balance alters in real time as clients change their selection of data or analy-
sis function. Using predetermined set profiles with respect to analysis functions,
the method can determine a balanced data distribution on a visualization cluster
very inexpensively, so as not to delay rendering.

The results presented indicate that the precision of this technique can be
increased in some proportion to the amount of resources spent on cost function
construction, and that the technique thus affords some flexibility for making
implementation-specific choices in the tradeoff between accuracy and speed.

Natural extensions to this work include measuring efficiency when dynamic
behavior is incorporated, and quantifying the relationship between the accuracy
of cost approximations and their complexity.
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Abstract. HPC users frequently develop and run their MPI programs
without optimizing communication, leading to poor performance on clus-
ters connected with regular Gigabit Ethernet. Unfortunately, optimizing
communication patterns will often decrease the clarity and ease of modi-
fication of the code, and users desire to focus on the application problem
and not the tool used to solve it.

In this paper, our new method for automatically optimizing any ap-
plication’s communication is presented. All MPI calls are intercepted by
a library we inject into the application. Memory associated with MPI
requests is protected using hardware supported memory protection. The
request can then continue in the background as an asynchronous oper-
ation while the application is allowed to continue as if the request is
finished. Once the data is accessed by the application, a page fault will
occur, and our injected library will wait for the background transfer to
finish before allowing the application to continue. Performance close to
that of manual optimization are observed on our test-cases when run on
Gigabit Ethernet clusters.

Keywords: MPI, Automatic Optimization, Memory Protection.

1 Introduction

Optimizing for parallel machines requires extensive knowledge of both general
optimization techniques and specific hardware and software details of the ma-
chine to use. Any non-trivial parallelization will add some overhead for commu-
nication. For example, when parallelizing Game of Life, an iterative 2D partial
differential equation solver (PDE) or any other kind of grid-based domain, each
iteration requires the border data of its subdomain to be exchanged with the
”neighbors”.

The goal of our new method presented here was to achieve a solution that
automatically optimizes the communication of MPI [1,2] programs. The solution
should not require any user intervention at all to be enabled, and should ideally
be fully usable on all MPI based parallel architectures.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 208–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Automatic Optimization of MPI Communication 209

It is important that the solution does not in any way alter the result of the
MPI program, so we have to make sure any optimizations done do not alter the
data flow of the program, only the communication. The only difference the user
should notice, should be an improved wallclock running time.

A more detailed description of the implementation and more extensive bench-
marking may be found in [3].

1.1 Previous Work

Much work has been done on optimizing the individual MPI functions. Some of
these are inspired by the ATLAS (Automatically Tuned Linear Algebra Software
[4]) idea of taking a basic routine and trying thousands of small variations until
you find the specific set of parameters that is perfect for the architecture you are
compiling on. Faraj and Yuan [5] have presented such a method for automatically
optimizing the MPI Collective subroutines, and Østvold has presented numerous
ways of timing collective communication [6].

Ogawa and Matsuoka [7] used compiler modifications to optimize MPI. The
compiler would recognize the MPI calls in a program, do a static analysis to
find out what arguments are static and then create specialized MPI functions
for that program. However, they did not turn synchronous communication into
asynchronous. With the introduction of interprocedural optimizations such as
those available in the Intel C++ Compiler [8], such optimizations can be ex-
tended to all function calls and not just MPI Calls. Unfortunately, this type of
optimization requires recompiling the program and for optimal results require
several passes of profile-guided-compilation, which increases the amount of work
a user has to do before running his program.

The inspiration for using the page protection mechanism and runtime anal-
ysis of program data comes in part from the work done by the DUMA[9] and
Valgrind[10] projects.

A more user-involved approach to optimization has been presented by Jost
[11], which build an expert system based on profiling data to aid the user in
their optimizations. Their paper is based around OpenMP, but we believe the
instrumentation provided by methods presented here could be used to extend
such approaches to work with MPI.

Karwande et.al. have presented a method for compiled communication (CC-
MPI), which applies more aggressive optimizations to communications whose
information are known at compile time [12].

1.2 Motivation

To see how much the potential gain for this idea was, we implemented a Red-
Black 2D SOR Solver [13] using three different methods of exchanging borders.

The first method uses MPI Sendrecv 4 times. It first sends ’top’ and receives
’bottom’, then the same for the remaining 3 borders. This is the easiest to code,
and allows easy and intuitive understanding of what happens.
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The second method uses MPI Isend and MPI Irecv (asynchronous opera-
tions), and then waits for all 8 requests to finish. This is just a little bit more
code, but requires the user to think carefully about what operations can be done
concurrently with each other, and which operations can be done concurrently
with computation. It is also less intuitive to read that the first method.

The third method computes the new value for the cells along the borders first,
and then exchanges these with MPI Isend and MPI Irecv in the background
while the interior cells are updated. Coding this way caused the communication
code to become 5 times the number of codelines used in the first method, and the
code was no longer intuitive and easy to understand. Furthermore, at least with
MPICH 1.2.7, independent progress (fully asynchonous background transfer)
only happens if the amount of data to send is small enough to fit in the OS
network buffer (typically 64kb).

Benchmarking these methods on a Pentium 4 cluster using MPICH 1.2.7
showed that just using MPI Isend gave a significant speedup for small problem
sizes, and the full overlapping provided just marginal speedup on top of that
(see Table 1 in the Results section for details).

Using blocking functions, the MPI Sendrecv calls are executed in sequence, and
this makes the application vulnerable to latency issues. The datasize in each trans-
fer is so small that most of the transfer time is not spent physically transfering data
on the wire, but in OS overhead. Additionally, the receiving machine will receive
an interrupt which must be handled and the data must be copied to userspace
before the transfer is done. The physcial network is idle during most of this time.
By using MPI Isend and MPI Irecv we simply make sure we only have this very
long wait once for each group of transfers instead of once per transfer.

2 Protected Asynchronous Transfers

2.1 Overview

Our goal is to show that, by using certain safeguards, it is safe to turn any
synchronous request into an asynchronous one.

Our first method (paging) uses the hardware page protection mechanism to
protect the memory associated with each request. While the transfer occurs in
the background, the application is allowed to continue. If the protected memory
is accessed, the application is paused until the background transfer is complete.
This way, no change of logic in the application is necessary, we just postpone
waiting for data until it’s actually needed.

The second method (chaining) improves upon paging by recognizing chains of
requests without any computation in-between them. The chains are recognized
at run-time by our library, and when the start of such a chain is encountered, we
allow the requests to proceed in the background. Once the last request is issued,
we wait for all of them to complete. Hence, we use the paging to verify that the
requests in a chain are isolated from other requests and computation, and after
that we gain the benefits our paging method provides without the overhead of
updating hardware paging tables.
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2.2 Process Injection

Since it was a design goal that the users should not have to change their code at
all when using our new method, the first challenge was how to place ourselves
between the application and MPI. Our implementation therefore allows for the
choice between run-time and static injection.

Run-time injection has the advantage that it can be used for precompiled
programs, and may also be used for programs that call MPI through another
library or is even written in another language (Python, Java etc). At the moment,
run-time injection only works if MPI itself is a dynamic library. Our initial work
recognized the specific parts of an executable that contain the MPI library.
However, such recognition is impossible if the library is compiled with inter-
procedural optimizations, as that may make the library functions inlined in the
user’s code.

Static injection (compile-time) works by overriding mpi.hwith our own header
which wraps the calls we want to intercept. Therefore, it is a much cleaner
solution which also works with highly optimizing compilers, but it is then no
longer possible to update our injected library without recompiling.

2.3 Marking Memory

When an overridden synchronous MPI function is called and turned into an
asynchronous one, we need to track the memory area in use.

For a send request, we perform a heuristic on the datasize. If it is small
(contained within one memory page), we simply copy the data to a new buffer
and start the send in the background. The application is now free to modify the
original buffer without affecting the background transfer. If the request is large,
we protect the memory pages the buffer occupies so that they are read-only.

For a receive request, we always protect the application memory and start the
transfer in the background to a separate buffer. Once complete, we copy from
this buffer to the application memory. If we had write-only memory protection,
we could deny the application read access while still allowing MPI to write
the incoming data to memory, but unfortunately no current memory protection
hardware implements write-only protection [14].

The result of this is that the application will not actually stop until it touches
an address that is still being transferred. At that point, a page fault will occur
which calls our page fault handler, which simply waits for the request to finish
before unprotecting the pages and allowing the application to continue. As such,
the computation flow of the application is unchanged, and we avoid any deadlock
issues. If the application calls MPI Finalize before touching the data, we also wait
for the communication to finish and restore the state of the page table before
allowing the application to continue.

2.4 Using Memory Paging to Control Application Access

The foundation for allowing ”safe” background transfer is denying the original
application access to its own memory. We do this by using the standard page
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protection feature found on all modern CPUs. This is normally used to imple-
ment swapping and virtual memory. When the OS runs low on memory, it will
mark a few pages in virtual address space as inaccessible, and copy the contents
to disk, thereby freeing up physical memory. When the application tries to access
the memory, a page fault occurs, and the OS copies the data back and marks
the page accessible again.

We are only interested in the marking of memory (using standard UNIX
mprotect() or Win32 VirtualProtect()), so when we are talking about page
faults here, it is just a page fault in virtual memory. No disk I/O is performed.

As mentioned, most memory protection implementations today suffer from
write-implies-read and read-implies-execute. Hence, it is impossible to get a
write-only page. If you ask for write-only, what you get is a page with all per-
missions.

Furthermore, memory protection operates on a whole memory page (usually
4096 or 16384 bytes). You cannot protect just part of a page, so if you protect
just a single byte, any other variable occupying the same memory page will be
protected as well.

2.5 Overlapping Requests

When tracking memory, we need to be careful about overlapping elements and
overlapping pages. Overlapping elements happens when two requests need to
access the exact same memory location, while overlapping pages happens when
two requests needing access to the same page.

For overlapping elements, the order of send operations is irrelevant, and any
number of them can be done simultaneously. However, if a receive operation oc-
curs, any other operation already started must complete, and no other operation
can start until the receive operation has completed.

When two requests share the same page, we need to pay attention to what
mode was used to start the previous operation on the same page. If we were
to start a send operation, and a receive operation is in progress on the same
page, it means the page is already protected. If we have determined that the
actual elements don’t overlap, we have to unprotect the page, copy out the data
to send, and then reprotect the page. Similarly, if send operations are already
enroute and the page is read-only, we can’t change the protection of the page
to no access as that will just make the MPI library cause a page fault, so we
have to wait until they are done before we change protections. Shared pages
also makes the pagefault handler quite complicated, since it has to wait for all
requests that might share a page to complete before unprotecting it and allowing
the application access.

It should be noted that since our method works on the process level, the
method works equally well for single-threaded and multi-threaded applications
as well as MPI implementations.

Figure 1 shows a theoretical example of all the requests for a classic Jacobi
PDE solver with an 8x8 local grid, 1 layer of shadow cells, and a theoretical page
size of 128 bytes. Each row represents one page in memory, and each color is a
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Fig. 1. Left: Memory cells used by border exchange in Jacobi PDE Solver. Right: Cells
shown in structured form.

separate request, with bright colors being sends and dark colors being receives.
No receive requests have overlapping elements, but the sends do for the corners.
Additionally, the only requests that do not share pages are the ones for the top
and bottom.

Detecting overlapping elements is computationally expensive due to the com-
plete freedom one has to design MPI datatypes. We have chosen to simply look
at the start and end addresses of the memory the request touches, but for the
example shown here, that will clearly prevent concurrent transfers in cases where
it should be possible (such as the east/west exchanges).

2.6 Chains of Requests

Protection of memory may generate some overhead when updating the pageta-
bles. To avoid this, we have a refinement of our method – recognizing frequently
performed operations that belong together and avoid protecting memory.

A chain of requests is any phase of the program that is pure communication
and consists of more than a single transfer. For example, for most domain de-
composited programs, the exchange of borders is a chain of requests as it consists
of multiple MPI calls without any computation or other use of the transferred
data in between the calls.

By recognizing such chains, and the knowledge that the majority of communi-
cation improvements are in communicating with multiple neighbors simultane-
ously, we can avoid the overhead of page protection by allowing the requests to
start background transmission and wait for all outstanding requests at the end.

It is important that chains be remembered, since only once we have great
confidence that a chain is identical for every iteration, can we perform this trick;
otherwise the ”end of chain” might never happen and the program might read or
write unavailable data. If the application suddenly changes behavior, for example
by switching solvers after a certain amount of iterations, this may cause data
corruption as well. Currently, the best we can do is detect this and inform the
user that data corruption might appear.

Our implementation generates a signature of all MPI calls, and once a series
of specific signatures have been observed repeatedly, this is treated as part of
an inner loop. No memory protection will be done, and we instead wait for all
communication to finish at the last request in the chain.
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Table 1. Results on Gigabit Ethernet cluster: Average iteration execution time in
milliseconds of automatically optimized n×n 2D SOR PDE solver compared to manual
optimization on a 16 node cluster

Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
MPI Sendrecv 1.14 3.01 3.01 3.49 6.05 16.98
MPI Isend 0.36 0.99 1.00 1.97 4.48 14.09
Full overlap 0.35 0.99 1.00 1.15 3.87 13.84
Paging 0.92 1.13 1.32 2.94 6.34 22.01
Chaining 0.43 1.07 1.06 2.04 4.55 14.17

3 Experiments and Results

We implemented a Red-Black SOR 2D PDE Solver as it is a good representation
of 2D communication patterns. Additionally, its alternating red and black cells
stress our method by forcing it to operate under less-than-ideal conditions as it
only operates on interleaved data with no contigous blocks, and has a very high
degree of overlapping between the requests.

3.1 Results from Optimizing Library

The three versions (original naive implementation and two manually optimized
ones) are compared with the automatically tuned program (which is done by
injecting into the MPI Sendrecv version). We ran these benchmarks on numerous
machines. Table 1 shows the numbers from our cluster (3.4 GHz Pentium 4 with
Gigabit Ethernet using MPICH 1.2.7).

For comparison with dedicated high-speed interconnects, Table 2 shows the
results when we tried the same method on a 16-way Altix 350 Itanium 2 machine.

As can be seen on Figure 2, Paging has considerable overhead, but even
with this overhead, good results are achieved on small data sizes. Once the
data size increases, multiple pages need to be protected and the latency part
of the communication is no longer as dominating, so we end up with a slow-
down.

When we enable the recognition of chains, performance is close to that of
manually optimizing the program. There is still a small overhead, as the first

Table 2. Results on Altix 350: Average iteration execution time in milliseconds of
automatically optimized 2D SOR PDE solver compared to manual optimization on
16-way shared memory machine

Method n = 128 n = 256 n = 512 n = 1024 n = 2048
MPI Sendrecv 0.12 0.22 0.59 1.92 8.00
MPI Isend 0.11 0.21 0.55 1.87 7.80
Full overlap 0.11 0.20 0.54 1.80 7.36
Paging 0.44 0.64 0.96 2.58 8.60
Chaining 0.21 0.31 0.66 1.96 7.91
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Fig. 2. Speedup of automatic optimization and manual optimization measured relative
to unoptimized code

few iterations will be performed with full memory protection to ensure the chains
are valid and don’t cause data corruption.

The overhead of memory protection and copying far outweighs the benefits
on the Altix 350, which is to be expected. After all, an MPI Sendrecv operation
is simply a memory copy which might be done cache-to-cache. It is only for the
really large datasizes (n > 2048) that any benefit was seen, and then only with
the chaining versions.

4 Conclusion and Future Work

We have implemented, tested and verified a novel method for automatic run-
time optimization of communication patterns. Our method requires little or no
user intervention and, when paging is always enabled even for chained requests,
cannot break data flow.

Our method is fully transparent, so a system administrator might install the
static injection as part of the mpicc system, and users would not notice anything
but a small speedup of their programs.

On clusters with regular Ethernet interconnects, the improvements make nor-
mal applications based on MPI Sendrecv rival those written with MPI Isend.
This allows users to think and write using simple communication patterns which
leads to greater productivity and faster application development for them, and
it lets us focus on the optimization part at run-time.

4.1 Current and Future Work

It would be beneficial to add the call-return address to the signature of the
request, to make sure the request originated from the exact same point in the
source code as well. Currently, if two completely different places in the source
code transfer with the exact same parameters, the signatures would be identical.
Initial testing shows that if this happens, it will preclude chains from building
up confidence as the ”same” request has different requests around it.
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At the moment, we use a very simple test for overlapping regions of data; if the
upper and lower bounds intersect in any way, it’s an overlap. However, this gives
us a lot of false positives. Unfortunately, proper analysis of overlapping elements
is computationally expensive and is likely to generate more overhead than we
could gain. We are currently working on using only rudimentary analysis during
the paging phase, but if enough confidence is achieved so that we move into
chaining, we can do the expensive analysis only once. As long as the signatures
stay identical, two requests that didn’t overlap the first time will not overlap
later on. By delaying until we reach the chaining phase, we also ensure that the
added overhead will be spread over many following iterations.

We are evaluating different models for communication performance that can
be evaluated and updated in real time. With such models, we can predict how
long a transfer will take. If we have no choice but to wait for communication in
our pagefault handler, we can then estimate how long the wait will be, and if
sufficient time will pass we can start doing the expensive overlap analysis and
more indepth chain analysis.

While it will be limited to just one OS (Linux kernel based ones), a kernel
module that enables per-thread page manipulations would enable us to let the
MPI library do its work from a separate thread without page protection, thereby
reducing the amount of copying needed. Doing so would add some overhead in
keeping the page tables consistent, and we would still need to flush the TLB
when switching between the threads or updating the page tables.

We see a potential for allowing partial unlocking of a message. For the SOR
case, on the left and right sides, unlocking half the pages touched once half the
transfer is complete would allow half the computation to finish while we finish the
last half of communication. While such a method would add overhead, it is better
than simply waiting for communication to finish. Unfortunately, there is no good
way to measure the progress of a MPI transfer, as it’s either done or not done.
Such a method would require some modification of the underlying MPI library.

Our method currently fails for applications that use messages for other things
than data transfer. For example, if you use messages reception as a method of
synchronization, our method will break the synchronization as it will allow the
application to continue even before the message has arrived.
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Abstract. Snow is a familiar scene in the Nordic countries during the
winter months. This paper discusses some of the complex numerical algo-
rithms behind snow simulations. Previous methods for snow simulation
have either covered only a very limited aspect of snow, or have been un-
suitable for real-time performance. Here, some of these methods are com-
bined into a model for real-time snow simulation that handles snowflake
motion through the air, wind simulation, as well as accumulation of snow
on objects including the ground. With our goal towards achieving real-
time performance with more than 25 frames per second, some new paral-
lel methods for the snow model are introduced. The algorithms are first
parallelized by dividing the data structures among threads. This scheme
is then improved by overlapping inherently sequential algorithms with
computations for the following frame, to eliminate processor idle time.
SMP and multi-core systems are considered.

Keywords: Parallel Computing, Computer Graphics, Simulation, Snow.

1 Introduction

Realistic visualization of natural phenomena has been subject to intensive re-
search for decades. Together with the tremendous increase in compute power,
this has indeed resulted in beautiful imagery both in still images, animations,
and computer games. Still, there is an ever present demand for further develop-
ments in the field with respect to both realism and speed, as well as utilization
of the seemingly ever increasing power available in today’s computer hardware.

Snow, a familial natural phenomenon in the Nordic countries, has the ability
to completely change the mood and appearance of a scene. From a computer
graphics point of view, snow can therefore be used to create evocative and real-
istic looking scenes. Despite this great visual significance, realistic and real-time
snow modeling has been given little attention in computer graphics research.

The main characteristic of today’s microprocessor design is the increased level
of parallelism. As the dual- and multi-core processors are entering the consumer
market with full momentum, parallelism traditionally found only on high-end
servers and supercomputers is becoming available for the man on the street. This

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 218–227, 2007.
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introduces new challenges with respect to exploiting these new architectures for
maximum performance.

This paper presents new methods for utilizing parallel computer systems to
achieve real-time performance of already known algorithms for snow visualiza-
tion. These algorithms are analyzed with respect to the real-time requirement,
visual quality and parallel efficiency. Finally, an optimized, parallel implemen-
tation of these algorithms is presented.

2 Previous Work

2.1 Falling Snow

Two main approaches can be found in previous work on rendering falling snow;
billboards and particle systems. Billboard techniques creates the appearance of
snow by rendering an image of snow on a distant object, or on a transparent
plane in front of the camera. The effect of falling snow in real-time can also
be obtained by rendering snowflakes to a texture that is composited onto the
scene [1].

On the other hand, the particle system approach [2] is the most physically
realistic, as it treats each individual snowflake as an object whose motion is deter-
mined by the influence of various forces in 3D. This requires that each snowflake
is handled separately for updating and rendering, and is more expensive in terms
of processing power.

Moeslund et al. [3] use a physically based model for the forces acting on falling
snowflakes that is based on the particle system approach. The model identifies
four main forces; drag, lift, gravity, and buoyancy. The drag force is the result
of the difference in speed between the object and the surrounding air:

Fdrag =
V 2

fluid · msnow · g
V 2

max,z

(1)

The direction of the force is the same as V fluid, which is the velocity of
the surrounding fluid. msnow is the mass of the snowflake, and Vmax,z is the
maximum velocity the snowflake achieves when falling freely in the z-direction
(upwards). The lift force is the cause of the seemingly random side to side motion
of heterogeneous falling objects, and is modeled as a spiral path. Gravity and
buoyancy are constant forces. These forces are finally combined with Newton’s
second law of motion, to calculate new positions for the snowflakes for each
frame.

2.2 Wind

Wind is of the utmost importance in order to simulate the motion of snowflakes.
The basic idea is to simulate a wind field, or more specific, a velocity field, to
simulate the force that the air exerts on the snowflakes. Notice that the wind
velocity is needed in Equation (1). Two main methods have been identified
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for wind simulation; Computational Fluid Dynamics (CFD) and the Lattice
Boltzmann Model (LBM).

CFD is based on the idea of simplifying the Navier-Stokes equations (NSE)
to make them computationally feasible for fluid simulations. Much work has
been performed in this area. A numerical finite-difference scheme for solving
the NSE is introduced in [4]. This scheme is improved in [5] that presents an
unconditionally stable method for the finite-difference term, and a method to
compensate for numerical dissipation is presented in [6].

LBM takes a different path, by building on the concept of lattice gas automata.
This is discussed in detail in [7] and a method that uses the GPU (graphics
processing unit) to achieve real-time performance is discussed in [8].

2.3 Accumulating Snow

There are many different approaches to the visualization of a snow cover. Two
important distinctions can made based on the methods found in previous work;
the amount of necessary computing resources, and how much work is needed
beforehand by the modeler to place the snow. The most common technique is to
use textures with snow patterns to make objects snow-like. While being simple
and cheap, it does not look very realistic, works only for small amounts of snow,
and requires much manual work to place the textures beforehand.

One method uses hardware accelerated features of the GPU to generate a
snow cover texture on objects exposed to the sky and requires no extra modeling
effort [9]. Another method places height matrices on all surfaces that can receive
snow, to store the snow depth [10]. When snowflakes hit a surface, the nearest
height value is increased. To render the scene, triangulations are created from
the height matrices, and rendered using Gouraud shading by means of OpenGL’s
functionality to efficiently do so. Both of these methods work in real-time.

Of the methods not intended for real-time rendering, the most successful one
generates a thick snow blanket on the scene with minimum modeler interaction,
taking advanced features such as avalanches into consideration [11]. Another
method [12] uses the fluid simrrulation from [6] to calculate how the accumulat-
ing snow is affected by wind. Snow is accumulated by storing the snow depth on
the horizontal surface of voxels marked as occupied.

2.4 Parallel Methods for Visualization of Snow

The literature is sparse with respect to the direct application of parallel com-
puting to snow simulation. A CM-2 supercomputer has been used to simulate
a particle system [2]. The unconditionally stable fluid simulation [5] has been
parallelized [13]. Optimized, parallel algorithms for visual simulation of smoke,
based on [6], are discussed in [14]. Smoke simulations are also relevant, because
the parallelization techniques for the underlying fluid simulations can be used
when simulating wind.
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3 Snow Modeling

Our model for real-time visualization of snow consists of three main components
based on known methods from previous work; falling snow, wind, and accumu-
lating snow. These components are based on known theory from previous work,
that is suitable for real-time application and parallelization. However, some vi-
sual quality may be sacrificed to reach the necessary performance.

3.1 Simulation Model

The method presented in [3] is used for falling snow simulation. This method has
been chosen because we need to track the 3D positions of snowflakes to decide
where to accumulate snow. In this model, the position and velocity of each
individual snowflake is tracked and updated according to the forces described in
Section 2.1, by using Newton’s 2. law of motion.

For wind simulation, CFD is chosen, and is largely based on [5,6], with the
vorticity confinement term left out. The main reason is that it is a well-tried
theory, and some work on parallelizing the algorithms has been attempted. Refer
to the original articles or [15] for a more thorough derivation of these algorithms.
Basically, it consists in approximating the incompressible Euler equations:

∇ · u = 0 (2)
∂u

∂t
= −(u · ∇)u −∇p (3)

The main steps in this algorithm are:

1. Solve for the first term in Equation 3 by self-advecting the velocities back-
wards in time using the unconditionally stable method of [5], creating a
temporary velocity field u∗.

2. Create right hand side vector of linear system resulting from the Poisson
equation derived in [4,5,6].

3. Solve the Poisson equation using the SOR algorithm. SOR is chosen because
of its parallel properties, as described later.

4. Project u∗ into a new velocity field u for the next frame, using the result
from step 3.

For snow accumulation, the height matrix method from [10] is used. For each
frame, the objects are checked for intersections with snowflakes. If a hit occurs,
the nearest snow height value is increased. In the original paper, it was suggested
that the method should be extended with wind, as is realized in this paper.

3.2 Rendering

Realistic and efficient rendering of individual snowflakes is beyond the scope
of this paper. The rendering has therefore been kept simple, by representing
snowflakes with three rectangles that are perpendicular to each other. As most
snowflakes are far away from the viewer, this approach works well.
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Fig. 1. Overview over units of work and the data flow between them. The numbers
indicate the number of subtasks that can be executed in parallel, where n is any number.

Rendering of the snow cover is realized in the same way as in [10], which
creates a triangulation based on the snow height values. Rendering is done using
the shading capabilities of OpenGL, but to calculate normal vectors quickly, an
approximation based on gradient vectors is used.

3.3 Complete Snow Model

Figure 1 shows how we have put together the components for the snow model.
The pieces are not new, but, as far as we know, a real-time snow model including
all of these features together has not been proposed before.

The first step for computing a new time-step, is to update the wind field. This
is achieved with the four step fluid simulation already described. To update the
snowflake positions, the velocity field of the wind simulation is used in the falling
snow algorithm from [3]. When the snowflakes have been moved, they are checked
for collisions with objects in the scene. If there has been a collision, the nearest
height value is increased. After the intersection testing has completed, a triangle
representation is created of the height values. Finally, the snowflakes and snow
cover triangles are rendered using OpenGL.

3.4 Profiling

To see how the implementation behaves without regard to any parallelization, it
was profiled in sequential mode. The GNU Profiler (gprof) was used to generate
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Fig. 2. Profiling results of sequential version with the default configuration

the profile, with one processor and our default size scene with a 40x40x10 wind
field resolution, 20,000 snowflakes, and 12,050 triangles in the snow cover. The
distribution of time spent is shown in Figure 2.

The profile shows that the simulation of snowflake movement and wind field
simulation are the most resource hungry components of the model, together
occupying 79% of the execution time.

3.5 Parallelization

To achieve better performance and allow real-time simulation of bigger scenes,
the algorithms are parallelized. The computationally significant routines are
loops over arrays of model data and because computations in each iteration
are independent of the other iterations, they can easily be distributed among
threads. However, it is not obvious how the successive over-relaxation (SOR)
algorithm can be parallelized similarly. Our approach here is to disregard any
data dependencies in the algorithm. Even though this may yield incorrect re-
sults, it has proved to be a sound optimization, without any visible degrada-
tion.

One great source of parallel inefficiency is rendering. Because only one thread
is allowed to make calls to OpenGL, all but one thread must wait while this
thread is doing the rendering. However, the wind computations for the following
time-step do not depend on the completion of the rendering step. We therefore
use the same idea as presented in [14]. By letting fluid simulation computations
for the next time-step start before rendering has completed, we eliminate pro-
cessor idle time. This is illustrated in Figure 3 and 4. Also, by using double
buffering, we can overlap snowflake computations and rendering.
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Fig. 3. Data-parallel implementation

Fig. 4. Data-and-task-parallel implementation

4 Results

Figure 5 shows the visual results of our snow simulation. Performance results
are given in Figure 6, which shows that, for the largest scene, we get a 1.79
speedup on a dual CPU computer. The performance gain of introducing the
task-parallelism is actually 29%, which is much better than we would expect
because the rendering takes only 8% of the time in sequential mode in Figure
2. Also, for the two largest scene sizes, the parallel simulations reach real-time
frame-rates, while the sequential do not.

5 Discussion

This project has successfully demonstrated that it is possible to combine complex
snow simulations with the requirements of real-time performance in order to
obtain realistic, real-time calculated snow scenarios. The key point to achieving
this is to keep both the simulation calculations as well as the rendering simple
by , for instance, stopping the wind simulation after the wind field has reached
a stable state and only using three triangles for each snow flake. Intersection
testing was, however, not performed with vertical surfaces. Including this would
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Fig. 5. Simulated snow scene, running at 37.5fps. The scene includes 30,000 snowflakes,
20,800 snow cover triangles, and the wind field resolution is 48x48x12 grid points,
running on a 3.2GHz P4 dual CPU workstation. This is the large scene in Figure 6.

Small Default Large Gigant

Wind field resolution 20x20x5 40x40x10 48x48x12 54x54x9
Number of snowflakes 5 000 20 000 30 000 40 000
Triangles in snow cover 5 352 12 050 20 800 21 760
Data-parallel frame rate 133.2 45.8 29.5 23.4
Data-parallel speedup 1.24 1.42 1.43 1.39
Task-parallel frame rate 173.3 58.0 37.5 30.0
Task-parallel speedup 1.61 1.80 1.81 1.79

Fig. 6. Speedup comparison between data-parallel and task-parallel implementation on
a Pentium Xeon 3.2GHz dual CPU workstation with NVidia Quadro FX3400 graphics
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make snow scenes more realistic than the one depicted in Figure 5 by making
snow stick on vertical surfaces as well.

Even though the snow simulation runs in real-time, it may be problematic
to use it in other contexts. The reason for this is that it utilizes two CPUs to
their maximum, leaving no resources for other tasks. Feasible solutions to this
may be to use more CPUs or cores, as future processors are likely to have much
more than two cores. The growth of multi-core systems was in fact one of the
main motivations for this project, but the circumstances did not allow trying
this new architecture. Concerning rendering, the limiting factor seems to be the
data traffic to the GPU, so a possible solution here might be to use the GPU to
take some load off the CPUs.

6 Conclusions and Future Work

The contributions of this paper are twofold. First, a snow model intended for
real-time applications was presented. Our model combined falling snow, wind
simulation, and snow accumulation techniques from previous work. The model
is regarded as a contribution, because previous work either has focused one or
two of these aspects or has not been intended for real-time use.

Second, a proof-of-concept implementation was created, that demonstrates
that the snow model is feasible for real-time frame rates on today’s modern
workstations. This was achieved by parallelizing the algorithms involved in the
simulation for shared-memory architectures.

Among candidates for future work, is analyzing multi-core CPU systems in
more detail, as the circumstances only allowed explorations of dual CPU systems.
Also, other higher level threading libraries such as OpenMP could be investigated
further. Another highly relevant direction that is not considered here, is to use
the GPU to accelerate the computations.

Related to the snow model, the wind computations could be terminated if
the wind field converges to a stable state, to save computation time. A more ad-
vanced accumulation model would be highly beneficial, in particular the stability
computations and arbitrary surface accumulation from [11] are interesting.
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11. Fearing, P.: Computer modelling of fallen snow. In: SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interactive techniques,
pp. 37–46. ACM Press/Addison-Wesley Publishing Co., New York (2000)

12. Feldman, B.E., O’Brien, J.F.: Modeling the accumulation of wind-driven snow,
Technical Sketch. In: SIGGRAPH 2002, San Antonio, TX (2002)

13. Bryborn, M., Klein, R., May, T., Schneider, S., Weber, A.: A portable, parallel,
real-time animation system for turbulent fluids. In: Guizani, M., Shen, X. (eds.)
IASTED International Conference on Parallel and Distributed Computing and
Systems ’00, International Association of Science and Technology for Development,
pp. 394–400 (2000)

14. Vik, T., Elster, A.C., Hallgren, T.: Real-time visualization of smoke through par-
allelization. In: PARCO, pp. 371–378 (2003)

15. Saltvik, I.: Parallel methods for real-time visualization of snow. Master’s thesis,
Norwegian University of Science and Technology (2006)



Support for Collaboration, Visualization and
Monitoring of Parallel Applications Using

Shared Windows

Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus

Dept. of Computer Science, University of Tromsø, NO-9037 Tromsø, Norway
{daniels, jmb, otto}@cs.uit.no

Abstract. Results produced by a parallel application are typically col-
lected and visualized on one display accessible to a single user. Collabo-
ration between several researchers is usually achieved by sharing entire
desktops. We have developed a system that shares windows, both from
parallel applications and from desktop applications, with other users or to
a wall-sized, high resolution display. Parallel applications can create sev-
eral shared windows for each thread or process, enabling runtime visual-
ization and monitoring. To aid collaboration, we provide multiple cursors
for use on a display wall, allowing several researchers to interact simul-
taneously with windows shared by parallel and desktop applications. We
measure the system’s performance, and show that using shared windows
for runtime visualization of the Mandelbrot computation increases the
application’s execution time by approximately 1.4%, while performance
for sharing desktop application windows is halved as the number of users
is doubled.

Keywords: Display wall, shared windows, multiple cursors.

1 Introduction

Current systems for runtime visualization of results from cluster applications are
limited in their support for collaboration [1], as they rely on the X Window Sys-
tem [2] for window management and display. Visualization is typically done by a
single user on a single display, making collaboration difficult. To collaborate, re-
searchers have to share their entire display, which is often more than is necessary
or desired. Finally, there are no standard desktop environments for wall-sized,
high-resolution, tiled displays (display walls) that offer multiple cursors [3].

We have developed a system that can share windows from a parallel appli-
cation and from desktop applications, and which provides support for multiple
cursors on a display wall. Windows can be shared with other users and to a
display wall, while the system’s support for multiple cursors enables researchers
to interact with shared parallel and desktop application windows on a display
wall.

Figure 1 shows a user looking at a visualization of the Mandelbrot fractal,
where each process of the parallel Mandelbrot computation draws into its own,

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 228–238, 2007.
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shared window. On the display wall, the shared windows are displayed and placed
next to each other to form a complete picture, whereas on the lower-resolution
laptop display, there is only room for one window at a time.

Fig. 1. A user looking at a visualization of
the Mandelbrot fractal using shared win-
dows on a display wall. The windows are
placed next to each other, forming a com-
plete picture.

Two scenarios further motivate the
system presented in this paper. The
first scenario concerns the use of
shared windows as a means for run-
time inspection of parallel applica-
tions. Each process of the parallel
application creates a shared window,
and uses it to visualize results or mon-
itor the parallel application’s perfor-
mance. Figure 2 illustrates this sce-
nario.

In the second scenario, a group of
researchers visualize a set of results
on their desktop computers. To share
data, they need to share desktop ap-
plication windows with each other and
a display wall. The other users can in-
teract with the shared windows, mod-
ifying the shared view or change other
settings as if the windows were local.
On the display wall, several users can interact simultaneously using multiple
cursors.

To meet the demands from these scenarios, our system should (i) support
sharing of windows between different window systems and hardware platforms,
and (ii) support the use of several cursors on a single, large desktop on a display
wall.

We evaluate the performance of the parallel application window sharing sub-
system by sharing windows containing the output from a parallel version of Man-
delbrot, demonstrating that windows can be shared with less than 1.4% increase
in the parallel application’s execution time. This low impact on performance is
due to a number of factors. First, the Mandelbrot application generates new con-
tent only about every five seconds, which means that the window sharing system
only needs to provide updates to the shared windows at this rate. A higher rate
of updates would likely increase the overhead from the window sharing system.
Second, the benchmark was run without load balancing at either the application
or system level, resulting in ample time for the window sharing system to run in
on most nodes. Finally, since the window sharing system runs as a thread inside
each process of the parallel application, it knows when the parallel application
updates its shared windows and thus avoids sending unnecessary updates.

For the desktop application window sharing subsystem, the performance de-
creases by a factor of two when the number of window subscribers is doubled.
This is caused by a combination of having to poll window contents in order to
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discover updates, the request-based protocol between publisher and subscribers,
and the publisher’s implementation. The publisher batches requests, before a
best-effort timer fires and makes the publisher process the requests, polling the
window for updates at the same time.

Fig. 2. Windows shared by a parallel application are
accessed both for collaboration on a display wall and
monitoring on a laptop

Parallel application win-
dow sharing performs bet-
ter, since the window
sharing system is integrated
with the parallel application
at the source code level. In
contrast, sharing desktop ap-
plication windows does not
require modifications to the
desktop application’s source
code, at the cost of lower per-
formance.

Our main contribution
with this paper is the integra-
tion of (i) shared windows as
a means for runtime visualiza-

tion of results and state directly from processes of a parallel application, (ii) the
ability to share desktop application windows rather than a user’s entire desktop,
(iii) displaying shared windows from both parallel and desktop applications on
a wall-sized, high-resolution tiled display, and (iv) support for multiple cursors
on a display wall.

2 Related Work

VNC [4] and other remote desktop solutions [5,6] allows one to share an entire
desktop. Although some VNC implementations can restrict the shared area to
regions of the desktop, this does not amount to true window sharing, as any
window brought within the shared region will be visible to others, whether in-
tentional or not. SharedAppVNC [7] enables sharing of independent windows
over VNC’s Remote Framebuffer protocol on Mac OS X, Windows and Linux.
The technique and code we developed for sharing windows on Mac OS X was
shared with the developers of SharedAppVNC.

VNC is based on sharing the pixel representation of a remote display. We
use the same approach in our window sharing system. In THINC [6], the au-
thors demonstrate a solution that achieves better performance, in part due to
their use of lower-level drawing operations to reduce communication. Their tech-
niques are more complex to integrate into the window sharing system, as they
rely on installing drivers into the X Server and intercept drawing operations to
the framebuffer. The operations are then encoded and transmitted to clients.
Due to the low level at which this is implemented, THINC has no concept of in-
dividual windows. In our opinion, this makes a window sharing implementation
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utilizing ideas from THINC harder to realize. Other systems that use drawing
operations to transfer display contents include the X Window System [2] and
Microsoft Remote Desktop. We have chosen to share windows using their pixel
representation, as parameters like coordinate systems, color spaces and line cap
styles can be ignored.

Microsoft’s Messenger and NetMeeting software [8] support application shar-
ing under Microsoft Windows. Citrix’ Presentation Server [9] supports applica-
tion sharing across platforms. The drawback of application sharing is that it does
not support sharing single windows. A shared application with multiple windows
would make all those windows visible to other users, while window sharing would
allow just a single window from the application to be shared. WinCuts [10] can
support window sharing on Windows, but does not support interaction, and
only updates windows once per second. For the X Window System, there are
many application sharing solutions, including XTV [11] and Hewlett-Packard’s
commercial Shared X. Xmove [12] allows one to move applications between X
servers, but does not support sharing the application with several users at the
same time. MAST [13] is a tool that supports pixel-based application sharing
for the Access Grid [14] on Microsoft Windows and Linux.

The MPI Parallel Environment, MPE [1], supports the creation of windows
from each thread or process within a parallel application. Since MPE relies
on the X Window System, the end-point for the visualization has to be fixed
statically before starting the parallel application. That is, the X Server to use
for display must be set prior to execution and can not be changed at runtime.
Application sharing solutions like XTV or Xmove can alleviate this, but require
that additional end-points also run the X Window System. Our window sharing
system is more flexible, since the end-points are bound dynamically on-demand,
and allows windows to be shared with computers running both Linux (X Window
System) and Mac OS X. To visualize 3D data on display walls, software like
Chromium [15] can be used. There is no concept of sharing visualizations in
Chromium.

The first work on multiple cursors was Engelbart and English’ paper from
1968 [16], where the mouse was introduced as an input device. One user had a
controlling mouse, while the remaining users had mice that could only be used
for pointing, and not interacting. Time-sharing the system cursor is used in [17],
where a multi-cursor window manager similar to our own is presented. Their
implementation adds a cursor ID to unused bits in the X event structure, which
limits the number of cursors to seven. Multi-cursor events are then handled by
removing the cursor ID and re-sending the cursor event to the X server as a
regular system cursor event. Our implementation does not limit the number of
cursors and does not require events to pass through the X server more than once.
The Multi-Pointer X Server, MPX [18], integrates support at the hardware layer
for several cursors, driven by mice connected to the computer running the X
server. Presently, MPX only supports a single keyboard.
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3 Model, Design and Implementation

In VNC, clients pull a single desktop from a VNC server. Our window sharing
system is based on the publish-subscribe model. A publisher shares one or more
windows through a publishing service. Subscribers access shared windows by
connecting to the service, from which they can select the windows they are
interested in and display them to the user. The service notifies subscribers when
new windows are published, or old windows removed.

The service is realized using one or more servers, with publishers and sub-
scribers acting as clients. The servers support network discovery using multicast,
allowing clients to discover them on a LAN. Clients connect to servers over TCP
for publishing or subscribing to shared windows. Subscribing clients are realized
as separate processes, and receive updates to windows they subscribe to after
requesting an update from the publishing client. For parallel applications, the
publishing client is realized as a thread inside the parallel application. For desk-
top applications, the publishing client is realized as a separate process. Windows
are shared using their pixel representation.

To illustrate how the window sharing system works in a parallel application,
we added it to a parallel solver for the Mandelbrot fractal set. The solver on
each node originally worked by displaying its part of the solution when all the
nodes were done. In our modified version, the solver begins by creating a shared
window. The shared window is maintained by a separate thread, and instead
of displaying the solution when all nodes are done, the thread reads pixel data
from memory, and sends an update to the shared window.

We have implemented window sharing for desktop applications on Mac OS X,
allowing Mac OS X windows to be published to subscribers running on Mac OS X
and Linux desktops, including the Linux-based display wall desktop. No changes
to desktop applications are required in order to share their windows. On Mac OS
X, each window is backed by a memory buffer that contains the most up-to-date
window contents. Sharing such a window amounts to transmitting the contents
of that buffer to subscribers. We use a polling approach on the buffer, as the
OS does not notify the publisher when there are changes to other applications’
windows. The user can configure the publisher to either send everything or detect
changes in the buffer. The decision of which to use will impact the publisher’s
CPU and bandwidth usage. For static windows, change detection will reduce
the bandwidth required for keeping subscribers updated, whereas for a window
that is frequently updated, the bandwidth savings will be very small. Change
detection is a very costly operation, as it requires calculating a diff between the
last contents sent to subscribers, and the current version of the window. The OS
X window sharing implementation is further detailed in [19].

The multiple cursor model is based on a service that handles cursor and
keyboard input from a number of different users. Users push input events to
the service, and the service is responsible for forwarding them from users to
applications running on the desktop the service adds multi-cursor support to.

The service is realized as a server. The server runs in a thread, which in turn
resides in the same process as a window manager for the X Window System.
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Input from users is sent to the server via clients that run on the users’ desktops.
For each client, the server creates a cursor that is visible on the multi-cursor
enabled desktop.

To emulate support for multiple cursors in the single-cursor X Window System
environment, the system cursor is time-shared. For instance, when a user clicks
his mouse button, the system cursor is moved to the position of that user’s
virtual cursor, and a mouse click event is posted. For applications, this creates
the illusion that a single user is working on the desktop, when in reality there
are several. For users, the illusion of several cursors supported by the window
system is created. This approach is similar to the one taken in [17].

We implemented the design by incorporating the server thread in the Window
Maker1 window manager. Each client connects to the server over TCP, and is
assigned a “virtual cursor.” The virtual cursor maintains state associated with
the client (such as current focus window and TCP socket information), and
provides the actual cursor visible on the desktop to the user. The virtual cursor
is drawn by creating an X Window, and modifying the window’s appearance to
match that of a cursor using the XShape extension. Different cursors are assigned
different colors, and input events are posted using the XTestExtension.

4 Experiments

The hardware used for the experiments was (i) a 28-node cluster (Intel P4
EM64T, 3.2 GHz, 2GB RAM, hyperthreading enabled) running Rocks 3.32, (ii)
a PowerMac Dual-G5 (2.5 GHz, 4GB RAM) running Mac OS X 10.4.2, (iii) a
stand-alone PC (identical hardware configuration as the cluster nodes) running
RedHat Enterprise Linux 4, (iv) a display wall (28 tiles, 1024x768 resolution
per tile) with a combined resolution of 7168x3072, and (v) a GigaBit Ethernet.
The cluster nodes are connected to a switch, and the remaining computers are
connected to a second switch, with a single link joining the two switches. The
cluster nodes also drive the individual tiles of the display wall.

We evaluated the impact of the window sharing system on parallel application
performance by sharing windows from a parallel solver for the Mandelbrot fractal
set. We measured the execution time of the parallel application both with and
without window sharing running on the 28-node cluster. When window sharing
was enabled, each node running the computation shared one window each, and
each window had one subscriber. All the subscribers ran on the RedHat box.
The experiment was repeated five times without window sharing, and five times
with. The execution time for the Mandelbrot computation when running without
window sharing was between 64.63 and 64.78 seconds, while the execution time
when running with window sharing was between 65.40 and 66.19 seconds - an
average increase of 1.38%.

We measured the performance of desktop application window sharing by shar-
ing a window on the PowerMac G5 sized at 508x519 pixels in 32-bit color. The
1 http://www.windowmaker.org/
2 http://www.rocksclusters.org/
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window contained an animation that updated at 30 frames per second (fps).
The PowerMac G5 shared the window with subscribers running on the 28-node
cluster. We conducted experiments varying the number of subscribers from 1 to
28, running each subscriber on a separate cluster node. We also conducted an
experiment with 56 subscribers, where each node ran two subscribers. The Mac
OS X publisher was configured to update the shared window at 30 fps with-
out change detection, ideally reaching 30 fps at each subscriber. We measured
the publisher’s CPU load, the publisher’s bandwidth usage and the number of
frames received per second by each subscriber.

Fig. 3. The publisher’s CPU load and
bandwidth usage. For 1 to 28 subscribers,
one subscriber runs on each node, while for
56 subscribers, two subscribers run on each
node.

Figure 3 relates the publisher’s
CPU load with the publisher’s band-
width usage, with an increasing
number of subscribers to the shared
window. There is a clear correlation
between CPU load and bandwidth us-
age, both steadily increasing until lev-
eling out at about ten subscribers. At
this level and beyond, the network is
saturated, while the publisher still has
available processing resources to han-
dle additional subscribers.

Figure 4 shows the average frame
rate at the subscribers. With a single
subscriber, about 28 fps is achieved,
with 56 subscribers, the frame rate is
1.6. In general, doubling the number
of subscribers cuts the frame rate ap-
proximately in half.

Fig. 4. Average frame rate as seen by each sub-
scriber for sharing a single desktop application
window

For the first few subscribers,
Figure 3 shows that the pub-
lisher has available processing re-
sources and network bandwidth
but is unable to provide the sub-
scribers with updates sufficiently
fast to reach the target frame rate.
There are two factors that con-
tribute to this behaviour. First,
subscribers must request updates
from the publisher in order to re-
ceive them. If the subscribers do
not do this sufficiently fast, the re-
sulting frame rate will be lower.
Second, the publisher accepts re-
quests and processes them in
batches. Each iteration is started
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by a timer that fires in a best-effort manner. If an iteration exceeds the timer
interval, the next iteration starts late, resulting in a lower frame rate.

We also conducted an experiment comparing the publisher’s two update
modes. The publisher can either send everything for each iteration, or calcu-
late a diff between the current window contents, and the window contents most
recently sent to subscribers (change detection). We measured the publisher’s
CPU load, bandwidth usage and frame rate at each subscriber.

Performing change detection was very costly. With one subscriber, the frame
rate was 7.13, and the publisher’s CPU load at 76.2%, transmitting 5.8 MB/s.
With 20 subscribers, the frame rate was only 3.7, and publisher CPU load was at
100.1%3 with bandwidth usage at 50 MB/s. In comparison, sending everything to
a single subscriber gave a frame rate of 28, with publisher CPU load at 42.5% and
bandwidth usage at 24.5 MB/s. To 20 subscribers, the publisher CPU load was
77%, transmitting 67.6 MB/s, and the frame rate was 4.1. We have performed
informal practical experiments with the multi-cursor implementation, testing it
with up to 8 simultaneous cursors.

5 Discussion

The experiments indicate that the impact on performance from adding shared
windows to a parallel application is low. The benchmark was run without load
balancing, neither on the system level nor the application level. For the Mandel-
brot computation, this results in a very uneven load distribution, which on many
nodes result in ample time for the window sharing system to execute in. This
may contribute to hiding additional overhead from the window sharing system.

The system shares windows by sharing their pixel representation. This is the
simplest way of sharing windows between hardware platforms and different win-
dow systems, and is the same approach as that taken by VNC [4]. The alter-
native to sharing pixels is to share drawing operations, like “fill rectangle” or
“draw line.” This approach is more challenging to make platform independent,
compared to the simple operation of copying a block of pixels and sending them
across the wire. As an example, drawing operations can save bandwidth by trans-
mitting the raw text rather than the pixels making up the text on a display.

The publisher running on Mac OS X can use two different strategies when
sending updates to windows. Since it doesn’t know when or which regions of a
window is updated, it can decide to either always send everything to everyone, or
compute a diff between what the subscriber already has, and the current contents
of the window. The trade-off is between publisher CPU load and publisher band-
width. Subscribers will also potentially have fewer updates to draw, resulting in
lower subscriber CPU load. Sending everything consumes more bandwidth, but
incurs a lower CPU load on the computer running the publisher, while perform-
ing change detection is very costly. In contrast, for the Mandelbrot application,
window contents are only sent when there are actual updates to the window. This

3 The publisher ran on the PowerMac, which has two CPUs.
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is possible since the window sharing code has been built directly into the Man-
delbrot application, allowing it to send updates only when the shared window is
actually updated.

Integrating the window sharing system with parallel applications requires that
the source code for the parallel application is available. This is not a major prob-
lem though, since the window sharing system only simplifies the task of pub-
lishing the windows. The application itself is responsible for filling that window
with meaningful content - be it a runtime visualization or performance monitor-
ing data. This will require further modifications to the application’s code.

6 Conclusion

This paper presents a system that shares windows created by parallel and desk-
top applications between two or more users. To further enhance collaboration,
a system supporting multiple cursors on a wall-sized, high-resolution display is
used to allow many users to manipulate shared windows simultaneously.

Parallel applications require modifications to their source code in order to share
windows and discover updates in them. For desktop applications, modifying their
source code is usually neither practical nor possible. Because of this, sharing desk-
top application windows is more costly, both in terms of CPU and network load,
as the system has to poll window contents in order to discover updates.

We have integrated the system with a parallel implementation of a solver for
the Mandelbrot fractal, and measured its impact on the application’s execution
time. We measured the performance of desktop application window sharing by
sharing a single window containing an animation with a varying number of users.
The windows were displayed on the tiled display wall. The multi-cursor system
was used with eight cursors.

We found that the addition of shared windows to the Mandelbrot application
only added about 1.4% to the application’s execution time. For this benchmark,
no load balancing was used, resulting in an uneven distribution of work be-
tween the different processes. This gives the window sharing system CPU time
to execute in that would otherwise remain unused, which combined with the
Mandelbrot application’s infrequent updates, explains the window sharing sys-
tem’s low impact on the application’s performance. A higher update frequency
would likely increase the window sharing system’s impact on execution time.

For desktop application windows, the number of updates received per second
by each subscriber went from 28 with one subscriber, to 1.6 with 56 subscribers.
In general, when the number of subscribers is doubled, the update frequency
seen by each subscriber is halved. For less than ten subscribers, CPU and net-
work are not the limiting resources. Instead, the scaling behaviour is caused
by the iteration- and timer-based approach used by the publisher. With many
subscribers, the limiting resource is the network.

Sharing windows and support for multiple cursors are promising for increas-
ing the flexibility of runtime visualization and monitoring of parallel applica-
tions, and for collaboration using desktop applications. More work remains to
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determine the window sharing system’s impact on these issues, and to better
characterize the system’s performance.
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The development of high performance simulation codes is often a demanding
process, due to the complexity of the phenomena to be simulated but also to
the proliferation and evolution of computer architectures. The success of such
efforts is dictated by the time required to achieve a functional prototype code of
the application, and then an optimized production version of the code. Simul-
taneously, achieving an optimal usage of the available, and frequently scarce,
computational resources is of major importance to developers and users of simu-
lation codes. To achieve these goals, it is often necessary to develop or integrate
algorithms, models, and computational techniques from a group of collaborators
with diverse expertise.

The purpose of this minisymposium is twofold. Firstly, it focuses on a set of
cutting edge software tools and frameworks currently used to tackle scientific
computing applications. The availability of advanced tools like the ones to be
showcased has enabled more complex physical phenomena to be addressed and as
a result contributed to the growth of the computational sciences community. This
community includes scientists, designers and developers of high-end technology
who require computerized modeling solutions, portable software libraries, but
also convenient interfaces or friendly frameworks. Secondly, the minisymposium
includes presentations on a set of challenge applications, ranging from the nano
to the cosmic scale, that have important requirements for computing resources
but that have also fostered the development of novel techniques and tools.
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Züricharbenz@inf.ethz.ch

2 Institute for Biomechanics, ETH Zürich, CH-8092 Zürich

Abstract. Using microarchitectural bone imaging, it is now possible to
assess both the apparent density and the trabecular microstructure of
intact bones in a single measurement. In combination with microstruc-
tural finite element (μFE) analysis this could provide a powerful tool
to improve strength assessment and individual fracture risk prediction.
However, the resulting μFE models are very large and require dedicated
solution techniques. Therefore, in this paper we investigate the efficient
solution of the resulting large systems of linear equations by the pre-
conditioned conjugate gradient algorithm. We detail the implementation
strategies that lead to a fully parallel finite element solver. Our numer-
ical results show that a human bone model of about 5 million elements
can be solved in about a minute. These short solution times will allow to
assess the mechanical quality of bone in vivo on a routine basis. Further-
more, our highly scalable solution methods make it possible to analyze
the very large models of whole bones measured in vitro, which can have
up to 1 billion degrees of freedom.

1 Introduction

Osteoporosis is a disease characterized by low bone mass and deterioration of
bone microarchitecture. It leads to increased bone fragility and risk of fracture,
particularly of the hip, spine, and wrist. Worldwide, lifetime risk for osteoporotic
fractures in women is estimated close to 40%; in men risk is 13% [11]. As reported
by the World Health Organization, osteoporosis is second only to cardiovascular
disease as a leading health care problem. Osteoporotic fractures are a major
cause of severe long-term pain and physical disability, and have an enormous
impact on the individual, society and health care systems. For the clinician, the
prediction of bone quality for individual patients is, so far, more or less restricted
to the quantitative analysis of bone density alone, although there is convincing
evidence that bone microarchitecture plays a significant role as well.

With the advent of fast and powerful computers, simulation techniques are
becoming popular for investigating the mechanical properties of bones and pre-
dicting the strength of a given patient’s bones. Ideally, the development of a
system with microstructural resolution better than 50 μm would allow in vivo
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measurement of patients at different instances in time and at different anatomical
sites. Unfortunately, such systems are not yet available, but the resolution at pe-
ripheral sites has reached a level (90 micron) that allows elucidation of individual
microstructural bone elements. Using this technique, two recent cross-sectional
studies have shown sex- and age-related changes in trabecular structure and in
cortical thickness of the distal radius [4, 9].

Using a direct voxel-conversion technique the three-dimensional computer re-
constructions of bone can be converted to a finite element mesh, that can be used
to perform a ‘virtual experiment’, i.e., to simulate a mechanical test in great de-
tail and with high precision. The resulting procedure is called microstructural
finite element (μFE) analysis.

μFE analyses are computationally demanding and require specially adapted
solution schemes. For example, a linear analysis of one human vertebral body at
a resolution of 30 microns requires over 130 million elements. Therefore, one is
forced to use iterative methods, and in particular the preconditioned conjugate
gradient algorithm. Element-by-element approaches have been proposed about
10 years ago and are now common [13,18]. The memory requirements for solving
such a problem with the element-by-element preconditioned conjugate gradient
(EBE-PCG) algorithm is particularly small, and as such the ratio of element per
processor is particularly high. However, a major drawback of this method is its
slow convergence and its high sensitivity to discontinuities in the material prop-
erties. A better solution consists in using a scalable preconditioner like smoothed
aggregation, as suggested by Adams et al. [2].

The aim of this study was to develop a fast multi-level, fully parallel finite
element code for the μ-finite element analysis of human bone structures as devel-
oped in [12]. We refer to [5] for more details on how to obtain suitable models,
and we focus exclusively on the in silico simulation. The paper is organized
as follows. In Section 2 we describe the mathematical model and the system
of linear equations it entails. In Section 3 we introduce smoothed aggregation
preconditioners for bone modeling. In Section 4 we give some details on our
implementation. Numerical results are reported in Section 5. Conclusions are
drawn in Section 6.

2 Mathematical Model

The basic mathematical model of the problem is given by the Lamé equations
of elasticity [5]. The weak formulation of the 3D problem is:{

Find u ∈ V such that∫
Ω

[2μ ε(u) : ε(v) + λ ÷ u ÷ v] dΩ =
∫
Ω

fT v dΩ +
∫

ΓN

gT
Sv dΓ, ∀v ∈ V, (1)

where V ⊂ (H1
ΓD

(Ω))3 is a Sobolev space, ΓD and ΓN are the Dirichlet and
Neumann part of ∂Ω, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and u describes the nodal
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displacements, λ and μ are the Lamé constants, f the volume forces, and g the
boundary tractions. The symmetric strains in (1) are given by

ε(u) :=
1
2
(∇u + (∇u)T ).

The finite element discretization of problem (1) by means of piecewise trilinear
polynomials [18] leads to a the linear algebraic system

Au = f , (2)

where A is symmetric and positive definite as long as ΓD 	= ∅.
Equation (2) is solved with a conjugate gradient method. It is well-known

that κ(A) ≈ O(h−2), where κ(A) is the condition number of A and h is the
mesh size [5]. Therefore, the linear system

AB−1x = f , u = B−1x, (3)

is solved instead of (2), where B is the preconditioning matrix, chosen so that
κ(AB−1) � κ(A). The conventional preconditioner adopted for bone model-
ing problems is the element-by-element preconditioner [13]. Here, instead, we
consider scalable multilevel (or multigrid) preconditioners.

3 Scalable Preconditioners for Bone Modeling

Multigrid methods were introduced in the late 70’s, and their success and devel-
opment is testified by the vast literature and the many international conferences
organized since then, see [19] for a survey.

A multilevel method tries to approximate the original PDE problem of interest
on a hierarchy of levels and use ‘solutions’ from coarse levels to accelerate the
convergence on the finest level. When used to define preconditioners for linear
systems, multigrid methods are applied using the so-called V-cycle, which reads
as follows:

1. procedure MultiLevelSolve(A�, b�, x�, �)
2. if � == L−1 then
3. x� = A−1

� b�

4. else
5. x� = S�(A�,b�,0)
6. r� = b� − A� x�; b�+1 = R� r�

7. v�+1 = 0
8. MultiLevelSolve(A�+1,b�+1,v�+1, �+1)
9. x� = x� + P� v�+1

10. x� = S�(A�,b�,x�)
11. endif
12. endprocedure
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In the procedure, � = 0 defines the finest of the L levels, A� represents the
discretization on level � of the problem, P� and R� are prolongator and restriction
operator from level � + 1 to �, respectively, and the S� are approximate solvers
(called smoothers).

The preconditioner for the solution of linear system (2) is applied by calling
MultiLevelSolve(A,b,x, 0). x� is the starting solution, b� the right-hand side,
and the S�’s are smoothers.

The key aspect in algebraic multigrid methods is the definition of the auxiliary
operators P�, R�, and A�. At least two alternative approaches have been evolved
in the literature: to algebraically coarsen on each level by identifying a set of
coarser-level nodes (the so-called C-nodes) and finer-level nodes (F-nodes) [14],
or to algebraically coarsen on each level by grouping the nodes into contiguous
subsets, called aggregates, as done in smoothed aggregation (SA) [21].

In this paper we focus on SA preconditioners. Theoretical results support the
usage of SA for linear elasticity problems [1]. Also, SA preconditioners have been
proven scalable up to thousands of processors [10,2]. A general setup procedure
for smoothed aggregation multigrid is reported below.

1. Define the maximum number of levels, L

2. for each level � do
3. if on coarsest level then
4. Define the coarse solver
5. Return
6. endif
7. Define P�

8. R� = PT
�

9. A�+1 = R�A�P�

10. Define the smoother S�

11. endfor

The construction of a SA preconditioner is now briefly outlined. First, a graph
is built from the linear system. This graph contains an edge between the vertices
i and j, if Ai,j 	= 0. For vector problems as the one considered in this paper, the
graph is defined in a block fashion, meaning that one graph vertex is associated
with all the unknowns at a grid vertex. An edge between two graph vertices i and
j is added if there are any nonzeros in the block matrix defined by the ith block
row and jth block column. Then, graph vertices are grouped into contiguous
subsets, called aggregates. Each aggregate effectively represents a coarser grid
vertex. Once the coarser grid is determined, a grid transfer must be defined.
The simplest possible grid transfer is to use low-energy modes (in our case, the
rigid body modes as obtained when no boundary conditions are applied), that
are ‘chopped’ and inserted within the (i, j)th block if the ith fine grid point has
been assigned to the jth aggregate.

There are many ways to define aggregates. In a standard algebraic multi-
grid method the most common way to create an aggregate is via some kind
of greedy graph algorithm where an initial node is chosen along with all of its
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nearest neighbors. The net affect of this type of procedure is to produce aggre-
gates which are ‘ball-like’ with an approximate diameter of three graph vertices.
Unfortunately, this type of procedure leads to many aggregates and must be
repeated several times in order to obtain a coarse matrix that is small enough
to be efficiently solved by a direct solver. An alternative approach is to adopt
a graph partitioner code like METIS or ParMETIS [8] to define the aggregates.
The algorithms within these packages split the fine matrix so that each parti-
tion has no more nodes than a user supplied parameter. All the nodes in each
partition are then combined to form a single aggregate. METIS is a serial code
and so can only be used to partition the graph corresponding to the local ma-
trix entries within a processor. This implies that no aggregate can span more
than one processor. ParMETIS is a parallel code and so it can be applied to the
entire distributed global graph to produce aggregates that span more than one
processor.

The procedure we have outlined is sometimes referred to as nonsmoothed
aggregation. For elliptic problems as the one considered in this paper, the so-
called smoothed aggregation performs significantly better [21]. In this latter case,
the (tentative) prolongator defined by nonsmoothed aggregation P0,� at a given
level � is smoothed with one step of a damped Jacobi iteration to obtain the
final prolongator,

P� = (I� − ω� D−1
� A�)P0,�,

where A� ∈ R
n�×n� , I� is the identity matrix of size n�, D� = diag(A�), and ω�

is a damping parameter, typically defined as

ω� =
4/3

λmax(D−1
� A�)

, (4)

where λmax(D−1
� A�) indicates the largest eigenvalue of D−1

� A�.
We still need to define the smoothers and the coarse solver S�. Common

choices for the smoother are Chebyshev polynomial smoothers or processor-based
symmetric Gauss-Seidel [3]. A direct solver is applied to the coarse problem.

4 Implementation Details

The code used to obtain the numerical results outlined in the next section has
been developed for massively parallel, distributed memory architectures. The
code is written in C++ with support for MPI, and interfaces with optimized
BLAS and LAPACK for computationally intensive tasks on dense matrices and
vectors. All sparse linear algebra objects, in contrast, are based on the Epetra
library [7]. Epetra furnishes an efficient and flexible implementation of funda-
mental distributed linear algebra objects like vectors, multivectors and sparse
matrices. Epetra objects are accepted by the Krylov accelerator solvers of the
AztecOO library [20] and by the multilevel preconditioning package ML [17]. The
aggregation scheme and construction of restriction and prolongation operators
is implemented within the ML library. ML offers a variety of coarsening options,
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as well as several smoothers and coarse solvers, either developed within ML it-
self, or as part of the IFPACK [16] and Amesos [15] packages. Epetra, AztecOO,
Amesos, IFPACK and ML are available through the Trilinos framework [7].

While Trilinos is used for most linear algebra operations, the I/O is performed
by the HDF5 library [6]. HDF5 furnishes binary parallel I/O, meaning that all
processors1 can concurrently access the file by using so-called hyperslabs, which
in our case are defined as contiguous chunks of data. The approach we follow is
therefore as follows.

For a typical finite element code, the data structures to be read are the grid
connectivity and the vertex coordinates, both specified as FORTRAN arrays,
and a list of boundary vertices or faces. In order to obtain a fully parallel code,
it is mandatory to parallelize the input and output phases. First, we read all
the grid data by using the hyperslab technique and a linear distribution. Being
highly unbalanced, this data distribution is not suitable for actual computations.
Therefore, we first use the parallel graph partitioner ParMETIS [8] to compute
a load-balanced partition, then we redistribute the data structures to match the
balanced layout. This is accomplished by resorting to the Import/Export capa-
bilities of the Epetra package. A rough ParMETIS space filling curve partioning
is prepended to balance the required graph construction [8].

5 Numerical Experiments

The results have been obtained on the CRAY XT3, located at the Swiss National
Supercomputing Centre (CSCS), containing 1100 AMD Opteron single-core pro-
cessors that run at 2.6 GHz and are equipped with 2GB of memory. The pro-
cessors are connected by the Cray SeaStar high-bandwidth (4 GB/s sustained),
low-latency interconnect.

The linear system (2) has been solved up to a tolerance of 10−5 in the relative
residual, with a zero initial vector. The multilevel preconditioner is built using
METIS as the aggregation scheme. A target value of 50 vertices per aggregate
was adopted. Smoothed aggregation is used, and ten iterations of the (non-
preconditioned) conjugate gradient algorithm are adopted to estimate ω� in (4).
The Chebyshev smoother MLS [3] was used on all levels but the coarsest, where
the direct solver KLU from the Amesos package [15] is employed.

We now report on some numerical results to assess the scalability of the ap-
proach presented in this paper. First, we consider weak scalability, meaning that
we keep the problem size per processor constant. Therefore, the overall problem
size is proportional to the number of processor involved in the computation. A
perfectly (weakly) scalable code executes in a time that is independent of the
processors employed.

We performed a weak scalability test with an artificial problem. A small piece
of trabecular bone was artificially taken from a piece of human trabecular bone,
1 The actual parallel performances of HDF5 depends on the underlying I/O system,

and on the number of installed I/O nodes, which is usually much smaller than that
of the computing nodes.
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Fig. 1. Bone tissue models generated by 3D mirroring to test weak scalability. The
displayed models are the ones run with 1, 8, 27, and 64 processors. The larger models
are not shown.

scanned with a high resolution micro-CT system. This small piece has been
mirrored in three dimensions to obtain arbitrary sized cubic models as illustrated
in Fig. 1. The number of processors p is adjusted to the cubic problem sizes, i.e.,
p = n3 where n ranges from 1 to 9.

For a problem consisting of 60, 482 × p elements the execution times and
iteration count of the SA preconditioned conjugate gradient algorithm are given
in Table 1 and Fig. 2. Note that the 200M degrees of freedom test is solved in less
than 100 seconds. Also note that all phases but the I/O scale almost perfectly.
The poor scaling of I/O is probably due to the limited number of I/O nodes.

The second set of tests aims at analyzing the strong scalability, in which
the same problem is solved by a varying number of processors. With an ideally
(strongly) scalable code the execution times are reduced according to the number

Table 1. Execution times (in seconds). efficiency, and number of PCG iterations of
the weak scalability test on the Cray XT3.

CPUs input repart. assembly precond. solution output total efficiency iters
1 1.25 2.28 6.25 8.58 28.86 0.10 47.32 100% 51
8 1.27 3.84 6.64 9.03 30.98 0.52 52.28 91% 53

27 2.00 4.18 7.03 9.67 34.23 0.78 57.88 82% 56
64 3.65 4.20 7.12 10.05 32.60 1.33 58.94 80% 53

125 5.03 4.78 7.26 15.86 32.71 2.33 67.97 70% 52
216 8.23 4.92 7.26 15.91 32.34 3.81 72.47 65% 51
343 9.58 5.27 7.38 16.09 31.64 5.25 75.21 62% 49
512 17.34 5.39 7.29 17.04 30.24 8.03 85.33 55% 47
729 20.98 6.18 7.36 23.98 30.24 11.05 99.78 47% 45
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Fig. 2. Results of weak scalability test on the Cray XT3

Table 2. Execution times (in seconds) and number of PCG iterations of the strong
scalability test on the Cray XT3

CPUs input repart. assembly precond. solution output total efficiency iters
72 4.10 8.47 10.2 19.3 90.1 2.22 134. 100% 117

128 4.62 4.73 5.97 9.36 54.8 2.08 81.6 92% 120
256 8.16 2.47 3.09 6.75 28.6 3.11 52.2 72% 118
512 10.8 1.74 1.56 4.61 16.0 5.18 39.8 47% 118
768 15.5 2.13 1.04 5.02 12.0 7.58 43.3 29% 117

of processors employed, i.e., Tp = Tp̄p̄/p, where p̄ is a reference number of pro-
cessors and Tp is the execution time on p processors. Note that for a typical
problem, the number of inter-processor communication increases with the num-
ber of processors, while the amount of local computation decreases. This makes
strong scalability much harder to achieve than weak scalability. Nevertheless, a
strong scalability test is useful to determine the optimal number of processors
that should be used for a given problem size.

For the strong scalability test, we have considered a problem reflecting the
distal part (of 20% of the length) of a human radius, that was scanned with
a new generation high-resolution 3D peripheral quantitative computed tomog-
raphy (pQCT) scanner (Scanco Medical, Bassersdorf, Switzerland) providing a
resolution of 93 μm, cf. Fig 3. The model consists of 5.44 million elements which
makes a minimal number of 72 processors necessary to solve it. Table 2 and
Fig. 4 give execution times and iteration counts. The corresponding numbers
show that the whole system is solved with high efficiency (>70%) on up to 256
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Fig. 3. Distal part (20% of the length) of the radius in a human forearm

Fig. 4. Results of strong scalability test on the Cray XT3

processors. The efficiency is mostly reduced due to I/O. Note that less than 60
seconds are required for solving this problem with 256 CPUs, and only about
130 when using 72 CPUs.

6 Conclusions

We have described the model and the implementation details for multi-level μFE
analysis of human bone structures. By using the presented techniques, a fully-



Multi-level μ-Finite Element Analysis for Human Bone Structures 249

parallel finite element code is obtained. Numerical results show excellent weak
and strong scalability for both an artificial and a realistic human bone problem.

The short solution times which we have obtained will allow to assess the
mechanical quality of bone in vivo on a routinely basis. Furthermore, the even
larger models of whole bones measured in vitro has become possible. We expect
these findings to improve our understanding of the influence of densitometric,
morphological and loading factors in the etiology of spontaneous fractures of the
hip and the spine.
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Abstract. The ACTS collection project comprises a set of state-of-the-
art software tools to speed up the development of High-Performance
Computing Applications in science and engineering. We look at the de-
velopment of High Level user interfaces using scripting languages like
Python, to facilitate the access to ACTS technology to a wide commu-
nity of computational scientists. PyACTS is our main project here, but
we also visit other efforts within the community of developers of ACTS
tools.

1 Introduction

The Advanced CompuTational Software (ACTS) [1] Collection comprises a set of
computational tools developed primarily at DOE laboratories, sometimes in col-
laboration with universities and other funding agencies (NSF, DARPA), aimed
at simplifying the solution of common and important computational problems.
A number of important scientific problems have been successfully studied and
solved by means of computer simulations built on top of tools available in the
ACTS Collection [2]. The ACTS Collection brings robust and high-end software
tools to the hands of application developers to accelerate the development of
computational science codes and consequent results. However, this transfer of
technology is not always successful due in part to the intricacy in understanding
the interfaces associated with the software tools and the time an application sci-
entists spends installing and learning the use of a given tool. Here we present a
set of Python based interfaces to some of the tools in the ACTS Collection, Py-
ACTS. We also present some examples of it applications and future development
directions.
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2 Some of the Tools in the ACTS Collection

In Table 1 we briefly list some of the numerical functionality available in the
ACTS Collection. The tools in Table 1 have development projects that include
interfaces in Python. A closer look at the functionality offered by these tools
[1], we see that there are some tools that compliment others (i.e., the use of a
direct solver inside a preconditioner used by an iterative scheme, or the use of
a preconditioner from Tool A inside Tool B, etc.) and tools with functionality
that overlap. Selecting the appropriate tool is not trivial and problem specific, it
may require in some cases not only expertise in numerical linear algebra but also
extensive testing and tuning. To be able to explore the full functional plethora in
the ACTS Collection, a user may spend months learning the different interfaces
and parameterizations of a giving tool. Our goal with PyACTS is to build a high
level user interface that directly reduces the amount of work a user spends simply
learning to use a tool, facilitates a faster development of her or his application.

PyACTS [15,16,17] provides a didactical user interface to assist with their first
application prototype and following production code development. Here we look
at the PyACTS development project and existing functionalities.
The reader is referred to the ACTS Information Center [18] for more details on
these tools and others available in the collection. Our initial work has been focused
on the development of PyScaLAPACK which is introduced in the next section.

3 PyACTS: A Python Interface to the ACTS Collection

Python [19] is an interpreted, interactive, object-oriented programming lan-
guage. Python combines remarkable power with very clear syntax. It has mod-
ules, classes, exceptions, very high level dynamic data types, and dynamic typing.
New built-in modules are easily written in C or C++. Python is also usable as an
extension language for applications that need a programmable interface. Python
is designed to make integration with other software components in a system
as simple as possible. Programs written in Python can be easily blended with
other languages. For instance, Python scripts can call out existing C and C++
libraries, Java classes, and much more. Actually, it is this feature of Python that
is employed in our current work.

Additionally, Python is portable: it runs on many brands of UNIX, on Win-
dows, Mac, and many other platforms. Python is copyrighted but freely usable
and distributable, even for commercial use. Python is an ideal language for proto-
type development and other ad–hoc programming tasks, without compromising
maintainability and it uses an elegant syntax for readable programs. All of the
ACTS tools listed in the previous section use MPI as one of the methods for
supporting message passing. In the PyACTS, we use pyMPI [20], which enables
us to use the same Python modules and rich functionality. We have also tested
other Python implementations of MPI and these can be replaced without any
portability issues because of the MPI functionality used inside PyACTS is avail-
able in all flavor implementations and the observed performance is quite similar.
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Table 1. A subset of the Numerical Tools in the ACTS Collection with their Python
based Interfaces. At this time, all these third party Python based projects are inde-
pendent of PyACTS and not a part of the ACTS collection.

TOOL Short Description

ScaLAPACK [3]
and PyScaLAPACK
from PyACTS

Library of high-performance linear algebra routines for
distributed-memory message-passing Multiple Instruction Mul-
tiple Data (MIMD) computers and networks of workstations.
The library contains routines for solving systems of linear equa-
tions, least squares, eigenvalue problems and singular value
problems. It also contains routines that handle matrix factor-
izations or estimation of condition numbers.

SuperLU [4] and
PySuperLU from
PyACTS

General purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance
machines. The library is written in C and is callable from ei-
ther C or Fortran. The library routines perform an LU decom-
position with numerical pivoting and triangular system solves
through forward and back substitution.

PETSc [5] and
PyPETSc [6]

The Portable, Extensible Toolkit for Scientific computation
[7], provides sets of tools for the parallel, as well as serial, nu-
merical solution of PDEs that require solving large-scale, sparse
linear and nonlinear systems of equations. PETSc includes non-
linear and linear equation solvers that employ a variety of New-
ton techniques and Krylov subspace methods.

SUNDIALS and
some available
Python bindings

SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers, and it refers to a family of four closely related solvers;
CVODE [8,9], for systems of ordinary differential equations;
CVODES [10], variant of CVODE for sensitivity analysis; KIN-
SOL [11], for systems of nonlinear algebraic equations; and IDA
[12], for systems of differential-algebraic equations.

Trilinos [13] and
PyTrilinos [14]

A framework for the development of parallel solvers and li-
braries within an object-oriented environment. AztecOO is one
of the libraries available in Trilinos and it is part of the ACTS
Collection. The Trilinos framework offers a variety of mecha-
nisms for a software package to interact with other software
packages.

PyACTS is a collection of carefully designed and written software wrappers to
the ACTS tools, it also includes other routines written in Python to provide high
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level users interfaces. Therefore, wrappers written for PyPBLAS, PyBLACS and
PyScaLAPACK were generated first with the help of F2PY [21], and then we
loaded these wrappers with functionality that will automatically validate the
arguments passed to the actual PyACTS routines, and check for consistency
between the types of objects expected by the ACTS tools. These wrappers also
provide us with the ability to transparently convert data types between PyACTS
modules to support interoperability. More details on these wrappers are giving
later in this section. In additional, PyACTS interfaces contain fewer arguments
in their calls but generate automatically other parameters that are later passed
to the actual ACTS tool interfaces. An example of this abstraction is shown with
a PBLAS 3 example in Figure 1. In the panel (a) of this figure, we notice that
there are parameters like the PBLAS descriptors that do not contribute directly
with the operation, C = αAB+βC, but are there to support the parallelism and
optimize the algorithmic implementation. Many users in computational science
and engineering do not care for these levels of details.

In example illustration (Figure 1), PyACTS removes these extra arguments
from the PyPBLAS user interface. And internally PyPBLAS will automatically
generate the missing parameters for the user and execute the proper call to
the corresponding PBLAS routine. Furthermore, one more complex part of the
ScaLAPACK and SuperLU interfaces is the handling of the two dimensional
cyclic distribution. PyACTS provides an automatic mechanism to create the
data layout and manage the resulting data distributions for the user.

While our PyACTS implementations automatically generates many of the
parameters for the user, and provides support functionality, the user can still
modify this parametric behavior by calling directly a routine at a lower lever
of the PyACTS structure. Thus, PyACTS has resulted in a modular tool that
support users with different levels of expertise with ACTS tools.

Figure 2 illustrates the internal structure of the PyACTS software. As il-
lustrated in this graph we use components of pyMPI and Numerical Python,
NumPy [22], to provide array management and parallelism. Additionally we have
created a set of utilities to facilitate I/O of different formats (e.g., NETCDF,
ascii), and general purpose processing routines.

The utilities module is shared by all the components of PyACTS and they
are not particular to a tool in ACTS. The individual tool modules (e.g., the
PyScaLAPACK module, PySuperLU module, etc.) contain the Python bindings
to the ACTS tools.

The Python wrappers provide not only a level of transparency to some tool
arguments but also a set of well designed validation procedures and generation
of extra arguments to call the Fortran or C language libraries. Validation pro-
cedures verify that the correct variables are passed as parameters to a given
routine. For instance when calling a PyScaLAPACK routines that takes a ma-
trix as argument, the verification will consist of a checking of the ScaLAPACK
type matrix and that the matrix has indeed values before it calls to the ac-
tual ScaLAPACK matrix. Internally, it also checks whether the corresponding
ScaLAPACK contexts for the distributed arrays have been created.
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Fig. 1. The generic BLAS 3 Fortran and C call is shown in panel (a), and panel (b)
shows the simplified PyACTS, specifically PyPBLAS, version of the same call

In PyACTS, the interoperability between ACTS tools is managed via a col-
lection of routines for conversions of data representations between the different
ACTS tools. For instance, this allows a user to convert a matrix from SuperLU
into a PETSc matrix in an easier manner.

Currently, we have developed an interface to ScaLAPACK and SuperLU,
PyScaLAPACK [15] and PySuperLU, respectively. In addition, we have designed
a modular implementation of PyACTS that is shown in Figure 2. This design
allows for easily handling of different versions of the same package and also the
interoperability with other Python interfaces from other ACTS tool develop-
ers. For instance, PETSc and SUNDIALS provide their own Python extensions.
Trilinos provides PyTrilinos [23], with Python extensions to provide access to
most of the Trilinos functionality. TAU [24], a performance profiling and tuning
tool in the ACTS Collection, can also profile programs written in Python. Thus,
the PyACTS modular structure still allows for integration of existing PyACTS
functionality with the ones being developed by other ACTS tool developers. As
shown also in Figure 2, a user wanting to use PyACTS needs to have installed:
MPI, BLAS, BLACS, ScaLAPACK, Python 2.1 or later, and NumPy

4 Some Examples of Applications Using PyACTS
Modules

In this section we briefly present results from two parallel implementations of
the Conjugate Gradient (CG) algorithm. The first implementation written in
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BLAS LAPACK

Fig. 2. Modular Structure of the PyACTS Project

pure Fortran and the second one in Python using PyACTS modules. There are
many implementations of the CG for high performance computing, including
robust and scalable implementations that are offered in the ACTS Collection.
Furthermore, there is extensive literature on the subject that discusses in detail
its derivation, applications and performance issues of the CG Algorithm. Thus,
our goal here is not to provide a better version of the CG or extend the litera-
ture on the subject, but rather to illustrate with an example and performance
results the low overhead of PyACTS. We have chosen this example because of
the multiple calls to PBLAS routines and parallel manipulation of vectors and
matrices.

In the PyACTS code, we have used the PyPBLAS module, and in the For-
tran code we call the counterpart PBLAS routines directly. The experiments
were perform in a Linux cluster with 6 2.0GHz Intel processors and 512Mbytes
memory per processor. The BLAS level routines were previously optimized with
ATLAS [25].

The different curves correspond to different processor grids for the two code
implementations. First, we observe a marginal difference in the timings between
the PyACTS and Fortran versions. Because Python automatically provides a
more efficient memory management mechanism than Fortran (i.e., a Fortran code
without any special memory management nor memory optimization schemes) in
some cases we were able to run the parallel PyACTS implementation with matrix
sizes and processes grids that were not possible with Fortran due to memory lim-
itations. For instance see 1×1 configuration for matrix sizes over 11,000 in Figure
3(a). Figure 3(b) shows the relationship between the execution time of the For-
tran code and Python based one (T ime FortranCode ÷ T ime PyACTSCode)
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Fig. 3. Comparing a Fortran vs a Python implementation of the Conjugate Gradient
algorithm. We use PyACTS modules for the Python implementation.

A number of other examples have been performed with both PyScaLAPACK
and PyPBLAS routines [26], and the results have consistently displayed a marginal
difference between the PyACTS and Fortran code implementations in different
computer platforms.

Additionally, PyScaLAPACK has already been used inside scientific appli-
cations [26]. In particular, it has been used to provided parallel functionality
to a sequential Python-based package called PyClimate. PyClimate [27] pro-
vides support to common tasks during the analysis of climate variability data. It
provides functions that range from simple IO operations and operations with
COARDS-compliant netCDF files to Empirical Orthogonal Function (EOF)
analysis, Canonical Correlation Analysis (CCA) and Singular Value Decomposi-
tion (SVD) analysis of coupled data sets, some linear digital filters, kernel based
probability-density function estimation and access to DCDFLIB.C library from
Python. PyClimate uses functionality available in LAPACK.

5 Conclusions and Future Work

Although, early experiments with PyACTS have shown a low overhead induced
by the Python-based interface, PyACTS is not yet intended for large production
runs in high-end system, rather it is a didactical tool for generating a first proto-
type of the application code. It helps the user to become familiar with a particular
interface and also access in an interoperable manner other ACTS tools interface
without having to learn it in great detail. We envision that the popularity of high-
level programing languages, and their portability to many computer system will
in the future enable technology that will make this high-level programming lan-
guages to scale. Thus, PyACTS may also scale to thousands of processors.
We are currently working on a PyACTS scribe that will allow to write out the
Fortran and C language equivalent functions of the High-Level PyACTS routines.
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Therefore, a user that prototypes an application using PyACTS will be able to get
the exact Fortran or C calling interface sequence in order to produce a code that
can be compiled and used for production runs in a large number of system.
In the future, we will be working closely with other ACTS tool developers and
integrating more functionality to PyACTS.
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Abstract. Large-scale computation on graphs and other discrete struc-
tures is becoming increasingly important in many applications, includ-
ing computational biology, web search, and knowledge discovery. High-
performance combinatorial computing is an infant field, in sharp contrast
with numerical scientific computing.

We argue that many of the tools of high-performance numerical com-
puting – in particular, parallel algorithms and data structures for com-
putation with sparse matrices – can form the nucleus of a robust infras-
tructure for parallel computing on graphs. We demonstrate this with an
implementation of a graph analysis benchmark using the sparse matrix
infrastructure in Star-P, our parallel dialect of the Matlab program-
ming language.

1 Introduction

High performance applications increasingly combine numerical and combinato-
rial algorithms. Past research on high performance computation has focused
mainly on numerical algorithms, and we have a rich variety of tools for high per-
formance numerical computing. On the other hand, few tools exist for large-scale
combinatorial computing.

Our goal is to build a general set of tools to allow scientists and engineers
develop applications using modern numerical and combinatorial tools with as
little effort as possible. Sparse matrix computations allow structured representa-
tion of irregular data structures, decompositions, and irregular access patterns
in parallel applications.

Sparse matrices are a convenient way to represent graphs. Since sparse ma-
trices are first class citizens in Matlab and many of its parallel dialects, it is
natural to use the duality between sparse matrices and graphs to develop a rich
infrastructure for numerical and combinatorial computing.
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Table 1. Correspondence between some sparse matrix and graph operations

Sparse matrix operation Graph operation
G = sparse (U, V, W) Construct a graph from an edge list
[U, V, W] = find (G) Obtain the edge list from a graph
vtxdeg = sum (spones(G)) Vertex degrees for an undirected graph
indeg = sum (spones(G)) Indegrees for a directed graph
outdeg = sum (spones(G), 2) Outdegrees for a directed graph
N = G(i, :) Find all neighbors of vertex i
Gsub = G(subset, subset) Extract a subgraph of G
G(i, j) = W Add or modify a graph edge
G(i, j) = 0 Delete a graph edges
G(I, I) = [] Remove vertices from a graph
G = G(perm, perm) Permute vertices of a graph
reach = G * start Breadth first search step

2 Sparse Matrices and Graphs

Every sparse matrix problem is a graph problem and every graph problem is
a sparse matrix problem. We discuss some of the basic design principles to be
aware of when designing a comprehensive infrastructure for sparse matrix data
structures and algorithms in our earlier work [5,10]. The same principles apply
to efficient operations on large sparse graphs.

1. Storage for a sparse matrix should be θ(max(n, nnz))
2. An operation on sparse matrices should take time approximately propor-

tional to the size of the data accessed and the number of nonzero arithmetic
operations on it.

A graph consists of a set of vertices V , connected by edges E. A graph can
be specified by tuples (u, v, w) – this means that there exists a directed edge
of weight w from vertex u to vertex v. This is the same as a nonzero w at
location (u, v) in a sparse matrix. According to Principle 1, the storage required
is θ(|V |+|E|). An undirected graph is represented by a corresponding symmetric
sparse matrix.

A correspondence between sparse matrix operations and graph operations is
listed in Table 1. The basic design principles silently come into play in all cases.
Consider breadth first search (BFS). A BFS can be performed by multiplying
a sparse matrix G with a sparse vector x. The simplest case is doing a BFS
starting from vertex i. In this case, we set x(i) = 1, all other elements being
zeros. y = G ∗ x simply picks out column i of G which contains the neighbors of
vertex i. If we repeat this step again, the multiplication will result in a vector
which is a linear combination of all columns of G corresponding to the nonzero
elements in vector x, or all vertices that are up to 2 hops away from vertex i. We
can also do several independent BFS searches simultaneously by using sparse
matrix sparse matrix multiplication [9]. Instead of starting with a vector, we
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Fig. 1. SSCA #2 graph (a) Conceptual (b) Plotted with Fiedler co-ordinates

start with a matrix, with one nonzero in each column at some row j, where j is
the starting vertex. So, we have Y = G ∗ X , where each column of J contains
the results of performing an independent BFS. Sparse matrix multiplication can
be thought of as simply combining columns of G, and Principle 2 assures us
that each of these indexing operations take time proportional to the number of
nonzeros in that column. As a result, the time complexity of performing BFS
using operations on sparse matrices is the same as that obtained by performing
operations on other efficient graph data structures.

3 An Example: SSCA #2 Graph Analysis Benchmark

The SSCAs (Scalable Synthetic Compact Applications) are a set of benchmarks
designed to complement existing benchmarks such as the HPL [4] and the NAS
parallel benchmarks [2]. Specifically, SSCA #2 [1] is a compact application that
has multiple kernels accessing a single data structure (a directed multigraph with
weighted edges). The data generator generates an edge list in random order for a
multigraph of sparsely connected cliques as shown in Figure 1. The four kernels
are as follows:

1. Kernel 1: Create a data structure for further kernels.
2. Kernel 2: Search graph for a maximum weight edge.
3. Kernel 3: Perform breadth first searches from a set of start vertices.
4. Kernel 4: Recover the underlying clique structure from the undirected graph.

The benchmark spec is still not finalized. We describe our implementation of
version 1.1 (integer only) of the spec in this paper.

3.1 Scalable Data Generator

The data generator is the most complex part of our implementation. It generates
edge tuples for subsequent kernels. No graph operations are performed at this
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Fig. 2. Matlab spy plot of the input graph

stage. The input to the data generator is a scale parameter, which indicates the
size of the graph being generated. The resulting graph has 2scale vertices, with
a maximum clique size of �2scale/3�, a maximum of 3 edges with the same end-
points, and a probability of 0.2 that an edge is directional. The vertex numbers
are randomized, and a randomized ordering of the edge tuples is presented to
the subsequent kernels. Our implementation of the data generator closely follows
the pseudocode published in the spec.

3.2 Kernel 1

Kernel 1 creates a read-only data structure that is used by subsequent kernels.
We create a sparse matrix corresponding to each layer of the multigraph. The
multigraph has 3 layers, since there is a maximum of 3 parallel edges between any
two vertices in the graph. Matlab provides several ways of constructing sparse
matrices, sparse() being one of them. It takes as its input a list of 3-tuples -
(i, j, wij). Its output is a sparse matrix with a nonzero wij in every location (i, j)
specified in the input. Figure 2 shows a spy plot of one layer of the input graph.

3.3 Kernel 2

In kernel 2, we search the graph for edges with maximum weight. find() is the
inverse of sparse(). It returns all nonzeros from a sparse matrix as a list of
3-tuples. We then use max() to find the maximum weight edge.

3.4 Kernel 3

In kernel 3, we perform breadth first searches from a given set of starting points.
We use sparse matrix-matrix multiplication to perform all breadth first searches
simultaneously from the given starting points. Let G be the adjacency matrix
representing the graph and S be a matrix corresponding to the starting points. S
has one non-zero in each column for every starting point. Breadth first search is
performed by repeatedly multiplying G with S: Y = G ∗ X . We perform several
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breadth first searches simultaneously by using sparse matrix-matrix multiplica-
tion. Star-P stores sparse matrices by rows, and parallelism is achieved by each
processor computing some rows in the product [10,9].

3.5 Kernel 4

Kernel 4 is the most interesting part of the benchmark. It can be considered
to be a partitioning problem or a clustering problem. We have several imple-
mentations of kernel 4 based on spectral partitioning (Figure 1), “seed growing”
(Figure 3), and “peer pressure” algorithms. The peer pressure and seed growing
implementations scale better than the spectral methods, as expected. We now
demonstrate how we use the infrastructure described above to implement kernel
4 in a few lines of Matlab. Figure 3 shows a spy plot of the undirected graph
after clustering. The clusters show up as dense blocks along the diagonal.

Our seed growing algorithm (Figure 4) starts with picking a small set of seeds
(about 2% of the total number of vertices) randomly. The seeds are then grown
so that each seed claims all vertices reachable by at least k paths of length 1 or 2.
This may cause some ambiguity, since some vertices might be claimed by multiple
seeds. We tried picking an independent set of vertices from the graph by perform-
ing one round of Luby’s algorithm [7] to keep the number of such ambiguities as
low as possible. However, the quality of clustering remained unchanged when we
use random sampling. We used a simple approach for disambiguation – the lowest
numbered cluster claiming a vertex got it. We also experimented with attaching
singleton vertices to nearby clusters to improve the quality of clustering.

Our peer pressure algorithm (Figure 5) starts with a subset of vertices desig-
nated as leaders. There has to be at least one leader neighboring every vertex
in the graph. This is followed with a round of voting where every vertex in the
graph elects a leader, selecting a cluster to join. This does not yet yield good
clustering. Each vertex now looks at its neighbors and switches its vote to the
most popular leader in its neighborhood. This last step is crucial, and in this
case, it recovers more than 95% of the original clique structure of the graph.

We experimented with different approaches to select leaders. At first, it seemed
that a maximal independent set of vertices from the graph was a natural way to
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% J is a sparse matrix with one seed per column.
J = sparse (seeds, 1:nseeds, 1, n, nseeds);

J = G * J; % Vertices reachable with 1 hop.
J = J + G*J; % Vertices reachable with 1 or 2 hops.
J = J > k; % Vertices reachable with at least k paths of 1 or 2 hops.

Fig. 4. Breadth first parallel clustering by seed growing

pick leaders. In practice, it turned out that simple heuristics (such as the highest
numbered neighbor) gave equally good clustering. We also experimented with
different numbers of voting rounds. The marginal improvement in the quality of
clustering was not worth the additional computation required.

We used Star-P [6] for our implementation. Star-P is a parallel implemen-
tation of the Matlab language with global array semantics. We expect it to
be straightforward to port to any other global-array parallel dialect of Mat-

lab, such as pMatlab [11] or Mathworks Parallel Matlab [8]. We present a
basic performance analysis of our implementation in Section 5. We will include
a detailed performance analysis of our implementation in a forthcoming journal
version of our paper.

4 Visualization of Large Graphs

Graphics and visualization are a key part of an interactive system such as Mat-

lab. The question of how to effectively visualize large datasets in general, es-
pecially large graphs, is still unsolved. We successfully applied methods from
numerical computing to come up with meaningful visualizations of the SSCA
#2 graph.

One way to compute geometric co-ordinates for the vertices of a connected graph
is to use Fiedler co-ordinates for the graph. Figure 1 shows the Fiedler embedding

% IS is the independent set. Find all neighbors in the IS.
neighbors = G * sparse(IS, IS, 1, n, n);

% Each vertex chooses a random neighbor in the independent set.
R = sprand (neighbors);
[ignore vote] = max (R, [], 2);

% Collect neighbor votes and join the most popular cluster.
[I, J] = find (G);
S = sparse (I, vote(J), 1, n, n);
[ignore cluster] = max (S, [], 2);

Fig. 5. Parallel clustering by peer pressure
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Matrix nr = 1024, nc = 1024, nnz = 7144
Bucket nnz: max = 120, min = 0, avg = 1.74414, total = 7144, max/avg = 69

10 20 30 40 50 60

10

20

30

40

50

60

0

30

60

90

120

Fig. 6. SSCA #2 graph: (a) 3D visualization (b) density plot (spyy)

of the SSCA #2 graph. In the 2D case, we use the eigenvectors (Fiedler vectors)
corresponding to the first two non-zero eigenvalues as co-ordinates for the graph
vertices in a plane.

For 3D visualization of the SSCA #2 graph, we start with 3D Fiedler co-
ordinates. We model the graph as particles on the surface of a sphere. There is
a repulsive force between all particles, inversely proportional to the distance be-
tween them. If r is the distance between two particles, the forcing function we use
is 1/r. Since these particles repel each other on the surface of a sphere, we expect
them to spread around and occupy the entire surface of the sphere. Since there are
cliques in the original graph, we expect clusters of particles to form on the surface
of the sphere. At each timestep, we compute a force vector between all pairs of par-
ticles. Each particle is then displaced some distance based on its force vector. All
displaced particles are projected back onto the sphere at the end of each timestep.

This algorithm was used to generate Figure 6. In this case, we simulated 256
particles and the system was evolved for 20 timesteps. It is important to first
calculate the Fiedler co-ordinates. Our effort to use random co-ordinates resulted
in a meaningless picture. We used PyMOL [3] to render the graph.

We also developed a version of spy() suitable for visualization of large graphs -
spyy(). Large sparse graphs are often stored remotely (for example, on a Star-P

server). It is impracatical to transfer the entire graph to the frontend for display.
We create a density plot of the sparse matrix, and only transfer the image to the
frontend. We implemented spyy() completely in the Matlab language. It uses
parallel sparse matrix multiplication to build the density plot on the backend. A
spyy plot can also be thought of as a two dimensional histogram. Figure 6 shows
a spyy plot of the SSCA #2 graph after clustering.

5 Experimental Results

We ran our implementation of SSCA #2 (ver 1.1, integer only) in Star-P. The
Matlab client was run on a generic PC. The Star-P server was run on an SGI
Altix with 128 Itanium II processors with 128G RAM (total, non-uniform mem-
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Fig. 7. SSCA #2 v1.1 execution times (Star-P, Scale=21)

ory access). We used a graph generated with scale 21. This graph has 2, 097, 152
vertices. The multigraph has 320, 935, 185 directed edges, whereas the undirected
graph corresponding to the multigraph has 89, 145, 367 edges. There are 32, 342
cliques in the graph, the largest of them having 128 vertices. There are 88, 933, 116
undirected edges within cliques, and 212, 251 undirected edges between cliques in
the input graph for kernel 4. The results are presented in Fig. 7.

Although it is not required by the spec, our data generator also scales very
well. A lot of time is spent in kernel 1, where data structures for the subsequent
kernels are created. The majority of the time is spent in searching the input
triples for duplicates, since the input graph is a multigraph. Kernel 1 creates
several sparse matrices using sparse(), each corresponding to a layer in the
multigraph. Time spent in kernel 1 also scales very well with the number of
processors. Time spent in Kernel 2 also scales as expected.

Kernel 3 does not show speedups at all. Although, all the breadth first searches
are performed in parallel, the process of subgraph extraction for each starting
point creates a lot of traffic between the Star-P client and the Star-P server -
which were physically in different states. This client server communication time
ends up dominating over the computation time. We will minimize this overhead
by vectorizing all of kernel 3 in a future release.

Kernel 4, the non-trivial part of the benchmark, actually scales very well. We
present results for our best performing implementation of kernel 4, which uses
the seed growing algorithm.

The evaluation criteria for the SSCAs also include software engineering met-
rics such as code size, readability, maintainability etc. Our implementation is
extremely concise. We provide the source lines of code (SLOC) for our imple-
mentation in Table 2. We also provide absolute line counts which include blank
lines and comments, as we believe these to be crucial for code readability and
maintainability. Our implementation runs without modification in sequential
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Table 2. Line counts for Star-P implementation of SSCA#2. The “Source LOC”
column counts only executable lines of code, whereas the “Line counts” column counts
the total number of lines including comments and whitespace.

Operation Source LOC Total line counts
Data generator 176 348

Kernel 1 25 63
Kernel 2 11 34
Kernel 3 23 48

Kernel 4 (spectral) 22 70
Kernel 4 (seed growing) 55 108
Kernel 4 (peer pressure) 6 29

Matlab, making it easy to develop and debug on the desktop before deploying
on a parallel platform.

6 Concluding Remarks

We have run the full SSCA #2 benchmark (spec v0.9, integer only) on graphs
with 227 = 134 million vertices on the SGI Altix. We have also manipulated
extremely large graphs (1 billion vertices and 8 billion edges) on an SGI Altix
with 256 processors using Star-P.

We demonstrate a robust, scalable way to manipulate large graphs by repre-
senting them with sparse matrices. Although it may be possible to achieve higher
performance with different data structures and distributions, it is extremely hard
to design a general purpose system which can support such a variety of repre-
sentations, and the resulting combinatorial explosion of interactions between
them. This is why Star-P has only one representation for sparse matrices [10].
This allows for a robust, scalable, well-tuned implementation of sparse matrix
algorithms, and hence, operations on graphs.

Note that the codes in Figure 4 and Figure 5 are not pseudocodes, but ac-
tual code excerpts from our implementation. Although the code fragments look
very simple and structured, the computation is anything but. All operations are
on sparse matrices, resulting in highly irregular communication patterns on ir-
regular data structures. We conclude that sparse matrix operations provide a
convenient language to efficiently manipulate large graphs.
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Abstract. The escript package is an extension of python. It provides an
easy-to-use programming environment for numerical simulations based
on the solution of partial differential equations (PDEs), while at the
same time providing for fast solution of large models by performing time-
intensive calculations in C++ and C. The escript functionality allows the
user to implement high-level numerical schemes to reduce coupled, non-
linear, time-dependent PDEs to linear, steady PDEs that have to be
solved in each time and/or iteration step. The PDEs are then solved
by our finley PDE solver library. The layer of abstraction provided by
escript allows an implementation which is independent from particular
discretization schemes, PDE solver libraries, their data structures, and
the computing platform itself. In the paper we will briefly outline the
basic concepts of escript, illustrate its usage for modelling seismic wave
propagation and discuss some parallelization issues with OpenMP and
MPI.

1 Introduction

The basic idea of the python [4] module escript [3,1,2] is to provide an abstraction
of the mathematical formulation of a model from the discretization techniques
that are used to run these models. Firstly, this approach creates an environment
that is very natural for scientists to work with, as it resembles the functions and
equations used in formulating the model. The scientist does not have to deal
explicitly with the numerical objects, such as sparse matrices and their data
structures. We see this as an important contribution to handle the complexity
of models as can be found in some area of science, such as rheology.

Moreover, escript facilitates a high degree of reusability and portability. Mod-
els can be run with various discretization techniques. For instance, for a simple
geometry a finite difference method may be most efficient while for a more com-
plex geometry finite elements have to be used. As escript is not bound to a par-
ticular numerical library it is possible to run simulations on different platforms
with different numerical libraries where there is an advantage in performance.

Several projects have developed environments for defining and solving PDEs.
Some of these environments are using their own programming languages, for
instance FASTFLO [12], ELLPACK [11]. One drawback of this approach is that
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users have to learn a new programming language. Moreover, as not designed as
proper programming languages they are often missing important programming
language features and functionalities as requested by new application areas that
have not been considered in the original design. Therefore, the approach of em-
bedding the PDE solving environment into an existing language such as C++,
MATLAB or python is more successful in terms of acceptance in the user com-
munity as well as richness of functionality that can be provided with minimum
investment costs. For instance, Sundance [13], which follows an approach very
similar to escript but is less open, is an extension to C++. As the efficient
usage of a C++–based environment requires good software engineering skills,
most users prefer interactive and script–based programming environments such
as MATLAB and python even if this comes at the costs of less efficient codes. As
an object oriented approach is very appropriate for an abstraction layer to define
PDEs and spatial function python has been chosen as the user environment for
escript.

In the next section, we will present a mathematical model for seismic wave
propagation in the earth crust. In the third section we will briefly outline the
basic concept of escript and show how escript used to implement the seismic
wave propagation model. Section four will discuss the parallelization of escript
for OpenMP [9] and MPI [7].

2 Example: Seismic Wave Propagation

To illustrate the usage of escript we present the implementation of a simple wave
propagation model after a seismic event [6]. The domain of interest is a three-
dimensional block in the outer crust of the earth. Typical dimensions are 30km
in depth and 100-500km in length. The block is meant to model a coastal region
and contains various materials such as rock, sediment and water.

The model for the propagation of waves after a seismic event is based on
the solution of the wave equation given below: For any given time t > 0, the
displacement field u = (ui) on the domain Ω is given by

ρui,tt = σij,j + Fi (1)

where ρ is the density and Fi is an internal load. In this equation, the notation
Z,j denotes the derivative of function Z with respect to the j-th spatial direction,
and we are using standard tensor summation notation. The function σij is the
stress field, which in case of an isotropic, linear elastic material is given by

σij = λ uk,kδij + μ (ui,j + uj,i) , (2)

The coefficients λ and μ are the Lame coefficients and δij denotes the Kronecker
symbol. The density as well as the Lame coefficients depend on their location in
the domain. Typically, they are represented through piecewise constant functions
representing bed rock, sand and water in the domain.
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At time t = 0, the displacement u and the velocity u,t are assumed to be zero.
On the boundary Γ of Ω the normal stress is assumed to be zero for all time
t > 0:

σijnj = 0 (3)

where ni is the outer normal field of Ω. This boundary condition will reflect
waves on the boundary surface. On some parts of the domain surface it could be
appropriate to use non-reflecting boundary conditions. As it is always possible
to choose a sufficiently large domain to eliminate the effects of reflected waves
and for the sake of a simple presentation, non-reflecting boundary conditions are
not discussed here.

The load induced by a seismic event at time tq is modeled in the form

Fi(x, t) = Qie
−

(
‖x−xq‖2

s2 + ‖t−tq‖2

l2

)
. (4)

where xq is the location of the event, s its spatial size and l its temporal length.
The constant Qi is representing the acting force at the time of the event.

We employ the explicit Verlet scheme [6] with constant time step size dt to
solve the wave propagation equation (1). If u(n) gives the displacement at time
t(n) = n · dt one sets

u(n) = 2 · u(n−1) − u(n−2) + dt2 · a(n) . (5)

where a(n) is the acceleration at time t(n) given by the solution of

ρa(n) = σ
(n−1)
ij,j + F

(n)
i (6)

together with the natural boundary condition (3) for σ
(n−1)
ij,j .

To ensure that the Verlet scheme (5) is stable the following Courant condition
has to be fulfilled everywhere in the domain:

dt ≤ θ
h

vp
with vp =

√
λ + 2μ

ρ
(7)

where h denotes the local discretization length, for instance the diameter of the
elements in the finite element mesh, and θ is a safety factor, typically θ = 1

5 .

3 The escript Environment

We will use the example presented in section 2 to outline the basic ideas of
escript [3,1] and illustrate how escript is used to implement a practical simula-
tion. We will assume that the simulation is implemented using the finite element
method (FEM) [5] but these scripts can be used with other discretization tech-
niques after only minor changes.
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3.1 Spatial Functions

Functions of spatial coordinates play a key role when implementing mathematical
models. The following python [4] script defines a function over the domain dom
as it would be used to define the displacement field u = 0 at the initial time
step:

from finley import Brick
from escript import *
dom=Brick(...) # Arguments define the 3-D domain
u=Vector(0.,Solution(dom))

This defines the domain that will be used by our FEM solver C library finley [1] to
run the simulation. The Domain class object returned by the function Brick holds
pointers to the key finley data structures defining the finite element mesh. The
function represented by the escript Data object u is a vector-valued function. The
initial value is 0.0. The argument Solution(dom) declares the FunctionSpace of
u (function spaces will be described below). In this case the function represented
by u is declared as a solution of a PDE on the domain defined by the object
dom. The definition of u does not require to specify how the function is actually
represented. The representation being used is depending on the Domain. In the
context of the FEM, PDE solutions are typically represented by their values on
the nodes of the mesh. It is pointed out that here as well as in the following we
never explicitly refer to the actual representation of a function. This makes it
possible to run a mathematical model with various discretization techniques as
well as code portability to across compute platforms.

The following function returns the stress as calculated by equation (2). It takes
the current displacement u and the Lame coefficients lmbd and mu as argument:

def getStress(u,lmbd,mu):
dom=u.getDomain()
eps=symmetric(grad(u))
k=kronecker(Function(dom))
stress=lmbd*trace(eps)*k+2*mu*eps
return stress

The function grad calculates the gradient of its argument u. In the FEM context,
the input has to be represented by values on the mesh nodes while the gradient
is calculated on the element centers or integration points within each element.
So in comparison to its argument the gradient is defined on the same domain
but is represented differently. This is reflected by the fact that FunctionSpace
of the returned Data object is now Function(dom) rather than Solution(dom).

On a given domain dom we will need functions of different types, which we
distinguish by what we call a FunctionSpace. For example, some functions are
defined on the nodes, and thus are continuous across the elements. These belong
to the function space called Solution(dom). Other functions are defined on
integration points off the nodes. These belong to the function spaced called



274 L. Gross et al.

Function(dom). If functions on different function spaces are added together,
then escript chooses the best way to use interpolation to effect the addition, and
the result is returned with an appropriate function space. Binary operations such
as addition and multiplication and unary operations such as taking the matrix
trace do not otherwise depend on the type of function space.

Also, when we run escript as a parallel application your Data objects may
be distributed across multiple processors. All binary and unary operations work
seamlessly on distributed data without requiring modification of the python
script.

escript itself is completely independent of the concept of FunctionSpace. Any
time knowledge is required concerning the placement of data on the nodes or
distribution of data across processors, the request is passed to a deeper layer
associated with the domain. This allows us to link with third-party software
libraries for dealing with spatial data.

The getStress function does not make any assumptions about the type for
the Lame coefficients lmbd and mu except that they have to be scalars. In fact,
because of the way python is handling variables and escript resolves argument
types in operations, they can be simple floating point numbers, numarray ob-
jects [8] or Data objects. In the latter case, the FunctionSpace of an argument
does not need to be equal to Function(dom) which is the FunctionSpace of the
other variables in the stress calculation. Any mismatch is resolved automatically
by interpolation in escript.

In many applications, material coefficients such as the Lame coefficients λ and
μ are represented by piecewise constant functions. escript provides the mecha-
nism of assigning values to data points using tags as an easy and efficient way to
define piecewise constant functions. Generators for FEM meshes typically allow
us to assign a single tag, typically an integer, to all elements in a subregion of
the domain. This tag can then be used as an index to assign the same material
parameters to all elements in that subregion.

The following script shows how this is done in escript:

lmbd=Scalar(lmbd_rockbed,Function(domain))
lmbd.setTaggedValue(sand,lmbd_sand)
lmbd.setTaggedValue(water,lmbd_water)

Here we assume that the mesh generator has assigned the tags sand and water to
the corresponding regions filled with sand and water. The Data object lmbd rep-
resenting λ is initialized as a scalar function with constant value lmbd_rockbed
which is the value of λ for the rock bed. Then new values for λ for the tags sand
and water are set. The initial value lmbd_rockbed is the default value used by
all other tags different from sand and water.

The tagged data set used above is just one of escript’s three different storage
schemes: in the general case for each data point a different value (or array of
values) is stored. Alternatively, if all data point uses the same value, only a single
value is stored. The third scheme is the tagged data set, which uses a dictionary
to define the values to be used for a given tag. The first storage scheme is the most
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computationally expensive to process and requires the most memory. If Data
object with different storage schemes are combined in arithmetic expressions,
escript intelligently resolves the different storage schemes and chooses the most
appropriate storage scheme for the result.

3.2 Partial Differential Equations

Now that we have the domain for our model we are ready to define our PDEs.
In escript the LinearPDE class objects define general linear, steady, second order
PDEs for an unknown function u on the PDE domain. In tensor notation, the
PDEs have to take the form

− (Aijkluk,l + Bijkuk),j + Cikluk,l + Dikuk = −Xij,j + Yi , (8)

with natural boundary conditions

nj(Aijkluk,l + Bijkuk) + dikuk = njXij,j + yi (9)

A general form of constraints can be used but it is not presented here. The
functions A, B, C, D, X , Y , d and y are the coefficients of the PDE. Note
that A, B and X in equations (8) and (9) are identical. When dealing with non-
linear and time-dependent problems, you can use a suitable high-level scheme, for
instance Newton-Raphson or Verlet, to reduce the problem to solutions of linear
PDEs. The coefficients are defined by Data objects with function space Function
for A, B, C, D, X , Y and FunctionOnBoundary for d and y. If coefficients are
not defined with expected function space they will be interpolated.

For the seismic wave propagation problem introduced in section 2 we have to
solve the (degenerated) PDE (6) in each time step to get a(n). The values for
the PDE coefficients can be easily identified by comparison with equations (8)
and (9):

Dij = ρδij , Xij = −σ
(n−1)
ij , Yi = F

(n)
i (10)

The following script shows how to use the LinearPDE class:

from escript import LinearPDE
pde=LinearPDE(dom)
k=kronecker(Function(dom))
pde.setValue(D=k*rho, X=-stress, Y=F)
a=pde.getSolution()

We assume that dom is a Domain class object and rho, stress and F are Data
class objects with function space Function, or compatible objects. When the
solution of the PDE is requested, escript passes the PDE coefficient to the solver
library defined by Domain of the LinearPDE. The return value is a Data object
with the function space Solution.
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4 Implementation

The following script shows the implementation of the seismic wave propagation
model using escript:

from escript import *
def wave(dom,rho,mu,lmbd):

x=Function(dom).getX()
pde=LinearPDE(dom)
pde.setSolverMethod(LinearPDE.LUMPING)
k=kronecker(Function(dom))
pde.setValue(D=k*rho)
v_p=sqrt((2*mu+lmbd)/rho)
dt=(1./5.)*inf(dom.getSize()/v_p)
t=0
u=Vector(0.,Solution(dom))
u_last=Vector(0.,Solution(dom))
while t<t_end:
eps=symmetric(grad(u))
stress=lmbd*trace(eps)*k+2*mu*eps
F=Q*exp(-((length(x-xq)/s)**2+((t-tq)/l)**2))
pde.setValue(X=-stress,Y=F)
a=pde.getSolution()
u_new=2*u-u_last+dt**2*a
u_last,u=u,u_new
t+=dt

The script puts together the components that have been discussed in the previous
section 3. The argument dom defines the Domain to be used for the simulation.
The arguments rho, mu, and lmbd may be just floating point numbers or Data
class objects defined using tagged vales to represent piecewise constant functions.

As is commonly used in explicit time integration schemes, lumping of the
stiffness matrix is applied to solve the (degenerated) PDE. An instance of the
LinearPDE class is created outside the time iteration loop. Within the loop
only coefficients that are changing over time are updated. As the left-hand side
coefficients are not altered over time, the LinearPDE class will reuse the lumped
stiffness matrix formed in the first time step and the assemble a new right-hand
side for each time step only.

5 Parallelization

The escript library has been parallelized for OpenMP [9]. A version parallelized
using MPI [7] is currently under construction. The OpenMP version is opti-
mized for distributed shared memory architectures. The program runs as a single
python thread, often calling C++ and C methods for speed in which a parallel
region will be encountered. At that time parallel threads are spawned. In MPI
python is running on all processors.
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Table 1. Wall clock time for 3D seismic wave propagation using escript and finley with
OpenMP on SGI Altix 3700. Np is the number of threads, Nelem is the total number
of elements, Tstep is the wall clock time per time step in seconds and Tpes is the wall
clock time per time step and per element per thread in milliseconds.

Np Nelem Tstep Tpes

16 492032 12.1 0.396
8 221184 10.2 0.369
4 118125 5.61 0.190
2 63916 5.52 0.172
1 37553 6.50 0.173

Simulations developed in escript can be run serial, with OpenMP or MPI
without modifications. In order to guarantee portability python variables are
assumed to have the same value on all processors. The data distribution of Data
class objects is not visible at the python level, but rather to lower-level numerical
library using it. In practice the user do not need to know anything about parallel
data distribution. On the implementation level of the escript library knowledge
of data distributions which are inherited from the numerical library using them is
required to perform synchronization and reduction operations. The exchange of
data between processors is required only for calculating gradients, interpolation
and solving PDEs and is therefore left to the numerical library.

Currently, escript is linked with the finite element library finley, which is de-
signed for handling unstructured meshes and is parallelized for ccNUMA archi-
tecture and OpenMP [1] using multi–coloring. The MPI version is based on the
non-overlapping distribution of the rows of the stiffness matrix and overlapping
distribution for elements is used. These distributions are inherited by escript Data
class objects with the FunctionSpace Solution and Function, respectively.

Table 1 shows the timings of 3D seismic wave propagation simulations using
escript and finley on an SGI Altix 3700 [10] using OpenMP. The problem sizes
has been chosen such that about 30000 elements per processors are used. The
mesh is a rectangular grid with hexahedron elements of order one. The column
Tstep shows the processing time per element and time step, i.e. Tstep = Tstep·Np

Nelem
.

In case of perfect scalability this value is constant. For our experiment the value
is constant for up to four threads and but jumps by a factor 2 when increasing
the number of threads to 8. This is caused by the job scheduler used on the test
platform. It allocates processors in blocks of four such that processor proximity
is guaranteed for up to four processors only. Using more then four processors
can lead to a drop of available communication bandwidth for logically adjoining
processors by more than a factor of three. The measurements suggest that Tstep
stays constant if more than four processors are used. A more detailed discussion
of the performance of escript and finley for OpenMP can be found in [1]. The
MPI version of finley has not been fully tested yet and timings will be published
at a later stage.
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6 Summary

With escript we have developed an environment that separates the layer of math-
ematical model description from the numerical techniques and data structures
used when running the simulation. This ensures an high degree of reusability
models and code portability. We have illustrated this for a seismic wave propa-
gation code which can be run with different parallelization paradigms without
changes to the code.

Another module of escript which has not been discussed in this paper is ad-
dressing the problem of representing mathematical models as python objects and
describing their interface through XML. This infrastructure, called modelframe,
allows coupling models on the python level through sharing escript objects and
to build entire simulations from independent models. The XML description of a
simulation opens the door for building user interfaces, including GUIs and grid
services, automatically. Appropriate software components are currently under
construction.
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Abstract. The COmputational MODule Integrator (COMODI) [1] is
an initiative aiming at a component-based framework, component devel-
oper tool and component repository for scientific computing. We identify
the main ingredients of a solution that would be sufficiently appealing
to scientists and engineers to consider alternatives to their deeply rooted
programming traditions. The overall structure of the complete solution is
sketched with special emphasis on the Component Developer Tool form-
ing the basis of COMODI. Prototypes for a framework and an automatic
interface description generator are presented.

1 Introduction

As signaled already in the late sixties, when the term “software crisis” got
coined [2], brute computing force growing at exponential rate is not the an-
swer to the problem of complexity. Recently, scientists find similar obstacles
standing in the way of large scale scientific software projects [3,4], and argue
for a change of paradigm. These ideas can be further extended in the context
of small and medium size projects that make up the bulk of the activity in
the community. In [5] and [6] it is pointed out that reuse oriented programming
(ROP) would dramatically improve the efficiency and quality of computational
research. In the last decade, there has been significant progress in overcoming the
thorny technical problems of component based software engineering (CBSE) in
high-performance computing [7]. A number of notable efforts have been started
under the umbrella of the Common Component Architecture (CCA) Forum
(http://www.cca-forum.org), yielding a specification for the behavior and in-
teraction of components and frameworks. Several complying solutions have been
implemented ([8,9,10]) based on Babel, the language interoperability tool, and
the associated Scientific Interface Definition Language (SIDL) [11].

While accounting for all technical questions is a necessary condition for reach-
ing the proposed goals of CBSE, this might not be sufficient for a real impact on
the community’s software development practices. The COmputational MOD-
ule Integrator (COMODI) is another initiative aiming at a component based
framework, component developer tools and component repository for scientific
computing. The emphasis is, however, shifted toward issues pertaining to the
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human-computer interaction. It is based on a set of requirements formulated in
the light of the conclusions of a preliminary survey made with a mixed group
of computational scientists on the occasions of conferences, workshops and via
an on-line form on the COMODI website [1]. Present paper briefly reviews the
key concepts behind COMODI and lays out the large scale architecture of the
complete suite of tools that is up to the challenges of an ROP paradigm. The
formulated requirements and design strategies focus on the needs of component
developers rather than those of users. In section 4 we report on the experience
gathered while working with a first prototype endowed with some of the func-
tionalities prescribed in the previous sections.

2 Requirements

For most scientists the computer is merely a tool. Therefore, whatever little
time is spent on making the computer do its job, is usually a loss from the
point of view of the objectives of the project. In more and more fields, “sur-
vival” without a decent level of programming and system management skills is
not possible. At a global scale, the time scientists spend waiting for computing
jobs to finish is a fraction of what computers spend idle waiting for the scien-
tists to finalize the development of code. In view of these facts it is only fair
to admit that “high-performance programming” should get equal attention to
high-performance computing. To this end, future computing technologies should
strive to make the usage of computers significantly easier. Another factor that, if
ignored, can prevent a valuable software project from getting the deserved atten-
tion is the level of support for existing technologies. The new solution should be
able to accommodate old-style data while newly produced data should be usable
within the old framework. And finally, the new technology can only penetrate
the scientific community if it is free of charge.

In order to make the above general requirements more specific we must first
make a distinction between component developers and end-users: the former
design and implement new components while the latter are primarily involved
in assembling these into executable applications.

Since the two activities require different skills and work methods, the require-
ments set for the employed tools in each case also differ. For user satisfaction
the solution has to be endowed with the features listed below:

– user friendly graphical interfaces;
– intuitive, high-level representation of data and processes such that the ele-

ments of low-level programming can also be clearly identified;
– possibility for low-level control;
– support for most popular hardware and software platforms;
– comprehensive component repository;
– high-performance;
– open source.

In order to fully support developers it is imperative that no compliance crite-
ria are set for the computational code, neither in terms of structure nor used
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data types. In other words, any valid code written in the supported program-
ming languages should automatically be ready for COMODI. Therefore several
restrictions apply to the process of adapting existing code to COMODI:

– no change in the source code, the interface or the implementation;
– no extra coding - connectivity is achieved by supplementing author provided

source-code with automatically generated glue-code;
– no need for the author to know other languages/standards than the ones

used for implementing the code;
– no platform dependence - the capabilities of the system the development is

carried out on is extended by on-line servers providing compilation as web
service;

– no language dependence - all present and future languages should be able to
communicate seamlessly;

– low performance overhead;
– support for both open source and commercial components.

3 Architecture

The complete solution should include the following elements:

– a visual programming environment for computational projects;
– component developer tools for adapting regular code to the framework;
– a distributed component repository;
– a compilation web service.

The above software elements will come with several standards, including one
for global naming of components and a language for documenting their services.
Figure 1 shows the COMODI architecture. The responsibilities of each part are
summarized in Table 1.

The developer layer contains a user friendly Graphical User Interface (GUI)
and a Component Developer Tool (CDT) with a Parser.

The CDT, after semi-automatically collecting information pertaining to the
content, the behavior, and the representation of the component, generates a com-
ponent descriptor file (CDF) in the XML based Component Descriptor Language
(CDL) and the source of the glue-code that will intermediate the communica-
tion of the component within the COMODI framework (see figure 2). At this
stage the CDF will contain all communication related information, such as ex-
ported functions and data types. It describes both syntactically and semantically
the component, supports the programming style of computational scientists as
far as data structures, and it is extensible. Its complexity is expected to grow
together with the user community and the number of application areas. By
semi-automatic we mean that the Parser, which stands at the basis of the tool,
analyzes lexically and syntactically the source file, extracts interface informa-
tion only, and generates a primary CDF. Using the GUI, the developer only has
to confirm the exported ports, provide human readable documentation for the
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Fig. 1. Architecture of COMODI. On the user side: IO: Input/Output System, XML:
Extended Markup Language Parser, V: Validator, B: Binding System, R: Running Sys-
tem, PM: Project Manager, UI: User Interface, GUI: Graphical User Interface, CLE:
Command Line Editor, LCLL: Local Component Locater and Loader, RCLL: Remote
Component Locater and Loader. On the developer side: LCS: Local Compilation Ser-
vice, RCB: Remote Compilation Broker, Pars.: Parser, GCG: Glue-Code Generator,
Reg.: Registrar.

Table 1. Responsibilities of the two major parts of COMODI

Role of the framework Role of the component developer tool

– component assembling
– project verification and validation
– project execution
– runtime user interaction

– assist the developer in documenting the
code

– generate glue-code
– assist the developer in compiling the com-

ponent
– register the component with the global

repository

component, set default values and visual representation related preferences. The
CDT then contacts on-line compilation servers and returns ready-made binaries
for the platforms of the developer’s choice. The compiled library together with
the descriptor file are packed into a standard format such as tar.gz, are uploaded
by the developer to a place where it can be accessed publicly while the CDT
registers the component in the Remote Component Repository. The deployed
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Fig. 2. Component development process

component is a package containing the component’s source code - if the developer
chooses to make the source open - the component descriptor file, the binaries
for both the computational- and the generated glue-code, and further resources.
Upon use within the COMODI framework, the component is downloaded and
stored in the Local Component Repository.

The sources provided by the component developer suffer no changes during
the component creation process. All glue-code comes as additional functions in a
separate file. Not touching the source of the developer has the benefit of the com-
piled component being usable both within and outside the COMODI framework
making COMODI components fully compatible with traditional programming
environments.

4 Prototype

4.1 Framework

Language interoperability is one of the most important challenges for CBSE in
high-performance computing. Fortunately, Babel can successfully handle many
of the technical difficulties. Therefore, together with the CCA standard it served
as a good starting point for COMODI. The present version of the COMODI
framework is a partial Java implementation of the CCA specification. Only those
parts that are essential for testing the ideas of interest have been covered.

We find that the CCA specification is overly comprehensive for the aver-
age user primarily interested in elementary tasks like instantiating components,
discovering their properties, linking their ports, and running the so formed dia-
grams. Thus, a simplified add-on Java package has been created, targeting the
user-framework interaction. Even though the reduced interface is mainly a sub-
set of CCA, it adds one concept to those encountered in the CCA specification,
namely diagrams. There is an 1:N type of association relation between diagrams
and components. Diagrams are independent of each other but managed by a
single framework instance. The user can create components, components, con-
nections and diagrams. Components and connections can be added and removed
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from diagrams. These are executed starting from a GoPort. In this version the
only pursued goal was to keep this interface minimal and free of concepts that
are not immediately obvious to the user.

Since enhanced interactivity is one of the main requirements of the ultimate
solution we were testing yet another layer on top of the reduced interface. The
motivation behind the interactive layer not directly interfacing to the frame-
work is that this layer is independent of both the CCA and the underlying
framework, both at the interface and the implementation level. Instead of creat-
ing a completely new interaction console like in CCAFE, we chose Python for a
number of reasons. To name a few: i. implementation and maintenance is con-
siderably easier while the interaction is much richer. History, code completion
and documentation are readily available; ii. the user has at hand a full-fledged
and easy-to-use programming language for pre- and post-processing data and
for performing auxiliary tasks such as interacting with the operating system,
working with strings, etc.; iii. no COMODI specific syntax has to be learned by
the user. A typical session would contain most of the following elements:

>>> from comodipython import *

>>> framework = Framework()

>>> server = framework.createcomponent("HelloWorldServer")

>>> client = framework.createcomponent("HelloWorldClient")

>>> print server.ports()

[’HelloPort’]

>>> print client.ports()

[’GoPort’, ’HelloPort’]

>>> clientport = client.port(’HelloPort’) # uses port

>>> serverport = server.port(’HelloPort’) # provides port

>>> connection = framework.createconnection(clientport, serverport)

>>> diagram = framework.creatediagram(’HelloWorld’)

>>> diagram.add(server)

>>> diagram.add(client)

>>> diagram.add(connection)

>>> diagram.run(client.port(’GoPort’))

4.2 Parser

The parser is implemented in such a way that it can recognize the majority of
imperative programming languages, once their EBNF definitions are available. In
addition to the complete interface information available in the source file, it also
extracts dependencies such as function calls made from inside other functions.
This feature helps in selectively including dependences from header files. The
level of flexibility with respect to the source’s implementation language at the
input is replicated at the output. The description of the source code’s interface is
generated based on a user provided table of prescribed structure. Creating SIDL,
Babel XML or any other format, requires almost straightforward customization
of the table. Naturally, not all information for the output of a given format is
available in all languages o,r there is no unique translation. These cases require
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human intervention. However, the appropriate output table can make the parser
generate data that can directly be fed to the tool in charge for collecting the
remaining information from the user. Alternatively, the raw XML output can
be transformed into other formats and a higher-level description by a separate
piece of software. A parser prototype can be found on the COMODI website.

Presently, the parser has been tested for C and Pascal while Java and For-
tran 77 are expected to follow shortly, as the only challenges they pose are
strictly implementational. Complex hybrid-languages like C++ or Fortran 95
will most probably pose more difficult challenges [12], however, as the parser is
only targeting interface information, the vast majority of problems that could
be encountered in case of a complete parser are avoided.

5 Future Work

As our primary concern is the component developer tool, most effort will go into
creating a prototype that strikes a balance between the requirements of minimial
human intervention during the component creation process and that of a large
enough scope so that it would be useful.

Presently, connecting two components requires a very tight match between
the corresponding uses and provides ports. Babel based frameworks cannot di-
rectly link a client component using an interface defined as A {f:F} to a server
component providing an essentially equivalent interface AA {ff:F}, where A and
AA are the interface names, f and ff are method names, and F is the type of the
two methods. Even though some of the emerging issues are not merely technical,
several solutions are available. With this obstacle moved out of the way, one still
needs more flexible subtyping rules that allow the connection of a uses port with
a method such as f(p1:T1, p2:T2) to provides ports like ff(p2:T2, p1:T1)
or ff(p1:T1, p2:T2, p3:T3 = v3), where p1, p2, p3 are formal parameters,
T1, T2, T3 denote data types and v3 stands for a default value. Higher-level
programming will require the framework and the component developer tools to
fill in automatically or semi-automatically small incompatibility gaps like those
above by generating appropriate glue-code and by hidden or user controlled
connector components. We also consider that Babel’s SIDL, if it is to serve as
a component IDL, should be extended to cover the declaration of interfaces for
uses ports.

Pushing the automation level of the interface definition via the parser will
raise thorny issues such as how to disentangle environment dependences from
component interdependences, and where is the borderline between the frame-
work and the rest of the system. The ideal solution would require a consistent
component based construction of the whole operating system and all third party
software.

On the user side, the prototype for a GUI should ideally be preceded by
a study on how the representation of component networks and their interac-
tion with the user is preferred by the different groups in scientific computing.
The interface of Ccaffeine provides a high-level view on the component diagram.
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Alternatively, the GUI features promoted in [6] reflect the actual low-level struc-
ture of component interfaces, allowing the user to have the control that is typical
for languages like C and Fortran. On the other hand, this low-level control re-
quires extra effort from the user that on the long run might not be acceptable.

6 Conclusions

The transition of computational research toward a reuse oriented programming
paradigm is conditioned not only by the existence of sophisticated tools capable
of integrating several technologies but also by the extent these can bring about
efficiency in the work of scientists already overwhelmed by the technicalities
plaguing today’s software solutions. We attribute the lack of impact of present
solutions to code reuse to the high threshold of effort required, in many cases
made worse by a closed source and restrictive copyrights. The paper presents the
general requirements and a few design guidelines for a complete reuse oriented
solution for computational scientists. We argue that the community needs a
solution that allows a smooth, effortless transition to the new paradigm. The
COMODI project is an attempt to identify these requirements, design complying
solutions and create proof-of-concept prototypes following these principles. Our
prototype framework was built on Babel and the CCA specification which proved
to be powerful tools. On the other hand, we found that the tasks are not purely
technical and several principle questions have to be addressed on the way toward
an ubiquitous CBSE.
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Abstract. Workload characterization is an important technique that
helps us understand the performance of parallel applications and the de-
mands they place on the system. It can be used to describe performance
effects due to application parameters, compiler options, and platform
configurations. In this paper, workload characterization features in the
TAU parallel performance system are demonstrated for elucidating the
performance of the MPI library based on the sizes of messages. Such
characterization partitions the time spent in the MPI routines used by
an application based on the type of MPI operation and the message size
involved. It requires a two-level mapping of performance data, a unique
feature implemented in TAU. Results from the NPB LU benchmark are
presented. We also discuss the use of mapping for memory consumption
characterization.

Keywords: Performance mapping, measurement, instrumentation, per-
formance evaluation, workload characterization.

1 Introduction

Technology for empirical performance evaluation of parallel programs is driven
by the increasing complexity of high performance computing environments and
programming methodologies. To keep pace with the growing complexity of large
scale parallel supercomputers, performance tools must provide for the effective
instrumentation of complex software and the correlation of runtime performance
data with system characteristics. Workload characterization is an important tool
for understanding the the nature and performance of the workload submitted
to a parallel system. Understanding the workload characteristics helps in cor-
relating the effects of architectural features on workload behavior. It helps us
in planning system capacity based on an assessment of the demands placed
on the system, and in identifying which components in a system may need to
be upgraded. This is a systems perspective on workload characterization. There
is also an application perspective that characterizes application-specific perfor-
mance behavior in the context of workload and platform aspects. For instance, in
this paper, we use workload characterization techniques recently implemented in
the TAU performance system [1] to study message communication performance.
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Workload characterization methods collect performance data for each applica-
tion in the workload set. For instance, performance profiles can contain statistics
on performance in application regions (e.g., routines) and with respect to specific
behaviors, such as message communication based on the message size. Profiling
tools that focus their attention on capturing aggregate performance data over all
invocations of message communication and I/O routines ignore the performance
variation for small and large buffer sizes. It is this ability to expose application
features and observe their performance effects that we are interested in support-
ing as part of a workload characterization methodology.

In this paper, we describe the techniques for measuring the performance of
a parallel application’s message communication based on message buffer sizes.
When this information is gathered from several applications and stored in a per-
formance database, we can classify the performance of the entire system using
histograms that show the time spent in inter-process communication and I/O
routines based on buffer sizes. We discuss the improvements that we made to
the TAU performance system [1] in the areas of instrumentation, measurement
and analysis to support workload characterization. Section §2 describes the re-
lated work in this area, Section §3 describes the TAU performance system, and
describes how performance mapping is applied to characterize the performance
of MPI routines based on the message sizes. Section §5 reports on our experi-
ence with message communication characterization of the NPB LU benchmark.
We have also applied performance mapping to memory usage characterization.
Brief discussion is given to workload characterization of memory consumption.
Section §6 concludes the paper and we discuss future work in this section.

2 Related Work

Workload characterization is a rich area in performance evaluation research. Our
specific interest is in workload characterization for high-performance computing.
There are two projects of related interest to our work.

The OpenWLC [2] system is a scalable, integrated environment for system-
atically collecting the monitored data and applying workload characterization
techniques to raw data produced by monitoring application programs. Open-
WLC’s framework employs a component-based, multi-tier, architecture to cope
with large amounts of monitored data during collection, storage, visualization
and analysis stages.

IPM [3] is an integrated performance monitoring system developed at the
Lawrence Berkeley Laboratory (LBL) for use at the National Energy Research
Supercomputing Center (NERSC). IPM is in active use for application perfor-
mance analysis and workload characterization. Specific to our interests, IPM
can characterize the application performance based on message sizes. It uses li-
brary preloading mechanisms for instrumenting an application under Linux and
on other platforms where preloading of shared libraries is available. The perfor-
mance data is stored in a performance data repository which can be queried for
application characteristics based on a number of parameters such as execution
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Fig. 1. Message Size Characterization Instrumentation

date and MPI performance data. LBL has implemented a web-based interface
for this purpose.

Certainly, other application performance measurement tools can be applied to
workload characterization. However, the ability to store multi-experiment per-
formance data, including metadata about compiler and system parameters, is
important criteria for workload characterization support. PerfSuite [4] is a per-
formance toolkit that builds a performance data repository based on execution
time and hardware performance counters [5] to characterize the performance of
an application and the system. TAU can work with PerfSuite and other tools to
integrate performance results across applications and platforms.

3 Workload Characterization and Performance Mapping

Workload characterization analyzes the effects of application execution in a sys-
tem context. Application measurements could be made of total performance,
such as total execution time, but finer granularity measurements can better
identify workload effects specific to program properties. However, certain prop-
erties require a measurement system that can observe execution parameters and
characterize application performance based on unique parameters instances. The
general concept is one of peformance mapping, wherein an association can be
established between low-level performance data and high-level measurement ab-
stractions, specialized by program semantics. The TAU performance system is
able to support performance mapping for workload characterization.

TAU[1] is an integrated, configurable, and portable profiling and tracing toolkit.
It provides support for portable instrumentation, measurement, and analysis. In-
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Fig. 2. MPI (SGI vs. Intel) Message Characterization

strumentation calls can be inserted in TAU at the source level, the library level, the
binary code level, and even in a virtual machine. Unique in the TAU performance
system is an instrumentation API for performance mapping. It uses the SEAA
model [6] of mapping that provides support for both embedded and external asso-
ciations. External associations use an external map (implemented as a hash table)
to access performance data using a user specified key. The performance data is col-
lected for interval events or atomic events that are triggered at a certain place in
the program code. Performance mapping is a powerful concept and technology.
It has been used in TAU for callpath profiling [1] and phase profiling [7]. Context
events that map atomic events to the currently executing application callstack, are
also implemented using TAU’s mapping capabilities. Here we apply performance
mapping to MPI communication characterization.

TAU’s MPI wrapper interposition library helps us track the time spent in
each MPI call. It defines a separate name-shifted MPI interface for each MPI
routine that can be used to invoke timer calls at routine entry and exit. This
mechanism can also be used to access arguments that flow through the MPI
routines. Hence, measurement code could be created to track the sizes of mes-
sages for each MPI call. We have followed this approach using TAU’s mapping
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technology to implement a two-level map of the MPI call ID and the size of
the message buffer used in the call. With this data, we can determine if a given
message buffer size and call have occured in the past. If not, a new performance
structure is created with a name that embeds the MPI call ID and buffer size.
At the end of the application, we obtain the performance in each invoked MPI
call for each message size used.

In general, TAU can take any routine parameter and create a performance
mapping. The measurement library implements routines for different parame-
ter types, such as TAU PROFILE PARAM1L(value, "name"). The following code
segment shows how this is used:

void foo(int input) {
TAU_PROFILE("foo", "", TAU_DEFAULT);
TAU_PROFILE_PARAM1L(input, "input");
...

}

When the measurement library is configured with -PROFILEPARAM, the parame-
ter mapping API is enabled.

Figure 1 shows a simple program for message communication of different
sizes. Figure 2 shows profile output characterizing communication performance
for different MPI libraries, SGI and Intel. With such information, we can ob-
tain a better understanding of workload effects. Also shown is the experiment
compilation and run commands.

4 Performance Experimentation

Performance experimentation and results management are important compo-
nents for any workload characterization system. The use of the TAU perfor-
mance system involves the coordination of several steps: instrumentation selec-
tion, measurement configuration, compilation and linking with the application,
application execution and generation of performance data on the target plat-
form, and performance data storage for analysis. We describe the sequence of
these steps as a performance experiment. We use the term experiment generally
to denote a specific choice of instrumentation and measurement for a specific
application code, but what this means exactly should be left to the user. We
define the term trial to mean an instance of an experiment. A trial might either
repeat an experiment run (e.g., to determine performance variation) or mod-
ify an experiment run parameter (e.g., number of processors), which would not
represent such a significant change as to constitute a new experiment.

The performance data gathered from executing the application is stored in
TAU’s performance database, PerfDMF [8] which is then queried by the Para-
Prof profile browser and other analysis tools such as PerfExplorer [9] for per-
formance data mining operations. The performance data stored in PerDMF is
multi-variate and multi-dimensional, both within single trials and experiments as
well as across experiments, applications, and platforms. PerfExplorer is a frame-
work for parallel performance data mining and knowledge discovery – finding
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Fig. 3. Profile of LU Benchmark on SGI Altix

out new performance facts and relationships as the outcome of searching and
analyzing the stored performance data.

5 Workload Characterization Experiments

To demonstrate TAU’s mapping support for workload characterization, the NAS
parallel benchmark LU is used as a testcase. Specifically, we are interested in
understanding how this MPI benchmark behaves respective of its message com-
munication. TAU’s message size mapping was enabled and experiments were
run on a SGI Altix platform. We also can capture memory usage statistics using
mapping technologies.

5.1 MPI Message Size Characterization

Each performance experiment ran captured execution time performance for the
LU routines. For the MPI routines, execution time performance was broken
down based on message size. Figure 3 shows an example (flat) parallel profile for
one process of a 16-process LU exectuion. Seen are the times spent in routines
in decreasing order. Most of the time is spent in computation, but message
communication is also significant. The communication event IDs encode the size
of the message in the names. The majority of the MPI Recv time was spent
receiving messages with 4040 bytes.

Further analysis of the message characterization shows the distribution of
each MPI operation across the message size used for that operation. Figure 4
highlights the inclusive time of MPI Send and the number of calls for one LU
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Fig. 4. Message Size Characterization for LU Benchmark

Fig. 5. Memory Consumption Tracking for LU Benchmark

process. Here is it seen that relatively large number of small messages were sent,
accounting for approximately 37% of MPI Send’s total time.

5.2 LU Memory Usage Characterization

TAU performance mapping can also be used to characterize memory usage. This
can show how memory is allocated, in what size chunks, and the amount of free
space available. Figures 5 displays the heap memory utlization for LU on four
processes.
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6 Conclusion

In the process of workload characterization for high performance parallel sys-
tems, it is important to have portable and configurable tools that can target the
different performance features and experiments of interest. Presently, the TAU
performance system has such capabilities for steps in this process, from common
event instrumentation, profile and trace measurements, and data analysis to
meet workload characterization objectives. A novel feature of TAU is its perfor-
mance mapping technology. The presentation above demonstrates how mapping
can be used to characterize message communication and memory usage.

Our objectives in the future include better support for experiment automation
and knowledge discovery for workload characterization. We are also working to
integrate our tools with IPM.
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Abstract. Many advanced medical simulation applications are based on
compute intensive numerical methods often exceeding the computational
capacity available in hospitals and clinical centers. Addressing this issue,
the EU Project GEMSS has developed a Grid infrastructure that sup-
ports the on-demand provision of medical simulation services running
on remote parallel computers over the Internet. A flexible QoS infras-
tructure supporting dynamic negotiation of service level agreements and
advance reservation of compute resources facilitates using Grid services
for supporting time-critical clinical procedures. In this paper we present
an overview of the GEMSS Grid infrastructure and outline the main
issues involved in the provision of QoS-enabled Grid services and the
negotiation of service level agreements for ensuring response time and
price guarantees.

1 Introduction

Many advanced medical simulation applications are based on computationally
demanding methods such as Finite Element Modeling, Computational Fluid Dy-
namics and Monte Carlo simulation, usually requiring the availability of a high
performance computing infrastructure. In order to make such applications avail-
able to hospitals and clinical centers without the need of acquiring HPC systems,
the EU project GEMSS [9] has developed a service-oriented Grid infrastructure,
based on standard Web services technologies, for the provision of advanced sim-
ulation services over the Internet. Besides security and legal issues involved in
the processing of patient related data [17], a key challenge was the development
of mechanisms for ensuring the timeliness of results for time-critical simula-
tion services. To address this issue, GEMSS has developed a flexible Quality of
Service (QoS) infrastructure supporting dynamic negotiation of Service Level
� The work was supported by by the European Union’s GEMSS (Grid-Enabled Medi-
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Agreements (SLAs) for ensuring response time and price guarantees. Service
providers may expose parallel simulation applications running on clusters as
QoS-enabled Grid services capable of automatically negotiating with clients re-
sponse time and price guarantees. Grid clients are able to choose from several
service providers before agreeing to book a specific service. Once a client has
found a suitable service provider, a corresponding SLA is signed and exchanged
to commit both parties before a service is accessed.

GEMSS adopts a reservation-based approach to QoS coupled with application-
specific performance models, advance reservation mechanisms [13], and client-
driven negotiation of service level agreements subject to price constraints. Be-
sides explicitly negotiable QoS guarantees like response time and price, the
GEMSS infrastructure provides implicit QoS by realizing highest security levels
and providing support for error recovery.

In the course of the project, six Grid-enabled medical simulation applica-
tions [12] have been developed and tested at sites in several EU countries. The
GEMSS applications can be characterized by a relatively small number of time
consuming jobs requiring powerful parallel computers in order to meet the tight
time-constraints usually required during clinical procedures.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the GEMSS Grid infrastructure and the QoS configuration of appli-
cation services. Section 3 describes the service-side QoS management infrastruc-
ture, the generation of QoS offers, and the negotiation of service level agreements.
Section 4 presents experimental results with a medical image reconstruction ser-
vice, followed by related work and conclusions in sections 5 and 6.

2 GEMSS Grid Infrastructure

The GEMSS Grid infrastructure relies on a service-oriented architecture based
on standard Web service technologies. A generic service provision environment
enables service providers to expose parallel simulation applications as services
that can be accessed on-demand by clients subject to dynamically negotiated
QoS constraints in the form of SLAs following the Web Service Level Agreement
specification (WSLA) [24].

GEMSS services are defined via WSDL and securely accessed using SOAP
messages. Supported security mechanisms comprise PKI, HTTPS, WS Security
and an end-to-end security protocol for separate encryption of sensitive portions
of the transferred data. In order to support the development of client appli-
cations that interact with Grid services, a component-based client framework
and a high-level application programming interface (API) is provided. Further-
more, GEMSS provides a registry environment for setting up service registries
and a certificate authority for issuing X.509 compliant certificates. The GEMSS
Grid infrastructure has been implemented in Java and relies on the open-source
frameworks Apache/Tomcat and Axis for service hosting and deployment.
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2.1 Grid Application Services

The GEMSS Grid environment provides a generic service provision framework
and an intuitive deployment tool for automating the task of providing parallel
applications installed on clusters or other HPC platforms as Grid services, hiding
the details of Grid and Web Service technologies from service providers.

Service provision is based on the concept of generic application services. A
generic application service is composed of configurable components with common
operations for job handling, error recovery, and QoS management. Configuration
of a Grid application service usually comprises the specification of input/output
file names and of scripts for starting job execution and for gathering status infor-
mation. This information is stored internally in an XML application descriptor.
Upon deployment, a generic application service is transformed into a Web ser-
vice with a corresponding WSDL interface and deployed in the GEMSS hosting
environment.

2.2 QoS Configuration

In order to enable the provision of response time and price guarantees, GEMSS
services have to be QoS-enabled. For this purpose an application-specific per-
formance model for estimating the runtime of potential service requests, and
a pricing model for performing price calculations have to be provided. GEMSS
prescribes for these models only an abstract interface with XML-based input and
output descriptors. Each descriptor comprises one ore more parameters which
have to be specified during service configuration using the deployment tool.

The performance model receives as input a request descriptor with a set of re-
quest parameters representing application-specific input meta data supplied by
the client during QoS negotiation, and generates a performance descriptor typi-
cally comprising estimates for the required runtime, memory, and disk space. The
pricing model takes as input a resource descriptor and calculates the price for the
required resources. Finally, a machine descriptor has to be specified containing
details about the compute resources (e.g. maximum number of processors) that
may be made available for an application service (see Section 3 for more details).

2.3 GEMSS Client Applications

For constructing client-side applications that interact with remote Grid services,
GEMSS provides a light-weight component framework and a high-level client ap-
plication programming interface (API). Ready-to-use components are provided
for session management, service discovery, QoS negotiation, job handling, and
logging. Different versions of components may be dynamically loaded as required.
The API hides the complexity of dealing with remote services from the client
application developer by providing appropriate service proxies with a simple
interface for accessing remote application services.
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GEMSS relies on a purely client-driven model for accessing Grid services.
First, there is usually an offline business workflow to open an account with
potential service providers, agree on a payment mechanism and legal issues. The
quality of service negotiation is then run to request offers from service providers
who could run the clients job; this usually results in a QoS contract being agreed
with a single service provider. The client then uploads the job input data to the
service provider, starts the job, monitors its progress, and finally downloads the
results. The reason for this client driven service access model is the requirement
to operate with firewalls and not tunnel holes through them.

3 QoS Infrastructure and SLA Negotiation

The GEMSS Grid infrastructure enables a client to negotiate with one or more
service providers the required QoS constraints for individual jobs in the form of
service level agreements following the Web Service Level Agreement specifica-
tion (WSLA) [24]. In order to support clinical procedures, simulation services are
usually configured to support WSLA parameters for specifying the required be-
gin and end time. To enable the use of GEMSS services in a commercial context
the price of a service request may be negotiated as well.

The GEMSS service provider infrastructure employs a flexible QoS manager
that can be configured by the service provider with an application specific per-
formance model and a pricing model in order to determine the best possible QoS
offer for a service request. In order to ensure the availability of appropriate com-
puting resources for a service request, a backend scheduling system with support
for advance reservation is utilized.
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3.1 QoS Manager

The service-side QoS infrastructure is centered around the QoS manager which
provides a high level interface for QoS negotiation to clients. The QoS manager
receives a QoS request from a client, checks whether the client’s QoS constraints
can be met, and generates a corresponding QoS offer which is returned to the
client. If the client decides to accept an offer a corresponding service level agree-
ment (SLA), which defines the agreed constraints for individual jobs in the form
of SLA parameters, is established and signed by both parties. As illustrated in
Figure 1, the QoS manager interacts with the application performance model,
the compute resource manager, and the pricing model using XML-based descrip-
tors as explained below. QoS descriptors are based on a subset of WSLA, and
represent, depending on the state of a negotiation, QoS requests, QoS offers, or,
once an agreement has been achieved, QoS contracts. A QoS event data base and
an associated monitoring component provide support for diagnosis and auditing.

3.2 Performance Model and Pricing Model

The performance model is used to estimate the run time and other performance
relevant data for a service request. It takes as input a request descriptor and
returns a performance descriptor. The request descriptor, supplied by the client
during QoS negotiation, contains application specific meta-data about a specific
service request. For example, in the case of an image reconstruction service,
request parameters typically include image size and required accuracy. The re-
turned performance descriptor usually contains the estimates for the execution
time, the required memory, and the required disk space. In the case of a MPI
applications, the performance model is usually parameterized by the number of
processors. It may be executed repeatedly with a varying number of processors
until the time constraints set by the client are met, or the range of feasible
processors as specified in the machine descriptor is exceeded.

GEMSS supports a flexible pricing policy that can be customized for each ser-
vice a service provider supports. Two pricing models have been realized, a fixed
price telephone pricing model where users are charged at a prearranged CPU
hour rate, and a dynamic pricing model where the CPU hour rate is dependent
on the current load levels the service provider is experiencing.

GEMSS does not prescribe the actual nature of performance and pricing mod-
els, only an abstract interface is prescribed. The choice of model implementation
is left to the service provider, with each model implemented as a Java library
that can be plugged in and selected dynamically. For example, a performance
model could be implemented based on an analytical model, or where this is not
feasible, a neural network or a database could be used to relate typical problem
parameters to resource needs like main memory, disk space and execution time.

3.3 Compute Resource Manager

The compute resource manager provides an interface to the scheduler for ob-
taining information about the actual availability of computing resources. It is
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utilized by the QoS manager for creating temporary reservations during QoS
negotiation. The compute resource manager takes as input the performance de-
scriptor generated by the performance model, and generates a resource descriptor
containing details about temporarily reserved resources. The resource descriptor
is then used as input to the pricing model to determine the price for a service
request. Currently a compute resource manager is available for two scheduling
systems which provide support for advance reservation, the Maui scheduler [14]
and COSY [6].

3.4 SLA Negotiation and Generation of QoS Offers

The basic QoS negotiation in GEMSS is based on a request-offer model where
the client requests offers from service providers. If the client agrees to an offer, it
is confirmed by the client and signed by both parties resulting in a QoS contract
in the form of a WSLA. Figure 2 shows the basic negotiation process and the
current QoS manager strategy for generation of QoS offers.

In an initial task the client may access a GEMSS registry service to obtain
a list of candidate services. The client then invokes for each candidate service
the operation requestQosOffer, passing along a request descriptor with input
meta data and a QoS request document with the required QoS constraints.

On the service side, the QoS manager executes the performance model with
the request descriptor as input and compares the estimated execution time in
the resulting performance descriptor with the time constraints specified in the
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QoS request. If the client’s execution time constraints can be met, the QoS man-
ager instructs the resource manager to check whether the required resources can
be made available. If this is the case, the QoS managers invokes the operation
getResourceDsc of the resource manager passing along the performance descrip-
tor and the QoS request document. The resource manager contacts the scheduler
to check whether the required resources as specified in the performance descrip-
tor (number of processors for the estimated runtime) can be made available
within the time frame (begin time, end time) specified in the client’s QoS re-
quest. If this is possible, a temporary reservation is made with the scheduler and
a corresponding resource descriptor is returned. The QoS manager then executes
the pricing model, passing as argument the resource descriptor, to determine if
the price for the required resources is within the client’s price constraints. If the
price constraints can be met, the QoS manager generates a corresponding QoS
offer, and returns it to the client.

If the time or price constraints can not be met, the QoS manager may execute
the performance model with a different number of processors (as specified in the
machine descriptor). If the clients QoS constraints cannot be met at all, no offer
is generated.

On the client side, the QoS offers from different service providers are received
and analyzed. The client confirms the best offer, or, if it is not satisfied with the
offered QoS constraints, may set up a new QoS request with different constraints
and start a new negotiation. If the client confirms an offer, the QoS manager
confirms the temporary resource reservation made for the offer, signs the QoS
contract and returns it to the client.

Clients and service providers employ a relatively low level of trust in the
negotiation. A service provider only makes a temporary reservation that will
expire if the client takes too long to make a decision. Likewise service providers
will be dropped from the negotiation if they fail to provide an offer in time.
Within the GEMSS project also more sophisticated negotiation strategies based
on a closed-bid reverse English auction model have been realized, a description
of which is beyond the scope of this paper.

3.5 Service Level Agreements

The GEMSS QoS infrastructure utilizes a subset of the WSLA specification
for representing QoS requests, QoS offers and QoS contracts (see Figure 3).
Being machine readable, WSLA documents allow processing the QoS negotiation
without the need of human intervention until the final confirmation step. In the
context of GEMSS, SLA parameters are QoS parameters and include the begin
time of the job execution, the end time of the job execution, and the price of
the job execution. The service definition section specifies the overall contract
duration and a metric for each parameter. The obligations section contains a
list of objectives. Each objective is linked to an obliged party and defines the
acceptable values of a specific SLA parameter.
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Fig. 3. Excerpt of WSLA for GEMSS SPECT service

4 Experimental Results

We present experimental results with a SPECT application for fully 3D itera-
tive medical image reconstruction based on a Maximum Likelihood Expecta-
tion Maximization algorithm, which has been parallelized using MPI. For QoS
support we used a performance model, parameterized with a set of request pa-
rameters (image resolution, number of slices, number of iterations, etc.) and the
number of processors, with an accuracy of more than 95%.

In order to demonstrate the basic QoS negotiation we have devised a test
with a single service provider running the SPECT service on a 16 CPU cluster
with the Maui scheduler starting with a cluster utilization of zero. Clients issued
consecutive offers for equal SPECT jobs, where the duration of the jobs just
depended on the number of CPUs as shown in Figure 4. The QoS constraints
for all jobs were defined within a 65 minutes timeslot with no price constraints.
The graph in Figure 4 shows the number of CPUs used for each consecutive job,
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where the initial 8 jobs were scheduled with 2 CPUs each, the next 4 jobs were
scheduled on 4 CPUs and the last two jobs on 8 CPUs.

We can see from this test that the strategy of the QoS manager follows rational
behavior. Initial requests are scheduled with fewer CPUs and if required the
jobs are scheduled with more CPUs to met the given time constraints. After
scheduling 14 jobs, the machine is almost fully utilized and no more offers will
be generated for this specific timeframe.

5 Related Work

Standard Web Service technologies have now been adopted as the base mid-
dleware technology by many Grid computing environments including Globus
GT4 [10], gLite [8], OMII [21] and Unicore [23]. The Open Grid Service Ar-
chitecture (OGSA [7]) outlines the vision for a service level management and
attainment model based on a generic control loop pattern, however, this vision
has not yet been realized in available Grid environments. The OGSA specifica-
tion mainly discusses macro QoS assurance (i.e. system-level QoS of the overall
Grid infrastructure) while our work presented here focuses on micro QoS support
for individual Grid application services.

The Web Services Agreement Specification (WS-Agreement) [2] of the GGF
GRAAP working group proposes a language and protocol for service level agree-
ments. A state-of-the art survey of advance reservation for grid applications can
be found in [13]. In [1] an OGSA-based QoS model is presented which supports
service discovery based on QoS attributes and Grid service execution subject to
QoS constraints. The work in [16] outlines the challenges involved in mapping
application-level SLAs to resource-level SLAs. In [18] a model for a QoS-aware
component architecture for Grid computing is proposed.

Several Grid projects deal with Quality of Service aspects such as the GRASP
project [11], which was concerned with extending the concept of Application Ser-
vice Provision (ASP) to Grids, the GRACE project [5] which addressed deadline
and budget based scheduling of Grid resources, and GRIA [22], which relies on
workload and capacity estimation models to estimate the execution time of a
submitted job using resource specific parameters [22].

There are an increasing number of Grid projects in the bio-medical and life
science including the EU projects OpenMolGRID [20], MammoGrid [15], and
myGrid [19], and the US BIRN initiative [4], to name a few. While most of these
projects focus on data management aspects, GEMSS focused on the computa-
tional aspects of the Grid.

6 Conclusions

The GEMSS project developed a service-oriented Grid infrastructure for the on-
demand provision of compute-intensive medical simulation services across wide
area networks. The GEMSS QoS infrastructure presented in this paper relies
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on a reservation-based approach to QoS coupled with application-specific per-
formance models, advance mechanisms, and client-driven negotiation of service
level agreements. The GEMSS Grid provides guarantees to clients regarding
quality of service within an economic model, and the legal and security frame-
work needed to provide a platform for future exploitation. The Grid technology
developed in the course of the GEMSS project is being utilized and further
developed within the EU Project Aneurist [3], which aims to create an IT in-
frastructure for the management of all processes linked to research, diagnosis
and treatment development for complex and multi-factorial diseases.
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Abstract. Existing data management solutions fail to adequately sup-
port data management needs at the inter-grid (interoperability) level. We
describe a possible solution, a transparent grid filesystem, and consider
in detail a challenging use case.

1 Introduction

State of the art grid data management solutions on offer include: replica man-
agement (Globus RLS[1], LFC[2], Globus RC[3]); secure file transfer (Globus
RFT[4], ELFI[5]); the GFARM special purpose middleware[6]; the SlashGrid
credential-based grid filesystem[7]; Resource Namespace Service[8]; the GGF
proposal of a service oriented architecture for a grid filesystem[9]; and
middleware-specific grid filesystems such as in TeraGrid[10] and DEISA[11].

While meeting to some extent data management needs at the single middle-
ware level, existing solutions fail to adequately support data management needs
at the inter-grid level. This is due to the following reasons:

– Existing data management solutions are middleware specific;
– Middlewares have differing job life cycle data movement patterns; and
– There are no existing inter-grid information systems.

Some data management tools transfer data by value (for example Webcom
[12,13], LCG2 sandboxes[14]) while others allow data to be pointed to by loca-
tion independent identifiers, i.e. they transfer by reference (e.g. RC, RLS, LFC,
RFT, ELFI, Slashgrid). The former is inefficient for large data sets. The latter
overcomes this but complicates interoperability as the identifiers are generally
middleware specific. Most tools are invoked via middleware-specific APIs (RC,
RLS, LFC, RFT), but a few use native filesystem calls (ELFI, GFARM, Slash-
grid). The latter definitely eases interoperability between different grids; data is
transfered by reference and the transfers are invoked by standard file operations.

The paper is divided into two main sections. The first section briefly overviews
existing grid data management solutions and discusses their limitations in meet-
ing the needs of grid interoperability, then describes a possible solution, a grid
filesystem. The second section considers in detail a challenging use case. The
paper concludes with a summary.
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2 The Grid Filesystem

The above considerations motivated the development of our grid filesystem,
gridFS [15]. GridFS has basic but relatively complete functionality provided by
four abstract engines for directory handling, discovery, data movement, and con-
sistency, as shown in Figure 1. This grid filesystem can be deployed on every
Linux node using EGEE, Globus, or any other middleware and even on user’s
workstations. The grid filesystem is specifically intended to support interoper-
ability between arbitrary middlewares.

Fig. 1. The grid filesystem architecture

The data movement engine consists of the basic client- and server-sides of
a filesystem. Its purpose is to allow I/O operations such as open, read, write,
seek, close, etc. to be invoked using the normal libraries for C, Java, etc. but
on remote files, i.e. it performs remote file access. In the initial version the
consistency engine enforces consistency only via write-through and write-back
coherency policies. The directory engine allows the creation and validation of a
user view of the grid filesystem namespace. That is, a user can create their own
logical view of grid data as a tree of filesystems. The discovery engine allows
metadata to be published and queried as needed to support grid and inter-grid
activity. The discovery engine assumes that every machine on the grid is able to
export some directories according to given permissions. The filesystem has been
designed according to two explicit policies; reuse (do not reinvent the wheel)
and reduce (eliminate what is not necessary).
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2.1 Data Movement Engine

The data movement engine is intended to overcome two major limitations in
most existing data management solutions. Firstly, they do not operate at the
block level. Secondly, in the main they require the programmer to use software-
specific APIs to access, for example, file catalogues.

With the above concerns in mind, the data movement engine focusses on
accessing various types of data storage via the Linux Virtual Filesystem layer
(VFS)[16], and operation at block rather than at file level. The server side of
the data movement engine exploits the GridSite [17] module (mod gridsite)
for the Apache webserver [18]. GridSite accesses files using the HTTP 1.1 pro-
tocol. It includes very desirable features including authentication and GACL
[19] authorisation at each directory level, and supports convenient editing of
these permissions. Each directory contains an XML .gacl file that defines the
permissions, conditioned by host, VO or person.

GridSite supported byte-level access for get, but only file-level access for put,
move and delete. For the data movement engine we modified mod gridsite to
provide byte-level access for both read and write. Gridsite now includes this.

The client side of the data movement engine uses block-level caching to min-
imise network traffic and support consistency. Like ELFI, GFARM and more
recently Slashgrid, it derives from the FUSE user-space daemon. This approach
has several notable attributes:

1. By using a user-space daemon invoked by the user, it can support a user-
specific view of the grid filesystem.

2. By using HTTPS to communicate with the server-side, it can:
– traverse firewalls as easily as any browser can;
– authenticate connections;
– leverage web protocol optimizations; and
– leverage the proxy functionality of web servers.

3. By using a user-space daemon and HTTPS, it supports complete user-level
privacy:
– at the client even the root user cannot access the user’s filespace, and all

data movement beyond the client daemon is secured by SSL.
4. By operating at block level:

– it can fractionally read or write remote files, only transferring the blocks
required; and

– it has the potential to provide block-level locking to facilitate future
mutually-exclusive multiple-writers to the same file.

At a high level then, these components provide a filesystem that communicates
over HTTPS with a web server and allows secure file operations on byte-ranges
within files. Use of a user-space daemon addresses the transparency requirement,
by providing access to remote files through the VFS layer using standard I/O
libraries that are universally available.
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2.2 Consistency Engine

The consistency engine maintains file consistency. Consistency semantics define
the outcome of multiple accesses to a single file. An example case where incon-
sistency may arise is when several grid processes access the same filesystem and
attempt to write simultaneously to a single file. To avoid problems several con-
sistency models can be adopted. In the initial version the engine enforces cache
consistency via a simple single-reader single-writer write-back coherency policy.

2.3 Directory Engine

Although the data movement engine provides transparency, the directory engine
is needed to fully address the issue. Only by allowing views that hide data lo-
cation and complexity can a truly location-transparent and user-friendly system
be constructed. A user creates a personal hierarchy of virtual directories, where
leaves in this tree correspond to subdirectories of personal interest that exist
on physical filesystems. It is assumed these subdirectories have been exported
using the grid filesystem by the same or another user. The user runs their own
instance of the FUSE daemon that accesses this personalised view of the grid
filesystem namespace, using their own grid credentials. In essence the directory
engine publishes and retrieves filesystem user–namespace mappings.

The directory engine implements many of the concepts of the Resource Names-
pace Service (RNS) provided by the Global Grid Forum’s Grid File System
working group. RNS identifies resources within a Grid by a universal name that
ultimately resolves to a meaningful address, with a particular emphasis on hi-
erarchically managed names that may be used in human interface applications.
RNS embodies a three-tier naming architecture, which consists of human inter-
face names, logical reference names, and endpoint references. Name-to-resource
mapping in RNS features an optional arrangement of two levels of indirection.
The first level of indirection is realized by mapping human interface names di-
rectly to endpoint references (Name → ER).

A second level of indirection may be useful when mapping human interface
names to logical references (identified by logical names), which in turn map
to endpoint references (Name → LR → ER). The advantage of using a logical
name to represent a logical reference is that they may be referenced and resolved
independently of the namespace.

Figure 2 shows an example of the first level of indirection. The table on the
right-hand side shows the list of mappings of the full physical locations to a
user-specified namespace that is easily recognised and makes sense to the user.

The directory engine uses the Relational Grid Monitoring Architecture (R-
GMA) [20,21] to publish namespace information. An R-GMA system is com-
posed of three types of components: producers, which insert data into a virtual
database; consumers, which retrieve information from the virtual database; and
registries, which match consumers to producers which publish information that
the consumers are interested in. Information can be inserted into and retrieved
from the R-GMA virtual database using a subset of the SQL92 Entry Level
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Fig. 2. GUI showing mapping of Endpoint References to User Namespaces. The End-
point Reference information is expressed in the form /node/export dir, where node is
a server and export dir is a directory.

standard. Directory engine producers publish namespace information into the
database using SQL INSERT statements, and their consumers retrieve that in-
formation from the database using SQL SELECT statements.

R-GMA currently offers rather limited security based on host authentication.
Whereas the directory engine functions are subject to credential checks and
permissions, data published in R-GMA is not yet subject to user-based authori-
sation and can be queried by any authenticated user regardless of permissions.
This is expected to be remedied by the end of 2006.

2.4 Discovery Engine

Whereas existing grid middleware focusses on delivering partial data manage-
ment solutions, there is very little existing metadata that may be used to describe
a grid filesystem. The discovery engine allows metadata to be published and dis-
covered or queried as needed to support grid and inter-grid activity, using two
sets of tools:

1. gridfspublish: command-line and graphical tools to publish metadata to an
inter-grid discovery service.

2. gridfsdiscover: command-line and graphical tools to discover filesystems that
match a search string by querying published metadata.

The discovery engine assumes that any machine on the grid is able to export
some directories according to given permissions (at grid and inter-grid levels) of
read, write, open, execute, admin, etc. Like the directory engine, the discovery
engine depends on the R-GMA to publish metadata. The same security con-
straints are imposed by the fact that currently R-GMA only offers host-based
authentication.
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Individual files may not be discovered, only filesystems (directories), as grid-
wide discovery down to the file level would not scale with this architecture.
However, an activity-specific (perhaps VO-wide) discovery engine may be estab-
lished that publishes richer metadata, e.g. to file level.

3 A Grid Interoperability Use Case for the gridFS

This use case demonstrates the use of the grid filesystem engine in supporting
interoperability between three middlewares: WebCom-G [22], Globus 4 (GT4)
[23,24] and the Large Hadron Collider Computing Grid (LCG2)[14].

WebCom-G can be considered a fledgling grid-enabled workflow engine based
on WebCom [25], although it is much more. It offers a non-von-Newmann pro-
gramming model that automatically handles task synchronization (load balanc-
ing, fault tolerance, and task allocation at the system level) without burdening
the application writer [22]. In WebCom, applications are specified as Condensed
Graphs (CGs), in a manner which is independent of the execution architecture,
thus separating the application and execution environments. Condensed Graphs
are a mathematical abstraction capable of representing different computational
models in a unified way. They consist of nodes with arcs connecting them. The
nodes can be atomic, consisting of a single operation, or can be condensed graphs
themselves.

Various patterns of data movement are involved during the life cycle of a
WebCom job. Jobs are submitted through a web service, specifying the following:

– Condensed Graph representation in XML.
– Files used by the WebCom job, including executable files representing atomic

operations.
– Arguments to the WebCom graph.

To demonstrate the importance of gridFS for grid interoperability we de-
scribe the data movements of the use case of Figure 3 with and without the
gridFS. This use case describes a complex job involving three different Grid
middlewares (WebCom, LCG2 and GT4). This job is described by the CG
= {E, W1, L, G, W2, X}. It encompasses at least three compute nodes (one for
W1, W2 and one each for L and G) and at least one filestore (for A and E and
possibly for B , C and D too).

– E represents the entry node of the CG.
– W1 represents an atomic operation that must be be executed on WebCom.

It reads file A and writes file B .
– L represents an atomic operation that must be executed on the LCG2 mid-

dleware; this operation is described (in JDL language) in file J. It reads files
J, P, A and B and writes file C .

– G represents an atomic operation that must be executed on GT4 middleware;
this operation is described (in the RSL language) in file R. It reads files R,
Q, A and B and writes file D .
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Fig. 3. Data Movement for the Use Case

– W2 represents an atomic operation that must be executed on WebCom. It
reads files C and D , and writes result file E .

– X represents the exit node of the CG.

In the absence of a grid filesystem such as gridFS the submission of this
job implies a significant number of file transfers among the participating hosts.
Typically, the following sequence of operations would happen:

– File A would be copied by value from a filestore to the WebCom middleware
host (using a WebCom mechanism) for the execution of W1.

– Operation W1 would be executed. It would read a local copy of file A and
write a local copy of file B .

– File B would be copied to a filestore, using a WebCom mechanism.
– Files J, P, A and B would be copied by value to the LCG2 middleware for

the execution of job L, either by prestaging, use of sandboxes or file catalogs,
or by explicit file transfer; all of these methods are intrusive and some will
require job L to be modified.

– Job L would be executed. It would read local copies of files J, P, A, B and
write a local copy of file C .

– File C would be copied to a filestore, using an LCG2 mechanism.
– Files R, Q, A and B would be copied by value to the GT4 middleware for the

execution of job G, either by prestaging, use of file catalogs, or by explicit
file transfers; again these methods are intrusive and job G may need to be
modified.

– Job G would be executed. It would read local copies of files R, Q, A, B and
write a local copy of file D .

– File D would be copied to a filestore, using a GT4 mechanism
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– Files C and D must be copied by value to the WebCom middleware for the
execution of operation W2, using a WebCom mechanism.

– Operation W2 would be executed. It would read local copies of files C and
D , and write a local copy of file E .

– Result file E would be copied to the filestore using a WebCom mechanism,
where it can be accessed by the user.

As can be seen, there are multiple transfer mechanisms. It is assumed that full
(not partial) file transfers occur before and after executions. The operations or
applications to be executed can be modified to use special grid file I/O libraries
but there are multiple libraries, each middleware-specific and none transparent.
Thus, in the absence of a grid filesystem, such as gridFS, the submission of this
job involves a significant amount of data transfer that intrudes on the develop-
ment of the workflow. The above is a simplified scenario as multiple transfers are
often necessary to pass files between the different grids and a filestore residing
in a ‘border’ region (grid ⇀↽ border ⇀↽ filestore). In addition, unless WebCom
executes all its executable graph nodes on the same physical machine (an unin-
tended restriction) any intermediate files will have to be expensively copied by
value between the nodes. A similar workflow executed using Condor DagMan
[26] would use the Condor sandbox mechanism to move files to where they were
required, again with significant data transfer.

The presence of a grid filesystem allows access to all files as if they were
present on a local file system, greatly simplifying the data movement pattern.
In all cases, input files can be very efficiently copied by reference between the
grid middlewares, i.e. the filenames can be passed to and fro as text arguments.
There is a single transfer mechanism, applications need not be modified; grid
file I/O libraries are not used, only standard I/O libraries that are middleware-
independent and transparent. For example, the LCG2 job L can be very simply
specified using the JDL:

Executable="script_L.sh";
Arguments="gridfs/mydir/B gridfs/mydir/C";
StdOutput="std.out";
StdError="std.err";
InputSandbox={"script_L.sh"};
OutputSandbox={"std.out","std.err"};

The script script L.sh needs to start up gridFS, which then fetches the user’s
namespace mappings from the directory engine and thereby automatically points
to the remote directory. The script can then run the user’s LCG2 application
code P with the arguments specified in the JDL. Any data transfers during
execution take place as normal file reads and writes (but to a remote filestore
using gridFS) and full file transfers to local disk do not take place, only partial
transfers to an in-memory cache. When the job completes the script needs to
terminate gridFS by shutting down the user’s FUSE daemon; this final step also
ensures the cache has been fully flushed. Thus script L.sh is as follows:



A Transparent Grid Filesystem 317

gridfs
bash gridfs/mydir/P $1 $2
fusermount -u gridfs

Alternatively, the grid filesystem can either be continuously executing as a
system daemon, or automatically started in the users context on all relevant
machines. The latter is preferable as it guarantees per-user privacy, even from
system administrators. Notice that there is an opportunity for even greater trans-
parency then: if gridFS is automatically started and terminated like this, then
the outer two commands above are not needed. Grid-Ireland plans to install
gridFS in this configuration. In summary, large numbers of explicit file transfer
operations (some multistage) are necessary when executing jobs across multiple
grids if a grid filesystem is not available. When a grid filesystem is used, these
file transfers are replaced by fewer direct remote file accesses by reference.

4 Conclusions

We have described a transparent grid filesystem that provides access to remote
files. It does not require proprietary APIs, instead using standard file I/O li-
braries that are universally available. Hence applications do not need to be
altered to allow remote file access. The transport protocols (https) are those
normally allowed through firewalls. The gridFS supports authentication using
certificates. The authorisation mechanism supports higher level constructs such
as virtual organisations. The gridFS supports partial file access and relatively
efficient caching. It allows per-user views of the file namespaces. It supports
publication and subsequent discovery of filesystems. It can be deployed on any
Linux workstation or server and is currently deployed on three sites within the
Grid-Ireland infrastructure. It is specifically intended to support interoperability
between arbitrary middlewares and we have described one challenging use case.
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Abstract. Data integration is the flexible and managed federation,
analysis, and processing of data from different distributed sources. Data
integration is a key issue for exploiting the availability of large, heteroge-
neous, distributed and highly dynamic data volumes on Grids. This paper
presents a framework for integrating heterogeneous XML data sources
distributed among the nodes of a Grid. We present a query reformulation
algorithm to combine and query XML documents through a decentral-
ized point-to-point mediation process among the different data sources
based on schema mappings. The above cited XML integration formalism
is exposed as a Grid Service within an OGSA-based Grid architecture.

1 Introduction

The goal of a data integration system is to combine heterogeneous data residing
at different sites by providing a unified view of this data. Data integration on
Grids has to deal with unpredictable, highly dynamic data volumes. So, tradi-
tional approaches to data integration, such as FDBMS [1] and the use of medi-
ator/wrapper middleware [2], are not suitable in Grid settings. The federation
approach is a rather rigid configuration where resources allocation is static and
optimization cannot take advantage of evolving circumstances in the execution
environment. The design of mediator/wrapper integration systems must be done
globally and the coordination of mediators has to be done centrally, which is an
obstacle to the exploitation of evolving characteristics of dynamic environments.
As a consequence, data sources cannot change often and significantly, otherwise
they may violate the mappings to the mediated schema. Recently, several works
on data management in peer-to-peer (P2P) systems are moving along this di-
rection [3, 4]. All these systems focus on an integration approach not based on
a global schema: each peer represents an autonomous information system, and
data integration is achieved by establishing mappings among the various peers.

The Grid community is devoting great attention toward the management of
structured and semi-structured data such as databases and XML data. The
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most significant examples of such efforts are the OGSA Data Access and Inte-
gration (OGSA-DAI) [5] and the OGSA Distributed Query Processor (OGSA-
DQP) [6] projects. However, till today only few of those projects [7, 8] actually
meet schema-integration issues necessary for establishing semantic connections
among heterogeneous data sources. For these reasons, we designed the XMAP
framework [9] for integrating heterogeneous XML data sources distributed over
a Grid. By designing this framework, we aim at developing a decentralized net-
work of semantically related schemas that enables the formulation of distributed
queries over heterogeneous data sources. We designed a method to combine and
query XML documents through a decentralized point-to-point mediation process
among the different data sources based on schema mappings. We offer a decen-
tralized service-based architecture that exposes this XML integration formalism
as a Grid Service [10]. We refer to this architecture as the Grid Data Integration
System (GDIS) [11]. The GDIS infrastructure exploits the middleware provided
by OGSA-DAI building on top of it schema-integration services. As said before,
among the few works designed to provide schema-integration in Grids, the most
notable ones are Hyper [7] and GDMS [8]. Both systems are based on the same
approach that we have used ourselves: building data integration services by ex-
tending the reference implementation of OGSA-DAI. The Grid Data Mediation
Service (GDMS) uses a wrapper/mediator approach based on a global schema.
GDMS presents heterogeneous, distributed data sources as one logical virtual
data source in the form of an OGSA-DAI service. This work is essentially differ-
ent from ours as it uses a global schema. For its part, Hyper is a framework that
integrates relational data in P2P systems built on Grid infrastructures. As in
other P2P integration systems, the integration is achieved without using any hi-
erarchical structure for establishing mappings among the autonomous peers. In
that framework, the authors use a simple relational language for expressing both
the schemas and the mappings. By comparison, our integration model follows
as Hyper an approach not based on a hierarchical structure, however differently
from Hyper it focuses on XML data sources and is based on schema mappings
that associate paths in different schemas.

The rest of the paper is organized as follows. Section 2 describes the XMAP
framework. Section 3 shows as the XMAP algorithm is deployed as a Grid ser-
vice within the GDIS architecture. Some performance figures are presented in
Section 4 and Section 5 gives some concluding remarks, together with possible
extensions of this work.

2 XMAP: A Decentralized XML Data Integration
Framework

The XMAP framework [9], semantically relates XML schemas enabling the for-
mulation of queries over heterogeneous, distributed XML data sources. The en-
vironment is modeled as a system composed of a number of Grid nodes, where
each node can hold one or more XML databases. These nodes are connected to
each other through declarative mappings rules.
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2.1 Integration Model

As mentioned before, traditional centralized architecture of data integration sys-
tems is not suitable for highly dynamic and distributed environments such as
the Grid. Thus, we propose an approach inspired from [4] where the mapping
rules are established directly among source schemas without relying on a central
mediator or a hierarchy of mediators. In consequence, in our integration model,
there is no global schema representing all data sources in a unique data model
but a collection of local schemas (the native schema of each data source). Regard-
less of the total number of nodes composing the system, each source schema is
directly connected to only a small number of other schemas. However, it remains
reachable from all other schemas that belong to its “transitive closure”. For any
mapping M , its closure is defined as the set of rules that can be derived from M
by repeated composition of schema paths. In other words, the system supports
two different kinds of mapping to connect schemas semantically: point-to-point
mappings and transitive mappings. In transitive mappings, data sources are re-
lated through one or more “mediator schemas”. For example, if we have a source
A directly connected to a source B and B connected to C, A is connected to both
B and C. Establishing the mappings this way creates a graph of semantically
related sources where each of the sources knows its direct semantic neighbors
(point-to-point mapping) and can learn about the mappings of its neighbors
(transitive mapping). Therefore, in our integration model all nodes are equal:
there is no distinction between data sources and mediators. Each node acts both
as a data source contributing data and as a local mediator providing an uniform
view over the data provided by other nodes.

Our integration model is based on schema mappings to translate queries be-
tween different schemas. The goal of a schema mapping is to capture structural
as well as terminological correspondences between schemas. We address this goal
by associating paths in different schemas. Mappings are specified as path expres-
sions that relate a specific element or attribute (together with its path) in the
source schema to related elements or attributes in the destination schema. The
data integration model we propose is indeed based on path-to-path mappings
expressed in the XPath [12] query language, assuming XML Schema as the data
model for XML sources. Specifically, this means that a path in a source is de-
scribed in terms of XPath expressions.

The mapping rules are specified in XML documents called XMAP documents
(see Figures 2, 3 ). Each source schema in the framework is associated to an
XMAP document containing all the mapping rules related to it.

2.2 The XMAP Reformulation Algorithm: A Case Study

Our query processing approach exploits the semantic connections established
in the system by performing the XPath query reformulation algorithm before
executing the input query, in order to gain further knowledge. This way, when a
query is posed over the schema of a source, the system will be able to use data
from any source that is transitively connected by semantic mappings. Indeed, it
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will reformulate the given query expanding and translating it into appropriate
queries for each semantically related source. Thus, the user can retrieve data
from all the related sources in the system by simply submitting a single XPath
query.

The rationale of the algorithm is to perform single reformulation steps. A
reformulation step corresponds to the reformulation of a given query only with
respect to the schemas directly connected to it. So, the algorithm is composed
of several reformulation steps, but each of such steps performs only direct re-
formulations by using the point-to-point mappings. Each time a reformulated
query is obtained, the algorithm tries to rewrite it by recursively invoking the
reformulation function and using its direct mappings.

The query reformulation algorithm uses as input an XPath query and the
mappings, and it produces as output zero, one or more reformulated queries.

In the following we briefly describe an example of use of the XMAP algorithm
(see Figure 1).

Let suppose a user wants to find the title of the paper published in the year
2000. To this aim the following query QUW is formulated over the schema UW :

QUW =/uw/area/pubs/paper[year = ”2000”]/title

In the first step the algorithm identifies the paths in the query:

– P1=/uw/area/pubs/paper/title
– P2=/uw/area/pubs/paper/year

and produces as output the set P . Next, exploiting the XMAP document asso-
ciated to the schema UW (see Figure 2), the algorithm finds two mapping rules
connecting UW to DBLP through the paths P1 and P2.

More precisely, one of these rules relates P1 to two paths in DBLP , respec-
tively /dblp/article/title and /dblp/proceedings/title. Similarly, the

uw
  area
    pubs
      paper
        title
        venue
        year
        author

Q=/uw/area/pubs/paper[year=2000]/title

P  =/dblp/article/title,
    /dblp/proceedings/title
2,2

P  =/dblp/article/year,
    /dblp/proceedings/year
1,2

4

2

1

3

5

candidate set

destination set

S2

S2
*

2,2
*P  =/dblp/article/title,
    /dblp/proceedings/title

*
1,2P  =/dblp/article/year,
    /dblp/proceedings/year

Q  =/dblp/article[year=2000]/title
Q  =/dblp/proceedings[year=2000]/title
R1
R2

DBLP
dblp
  article
    key
    title
    year
    journal
    author
    cites
  proceedings
    key
    title
    year

UW

/uw/area/pubs/paper [year=2000] /title

P =/uw/area/pubs/paper/year1

P =/uw/area/pubs/paper/title2

XMAP

Fig. 1. Example of use of the XMAP algorithm
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<sourceSchema>uw</sourceSchema>
<Rule cardinality="Mapping1-N">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/uw/area/pubs/paper/title</sourcePath>
<destinationPath>/dblp/article/title</destinationPath>
<destinationPath>/dblp/proceedings/title</destinationPath>
</Rule>
<Rule cardinality="Mapping1-N">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/uw/area/pubs/paper/year</sourcePath>
<destinationPath>/dblp/article/year</destinationPath>
<destinationPath>/dblp/proceedings/year</destinationPath>
</Rule>

Fig. 2. Fragment of the UW XMAP document

other mapping rule relates P2 to the path /dblp/article/year and the path
/dblp/proceedings/year. So, the second step of the algorithm produces as out-
put a candidate set composed of the elements P �

i,j and the (candidate) schema
DBLP �. In the considered example as the schema DBLP � has correspondences
for both paths P1 and P2, it is identified as a destination schema (step 3), so it
can be used to reformulate the query UW . In particular, the algorithm (step 4),
produces two direct reformulations of the query QUW over the schema DBLP ,
respectively QDBLP1 and QDBLP2 .

QDBLP1=/dblp/article[year=”2000”]/title
QDBLP2=/dblp/proceedings[year=”2000”]/title

Since in the XMAP document associated to the schema UW there are no more
mapping rules involving the paths in the query QUW , no further reformulations
are produced. Then the algorithm is recursively invoked over the direct refor-
mulations QDBLP1 and QDBLP2 , exploiting the XMAP document associated to
the schema DBLP (see Figure 3). In so doing, the algorithm finds two mapping
rules connecting the schema DBLP to the schema IEEE through the paths
composing the query QDBLP2 , whereas any mapping rules involving the paths
of the query QDBLP1 have been found. As a consequence, the execution of the
XMAP reformulation algorithm over the query QDBLP1 does not produce any
reformulated query, instead the reformulation of the query QDBLP2 produces the
reformulation QIEEE:

QIEEE=/ieee/proceedings[year=”2000”]/title

This first recursive invocation of the algorithm ends here producing the query
QIEEE as a direct reformulation of the query QDBLP2 over the schema IEEE
(that is a transitive reformulation of the original query QUW ). So, now we can
exploit the transitive mappings of the schema DBLP , by recursively invoking
the reformulation algorithm over the query QIEEE. As the XMAP document
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<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/title</sourcePath>
<destinationPath>/ieee/proceedings/title</destinationPath>
</Rule>
<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/year</sourcePath>
<destinationPath>/ieee/proceedings/year</destinationPath>
</Rule>

Fig. 3. Fragment of the DBLP XMAP document

associated to the schema IEEE has no mappings for the paths composing the
query QIEEE, the algorithm ends here.

3 The Grid Data Integration System (GDIS)

The XMAP reformulation algorithm has been deployed in the Grid Data Inte-
gration System (GDIS). GDIS is a decentralized service-based data integration
architecture for Grid databases; it has been presented in a previous work [11].

The GDIS system offers a wrapper/mediator-based approach to integrate data
sources: it adopts the XMAP decentralized mediator approach to handle seman-
tic heterogeneity over data sources, whereas syntactic heterogeneity is hidden
behind ad-hoc wrappers. More precisely, in the GDIS architecture (see [11]), the
XMAP query reformulation engine is run by the data integration nodes. Specifi-
cally, these nodes offer: (i) a set of data integration utilities allowing to establish
mappings, and (ii) the query reformulation algorithm introduced by the XMAP
integration formalism. The user query is handled by the reformulator engine that
through the XMAP query reformulation algorithm produces zero, one or more
reformulations of the original query. All the obtained reformulations (included
the original query) are then processed by the distributed query processor (DQP)
that partitions each of such queries in several sub-queries. Then, the each pro-
duced sub-query execution plan is processed independently by the DQP that
through the wrapper access data source and produces the partial query result.
After that, the DQP collects the sub-query results into the final query result and
return it to the querying node.

GDIS is designed as a service-based distributed architecture and introduces
the OGSA-based XML Data Integration (OGSA-XDI ) service that extends
OGSA-DAI with additional functionality both to enable users to specify semantic
mappings (in the form of XMAP documents) among a set of data sources, and
to execute the XMAP query rewriting algorithm. The architecture of OGSA-
DAI and the core engine are designed for new activities in order to provide
new functionalities. Indeed, in order to implement the OGSA-XDI service we
decided to extend the free available OGSA-DAI Grid Data Service (GDS) ref-
erence implementation. According to this, we introduced a new activity, the
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Fig. 4. OGSA-XDI component services

XPathQueryReformulation activity, that wraps the XPath query reformula-
tion algorithm of the XMAP framework. In so doing, our implementation is re-
gardless of the specific version of OGSA-DAI, and, consequently of the adopted
standards (e.g., WSRF, WS-I, OGSI). The OGSA-XDI architecture is composed,
analogously to OGSA-DAI, of a number of new services including (see Figure 4):

– Grid Data Integration service (GDI). This service provides XML schema
mapping utilities for semantically connected XML data sources. To this aim
the GDI extends the OGSA-DAI by introducing a new activity devoted to
the reformulation of an XPath query by using the XMAP reformulation
algorithm.

– Grid Data Integration Factory (GDIF) which creates a GDI on request. A
GDIF extends a Grid Data Service Factory (GDSF) by introducing new
metadata in the form of XMAP doucments concerning the mapping rules of
the schema of the wrapped database.

– Database Access and Integration Service Group Registry (DAISGR) which
allows clients to search for GDIFs and GDIs that meet their requirements.
This registry service is the one provided by the OGSA-DAI system, as no
modifications are necessary to manage the introduced integration services.

4 GDIS Evaluation

In this section we briefly present preliminary evaluations of the GDIS prototype.
To experiment with GDIS, we have setup two GDIS systems, one located on
LAN and the other one over the Internet. In these experiments, we focus on
the performance of GDIS as a whole, not on the specificity of the reformulation
process which has been detailed in a previous work. The results presented in
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this section were produced according to the following protocol: the client uses
the factory service (GDIF) to create a GDI instance. It then uses this instance
to submit the same request 100 times (it waits for the results of the previous
request before sending the next one), and finally destroys the instance it has
created.

Reformulating queries that are submitted to it is the real task of our GDI.
Interactions taking place in this process are represented in Figure 5. First, the
client requests to the GDIF the creation of the GDI instance. After some time
spent to prepare the perform document, the client submits it to the instance it
has just created. During the reformulation process, the GDI asks the registry for
any mapping information it might need. It is visible on the figure that mapping
information queries are performed lazily, only when it is first needed, which
explains why we don’t see a bunch of requests to the registry and then some
quiet time to perform reformulation. Instead, reformulation CPU time is spread
in between mapping information requests: as soon as a new reformulated query
is found, the GDI asks the registry for the XMAP document of the schema over
which the query is expressed (assuming it has not seen it before). We shall also
notice that XMAP documents are all stored on the registry and that the GDI
therefore does not interact with the other GDIFs to obtain mapping information.
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Fig. 5. Entity interactions during the reformulation of a specific query in the WAN
configuration. Interactions are also in this case HTTP requests and responses.

Understanding the dynamics of the query reformulation is of high importance
to let us understand the results of the experimentations we have performed.

We evaluated the query reformulation time in both the LAN and WAN sce-
narios. As XMAP evaluation is out of the scope of these tests, we will focus on
the cutoff of the time spent in the system.

LAN Case. We start considering the case when all entities involved in the
system are located on the same LAN.
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Fig. 6. Relative repartition of the time spent for query reformulation with mappings
of an average rank equals to 2

The results (relative values) of the experiments for a mapping set with an
average rank of 2 are shown in Figure 6(a). The GDI time here is really the
time used by XMAP to perform the reformulation, while the “net” time is the
communication time spent on the network asking and waiting for XMAP doc-
uments. The low-latency and high-bandwidth network connecting the different
machines makes this time really low. At the maximum, it represents 6.7% of
the total time spent for the reformulation. Reformulation times, for their part,
are consistent with the results obtained in the XMAP evaluation, given the dis-
crepancy of the hardware between the different series of test. Network times are
almost negligible compared to those required to perform query reformulation.
The results obtained confirm the intuition that network time only depends on
the number and the size of the XMAP documents required to perform the full
reformulation.

WAN Case. Results for the rank 2 mapping set are shown in Figure 6(b). They
make it obvious that even for a moderate round-trip time (42 ms on average)
between the GDIF and the registry, network cost becomes largely predominant.
From our results, it appears that the total network time is roughly equivalent to
two round-trip times between the GDI and the registry, plus the time necessary
to transmit the document at the speed of the wire, multiplied by the number of
XMAP documents to import. With our settings, this was always inferior in value
to 3 round-trip times. This gives us useful hints to reduce the overall execution
time of the reformulation.

5 Conclusions

The continuously growing availability of data sources on Grids requires a co-
ordinated and integrated access of such data due to the heterogeneity of the
involved data models. Based on these reasons we proposed the XMAP frame-
work and the GDIS architecture combining a data integration approach with
existing grid services for querying heterogeneous, distributed databases. This
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way we provide an enhanced, data integration-enabled service middleware sup-
porting distributed query processing. As for future work, we plan to extend the
XMAP framework in order to support more expressive query languages (e.g.
XQuery). Further, declarative query approaches will be used to express the dis-
tributed and dynamic properties of the evolving network (it could change during
query execution), following recent ideas on declarative networking.
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High Performance Computing (HPC) enables increasingly complex computer
models of physical processes to be built. Parallel computing, adaptive grids,
and other computing tools are used to solve ever larger problems, but they also
increase the complexity of the software significantly and can have an impact on
the reliability of the software and the results of the computations.

These issues make the software and algorithms used an important part of the
science produced by simulations in geophysics and space physics.

However, traditional conferences and journals in geophysics and space physics
do not lend themselves for presentations and discussions of details of the models.
The aim of this minisymposium is to provide such a forum.
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Abstract. We present a deconvolution method intended for image
restoration. Although the method is computationally heavy, it obtains a
good restoration quality. We have successfully achieved the scientific aim
of parallelizing the algorithm, obtaining acceptable scalability on shared
and distributed memory machines.

1 Introduction

Any imaging instrument used to acquire data has a finite resolving power, or
resolution. For example, the image of a point source seen through a telescope
has an angular size related to the diameter of the optical elements. Most of the
scientific information can be extracted from these resolution limited data, so
further effort to improve the resolution using a post-processing mechanism is
not necessary. However, for some studies it is required to obtain data as inde-
pendent of the instrument properties as possible. Currently much effort is being
devoted to developing numerical methods for this purpose, generally called de-
convolution algorithms. In this paper we aim to show our implementation of a
method, primarily intended for processing astronomical images, that has wider
application.

2 The Problem

Let us assume that we are trying to determine the probabilistic distribution of
the arrival position of some particles to our detector. The detector has a discrete
set of windows or pixels, numbered from 1 to N . When a particle enters one
of these pixels, the instrument records the pixel number. Hereafter we refer to
this process as a measurement. After measuring a large number of particles, M ,
we are left with a sequence of numbers (r1r2 . . . rM ), being rk the pixel number

� This work has been partially supported by the EC (FEDER) and the Spanish MEC
(Plan Nacional de I+D+I, TIN2005-09037-C02-01).
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recorded after k measurements. If we are not interested in the ordering, the set of
measurements can be summarized through the number of times pixel i appears
in the sequence, denoted by ni.

ni ≡ freq(i, (r1r2 . . . rM )) (1)

If the detector is not perfect there is a non-null probability of measuring a
wrong pixel. We can model this effect by means of the conditional probability of
measuring j if the true entrance pixel was i, denoted as Rj

i , that we assume to
be known. In that case we have a second unknown sequence of the true entrance
pixels, (t1t2 . . . tM ), associated to the measured ones. Similarly to eq. 1, we have

ntrue
i ≡ freq(i, (t1t2 . . . tM )), (2)

and the sets of {ni}N
i=1 and {ntrue

i }N
i=1 are related according to

ni =
N∑

j=1

Ri
jn

true
j , (3)

We assume that Ri
j is a matrix with non-null determinant. In the special case

when it depends only of some distance measure between pixel i and j, then
eq. 3 is a convolution. Generally the measured value of the right hand side of
eq. 3 is not exactly equal to the left side due to statistical fluctuations. With
the adopted detector model, the distribution of these values follows a Poisson
distribution [1].

The aim of the inversion algorithms is to compute an estimate of the set
{ntrue

i }N
i=1 given the values {ni}N

i=1. This is known to be an ill-posed problem,
therefore there is no unique and stable solution, and the algorithms have to
choose a solution according to some criteria.

A good review of the plethora of algorithms devised to recover the “best” esti-
mate in the case of astronomical images can be found in [2]. These methods can
be roughly classified as linear regularization methods, and Bayesian framework
methods. The Wiener filter and the Tikhonov regularization belong to the first
class, which is described in detail in [3]. These methods are very fast, but the
use of a priori information is difficult and they create Gibbs oscillations in the
neighborhood of discontinuities. Methods in the second class rely on a model
for the probability of obtaining the measured image given a candidate to the
solution, or likelihood, and an a priori probability for any candidate solution.
Then the maximum a posteriori solution of the product of the likelihood and
the a priori probability is chosen as the “best” solution. The difference between
the methods in this class is how the a priori probability is chosen, ranging from
entropy based priors [4] to methods that make use of the spatial coherence of
the solution like [5] and [6]. Moreover, in the case of choosing a uniform prior, an
iterative maximization can be constructed and the solution is chosen by taking
a finite number of steps in this iteration. The resulting method in the case of the
detector model presented above is the Richardson-Lucy (RL) algorithm [7,8],
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which is nowadays widely used in the astronomy community. This method has
been subsequently improved to include a priori information on the objects in the
image and to add smoothness constraints [9] in order to avoid noise amplification
in the solution, although at the cost of introducing free parameters. During the
last years there has been a trend towards the use of multiresolution methods,
especially wavelet transforms, together with these inversion algorithms, which
cures some of their problems and fixes some of their free parameters [10]. Apart
from these algorithms, there are others that do not fit within the above classes
like the CLEAN [11] algorithm and its refinements, or the Markov Chain Monte
Carlo (MCMC) ones, like Pixon in its first versions [12]. The MCMC methods
present the peculiarity of increasing the number of degrees of freedom of the
inversion problem, thus alleviating its ill-poseness and reducing the dependence
on free parameters. Moreover they allow a better error estimation. The method
we propose belongs to this class, although a further approximation allows us a
deterministic computation.

3 Algorithm

In this section we first motivate our approach from a Bayesian point of view,
and then we describe our algorithm.

3.1 A Bayesian Approach to the Problem

Let us introduce the compressed notation SM (x) ≡ (x1x2 . . . xM ) for a sequence.
Given the sequence of measurements SM (r) ≡ (r1r2 . . . rM ), the problem stated
in the previous section is equivalent to find a sequence SM (t) ≡ (t1t2 . . . tM )
such that for any position in it, k, the true pixel traversed by the particle which
produced the measurement rk, was tk. Given the probability of a realization
of such solution conditional to the measured sequence, Psequ(SM (t)|SM (r)), we
adopt as the estimate of {ntrue}N

i=1 the following average

ntrue
i

∗ =
∑

(t′
1t′

2...t′
M )

freq(i, (t′1t
′
2 . . . t′M )) × Psequ(t′1t

′
2 . . . t′M |r1r2 . . . rM ) , (4)

where the asterisk denotes estimate, and the summation is for all sequences
(t′1t

′
2 . . . t′M ). The problem is then to compute Psequ(SM (t)|SM (r)). For this pur-

pose we make use of the Bayes theorem to write

Psequ(SM (t)|SM (r)) = KPR(rM |tM ) × Pprior(tM |SM−1(t))
×Psequ(SM−1(t)|SM−1(r)) (5)

where K is a normalization constant, the probability PR(rM |tM ) coincides with
RrM

tM
defined in section 2, and Pprior(tM |SM−1(t)) is the probability of next en-

trance pixel being tM given the sequence of all previous entrance pixels. Equa-
tion 5 defines an iterative process which allows to compute the average of eq. 4
if Pprior(tM |SM−1(t)) is given. Taking into account that in our detector model
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the sequence of true entrance pixels is generated by an stationary process, the
number of times a given pixel number appears in the sequence SM−1(t) follows
a binomial distribution. It is well known that a good estimate of the probability
of that distribution for pixel number tM is given by [13]

Pprior(tM |t1 . . . tM−1) =
freq(tM , (t1 . . . tM−1)) + ε

M − 1 + Nε
, (6)

N being the number of pixels, and ε a small parameter which depends on the
prior on the binomial distribution parameter1. In order to avoid a large depen-
dency of the prior with the number of pixels for small M , we choose ε = 1/N .

The iterative expression obtained inserting eq. 6 in eq. 5 is well suited to
compute the average in eq. 4 using the Monte Carlo method . An example of the
application of this method with synthetic data is given by Figure 1a, where we use
a total of 100 sampled sequences to compute the average in eq. 4. The synthetic
measured values of {ni}N

i=1, shown as a dotted histogram in the figure, have been
obtained by sampling from the the distribution resulting from applying eq. 3,
where {ntrue

i }N
i=1 is given by the continuous histogram labelled True distribution,

applying subsequently the definition given by eq. 1. For comparison figure 1b
shows the deconvolution of the same reconstruction obtained with the RL [7,8]
method, with the regularization condition tuned to obtain the best fit to the
true solution. The errors in this case are computed according to [14]. Clearly the
MCMC method recovers the true distribution within the uncertainties due to the
small size of the Monte Carlo sample. It also shows a good agreement with the
RL solution, except for the quoted errors. In RL they are clearly underestimated,
since for any pixel i they are very close or even smaller than

√
ntrue

i , which is
the lower bound assuming no correlation between pixels.

3.2 A Method Inspired by the Bayesian Approach for Large
Samples

The method based on the Monte-Carlo computation of average in eq. 4, scales
linearly with the size of the measured sequences, M . Since for many real appli-
cations, for example astronomical images, this number can be well above 106,
sampling a single sequence can be very time consuming and even unaffordable in
practice. We aim to obtain a deeper understanding of why the proposed method
works in order to apply a faster approximation for these real cases. To this end
we focus our discussion on the case in which the pixels can be arranged in a
two-dimensional matrix, such that some distance measure, d(i, j), between pix-
els is defined. Let us assume that the value of Ri

j for fixed j increases smoothly
with decreasing d(i, j), and that the absolute value of Ri

j1
− Ri

j2
approaches

zero if d(j1, j2) does. Under these conditions, we justify below that the values of
freq(i,SM (t)) for a single sequence SM (t) sampled according to eq. 5, have large
values for a small set of pixels, and small values for the rest. Given the sequence
1 Here we assume that the size of all pixels is the same. If this is not the case, a similar

argument can be built up upon the sizes of the windows.
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Fig. 1. Restoration of the synthetic data using the proposed Monte Carlo method (a)
and the RL method (b). In the Y axis ntrue

i is represented as a continuous histogram,
ni as a dotted histogram, and the circles represent the estimate ntrue

i
∗, i being the

pixel number of a total of N = 40. The error bars are the estimate fluctuation due to
Poisson fluctuations of the dotted histogram.

of measurements, (r1r2 . . . rM ), we can proceed to sample one realization of the
solution, (t1t2 . . . tM ), making use of eq. 5. According to this equation, the pixel
number t1 is sampled from the distribution

P (t1) =
Rr1

t1∑N
j=1 Rj

r1

, (7)

where N is the number of pixels. Now for t2, the distribution is

P (t2) = K′Rr2
t2 ×

{
1 if t2 = t1
N−1 if t2 �= t1

(8)

where K′ is a normalization constant. If the distance d(r2, t1) is small enough to
make Rr2

t1 >> N−1, then t2 will with very high probability be the same pixel as
t1 if N >> 1.

If this iteration is continued in the same manner, it is clearly seen that the
pixels which appear at the beginning of the sequence (t1t2 . . . tM ) are the ones
that appear more frequently in the whole sequence, whereas pixels close in
distance to these will rarely appear. Therefore if we represent the values of
freq(i, (t1t2 . . . tM )) in the 2D pixels arrangement we expect to see a distribu-
tion of spikes, whereas for another sampled sequence (t′1t′2 . . . t′M ) the position
of the spikes will be different. Taking into account this observation, we assume
that the position of the spikes for a single sequence can be approximated by
the nodes of a rectangular grid embedded in the 2D pixel arrangement, with a
fixed distance between adjacent nodes, s given by an integer number of pixels,
as illustrated in figure 2. Let us consider that the distance s, that we call step
size, is fixed and one of the possible embedded grids is chosen, We can then try
to estimate the sum in eq. 4 with the condition that all the pixel numbers in the
sequence (t′1t′2 . . . t′M ) of that equation coincide with a pixel in coincidence with
one of these nodes. If M is large, we expect the summation to be dominated



Parallelization of a Public Image Restoration Algorithm 335

by the most probable realizations of the sequence SM (t′). Since the prior given
by eq. 6 is non-informative in absence of measurements, this sequence has to be
very close to the ones which minimize the following quantity

L =
∑

i

(freq(i, r1r2 . . . rM ) − nest
i )2

freq(i, r1r2 . . . rM )
=

∑

i

(ni − nest
i )2

ni
(9)

where the summation is for all the pixels where the denominator is non zero,
(r1 . . . rM ) is the sequence of measurements, and nest

i is given by

nest
i =

∑

j

Ri
jfreq(j, (t′1t

′
2 . . . t′M )) (10)

where the summation in j is for all the pixels with a coincident position with a
node of the grid.

Since there are only ngrid(s) � N/s2 possible embedded grids with step size
s, this approximation allows the computation of eq. 4 by performing ngrid(s)
minimizations of eq. 9, one for each grid, without the need of sampling.

Fig. 2. Illustration of the arrangement of the pixels in a 2D matrix (squares) and the
embedded grid of spikes (circles), as explained in the text. In this case the distance
between adjacent nodes is two pixels.

Finally we are left with the problem of finding the optimal value of s. We
do so by noticing that in case the grid approximation is a good one, then eq. 9
should be distributed like a χ2 distribution with N −ngrid(s) degrees of freedom,
N being the number of pixels. Since in this case the values of L at the minimum
peak around N − ngrid(s), we look for the s such that the following quantity is
minimum

V (s) =
ngrid(s)∑

i=1

(Lmin(i) − N + ngrid(s))2 , (11)

where the summation index runs over all the embedded grids of step size s and
Lmin(i) is the value of eq. 9 evaluated at the minimum for the grid number i.

The algorithm resulting from this discussion can be summarized as follows:
Take s to be two pixels and Vbest a large number. For all the embedded grids
with step size s find the set of nest

i which minimizes eq. 9 using any reasonable
minimization algorithm. Compute V (s). If V (s) < Vbest compute the estimated
solution as

ntrue
i

∗ =
(nest

i )node

ngrid(s)
, (12)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Original image used to show the performance of the algorithm. (e) His-
togram resulting of drawing 107 samples distributed according to the convolution of
the original image with the Gaussian distribution as explained in the text. (b) Re-
constructed image using our algorithm, (c) the RL-1 solution, and (d) the RL-2 for
the case of 107 samples. Captions (f), (g) and (h) show the histogrammed residuals,
defined as (ntrue∗ − ntrue)/

√
ntrue for the reconstructions of captions (b), (c) and (d)

respectively.

where (nest
i )node is the value at the minimum for the grid with a node in pixel

i, increase s by one, make Vbest = V (s) and go to the second step. Otherwise
return the previously estimated solution and finish.

To show the performance of this algorithm, we have performed some tests
with the Lena image in figure 3(a). This image is usually used in general im-
age reconstruction test because it presents a rich variety of features like sharp
edges and homogeneous regions. For the conditional probability Ri

j we have used
an isotropic Gaussian distribution with σ = 2.5 pixels around the pixel j. To
simulate the measurement process, we have convolved the original with this dis-
tribution, and we have drawn 106, 107 and 108 samples distributed according to
the resulting image. The obtained measured image for the case of 107 samples
is shown in figure 3(e).

We have restored the images using our method, the RL method with the reg-
ularization condition suggested in [8], that we call RL-1. We have also searched
the regularization condition such that the RL method yields the solution which
best fits the original, undistorted image, that we call RL-2. The obtained recon-
structions for the case of 107 samples are shown in captions (b), (c) and (d) of
figure 3.

In order to quantitatively compare the different deconvolutions, we use the
metric
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Table 1. Quantitative comparative table of the estimates obtained with the different
methods as explained in the text

Samples Method 2L × 10−4 D × 103

106 RL-1 11.2 5.7
Our method 8.4 2.8
RL-2 7.7 1.2

107 RL-1 10.0 2.8
Our method 7.1 2.4
RL-2 4.5 0.9

108 RL-1 11.4 0.2
Our method 6.9 0.1
RL-2 4.4 0.1

D =
1
M

max
p

|
p∑

j=1

ntrue
j − ntrue

j
∗| , (13)

where M is the number of samples, the index j runs from pixel 1 to pixel p, and
maxaf(a, x) denotes the maximum value of the function f(a, x) with respect
to the variable a. This distance is closely related to the Kolmogorov test [1],
and thus is a sensitive measure of agreement between the reconstructed and the
original image. Indeed, a low value of D means that the reconstructed image
globally resembles better the original image. Notice also that D is related to the
residual. We also compute the value of L, summing all the pixels in the image,
as a metric of the distance of the reconstructed image convolved with the kernel
to the measured one.

The obtained values of the metrics for each method are shown in Table 1.
The RL-2 estimate is the best reconstruction, as it is inferred from both metrics.
Obviously this is because we have artificially forced it to be the best fit to the
true solution. However, as it is clearly seen in the corresponding row of figure
3, the result is not satisfactory at small spatial scales, especially for low number
of samples, since the appearance of artifacts greatly distorts the result. On the
contrary, the RL-1 estimate approaches the correct solution as the number of
samples grows very slowly, resulting in worse values for both metrics and in a
final image too smooth. In comparison, Our method’s results stay between these
two. The corresponding metric values approach the best ones as the number of
samples grow, introducing less artifacts for small number of samples.

4 Parallelization and Computational Results

Our algorithm admits several parallelizations with different grain. In this work,
we have focused our attention on the minimization step, which requires to com-
pute eq. 3. This is done by decomposing the summation of partial sums with the
same number of terms. Each partial sum is performed by a different processor,
and a subsequent combination allows to perform the required operation.
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We have developed our parallelization using both OpenMP [15], and MPI
[16], the current standards for shared and distributed memory architectures.
While the domain decomposition is straightforward in OpenMP, just introduce
the appropriate pragmas into the code, the MPI implementation requires some
minor changes in the sequential code, and involves a collective operation to
combine the partial sums.

Three different target platforms were used in the experiments. An IBM RS-
6000 SP with 8*16 Nighthawk Power3 @375Mhz (192 Gflops/s) with 64 Gb
RAM. The nodes are connected through an SP Switch2 operating at 500MB/sec.
The second platform is a 16 dual node cluster with Intel Pentium Xeon proces-
sors running at 2.8 GHz, with 2 GByte of RAM memory each, and connected
through a Gigabit switch. The operating system of the cluster was Linux. The
last platform is a Bull NovaScale 6320 server with 64 Intel-Itanium 1.5GHz pro-
cessors running Linux Kernel 2.6.7 The nodes are connected through a Quadrics
QsNetII network.

The IBM RS-6000 is a shared memory architecture while both clusters have
distributed memory. The compiler we used in the IBM RS-6000 was the OpenMP
native compiler, and the mpich implementation of MPI was used in the clusters.
In the case of the IBM RS-6000 and the Bull NovaScale server, we used only one
16 processors node.

Table 2 summarizes the results for all implementations of the code on different
platforms. We observe that the sequential code takes about 2 hours on the PC
cluster while it takes 3.5 hours on the Bull cluster. This is a consequence of the
larger computational power of the processors in the PC cluster. Nevertheless,
the speedup is much higher on the Novascale server due to the higher perfor-
mance of the Quadrics network. With 16 processors, the performance of the Bull
architecture overcomes that of the PC cluster, taking advantage of the network
in the implementation of the collective operation: 17 minutes on the PC cluster
vs. 15 on the Novascale.

The last four columns in Table 2 show the results on the shared memory
architecture using OpenMP for PSF sizes 30 × 30 and 20 × 20 (here we call PSF

Table 2. Execution time (secs.) and speedup for the implementations. For the IBM
RS-6000 implementation only speedups are shown.

PC Cluster BULL Novascale IBM 20 × 20 IBM 30 × 30
#Proc. Time Speedup Time Speedup Speedup Speedup
SEQ 7499 1 12574 1 1 1

2 3801 1.97 6335 1.98 1.95 1.92
4 1973 3.8 3275 3.84 3.66 3.64
8 1518 4.94 1684 7.47 6.77 7.02
16 1034 7.25 885 14.21 12.19 13.52
32 600 12.5 - - - .
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to the Ri
j matrix). For the IBM RS-6000 we observe an almost linear increase of

the speedup with the number of processors and we see that the results improve
with larger PSF sizes.

5 Conclusions

In this work we have introduced a deconvolution method. Although the method
is computationally heavier than classical methods, all regularization parameters
are fixed and the quality of the restoration is good. We have successfully achieved
the scientific aim of parallelizing our algorithm, obtaining acceptable scalability
on shared and distributed memory architectures.

Work in progress in our project includes the development of a computational
web service that will ease the access to this technology as a free service to the
scientific community.
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Abstract. Hurricane Katrina has had a devastating impact on the US
Gulf Coast, and her effects will be felt for many years. Forecasts of such
events, coupled with timely response, can greatly reduce casualties and
save billions of dollars. We show how visualizations from storm surge and
atmospheric simulations were used to understand the predictions of how
strong, where, and when flooding would occur in the hours leading up to
Katrina’s landfall. Sophisticated surface, flow and volume visualization
techniques show these simulation results interleaved with actual obser-
vations, including satellite cloud images, GIS aerial maps and LIDAR
showing the 3D terrain of New Orleans. The sheer size and complexity
of the data in this application also motivated research in efficient data
access mechanisms and rendering algorithms. Our goals were to use the
resulting animation as a vehicle for raising awareness in the general pop-
ulace to the true impact of the event, to create a scientifically accurate
representation of the storm and its effects, and to develop a workflow to
create similar visualizations for future and simulated hurricanes. Screen-
ings of the animation have been well received, both by the general public
and by scientists in the field.

1 Motivation

The catastrophe of Hurricane Katrina has not only highlighted the need for timely
and accurate measurements from instruments and forecasts from numerical sim-
ulations but also for meaningful visualizations that draw upon these diverse data
sources. In this paper, we highlight one such effort to visualize the events leading
to the flooding cased by Hurricane Katrina pulling together models of the hurri-
cane’s wind, temperature and pressure fields, the storm surge, 3D terrain views
from LIDAR and GIS data, combined with comparisons to what actually hap-
pened using time-varying atmospheric imagery from the GOES-12 weather satel-
lite and the actual hurricane tracks. The Center for Computation & Technology at
the Louisiana State University (LSU) is a partner in the SURA Coastal Ocean ob-
serving and Prediction Program (SCOOP) [1], a interdisciplinary community en-
gaging in distributed coastal modeling across the southeastern US with the goal of

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 340–350, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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building an integrated virtual laboratory for coastal research. Advisories from the
National Hurricane Center(NHC) about impending storms automatically trigger
automated workflows that use different wind fields to initiate coastal models such
as the ADvanced CIRCulation hydrodynamic model1 (ADCIRC) that require sig-
nificant parallel computing resources, available at CCT through the 1024 proces-
sor cluster SuperMike. The wind-fields are generated by the MM52 atmospheric
model. The SCOOP data archive [2] developed and deployed at LSU aggregates
the model outputs from multiple sources across the nation and is the source of
data for our visualization efforts.

2 Previous Work

The geoscience community has concentrated on visualizing, generally in 2D, data
from remote sensing and GIS mapping sources. In contrast, within the atmosphe-
ric sciences, much work is confined to scientific visualization methods such as iso-
surfaces or volume rendering for 3D atmospheric model outputs. Nativi et al. [3]
clearly highlighted the differences between the data models in the GIS and at-
mospheric sciences. While GIS is concerned with 2D georeferenced spatial data
in multiple layers, atmospheric science deals with hyperspatial (3D, 4D and be-
yond) where geo-referencing is not critical. Moreover, the temporal scales for GIS
is orders of magnitude more than in the atmospheric sciences (years vs. minutes).

Examples of atmospheric visualization include work from National Oceanic
and Atmospheric Administration (NOAA) Geophysical Fluid Dynamic Labora-
tory (GFDL)3, and more recently that of Hurricane Isabel motivated from the
IEEE Visualization 2004 contest. The above efforts deal with effectively render-
ing [4] or data mining and feature extraction [5] of time-varying multdimensional
scalar and vector fields and so, do not incorporate other data like GIS or storm-
surge models. Recent work in storm-surge and GIS visualization from Zhang
et al[6] focuses on geo-information processing such as extracting buildings from
LIDAR and interactive animation of flooding. The NOAA Satellite and Informa-
tion service also have some height-field visualizations of weather satellite data
including GOES-124. What makes our contribution unique is the integrated vi-
sualization of all the above diverse data sources.

3 Data Management

3.1 Data Sources

ADCIRC accurately models a wind-driven storm surge - its formation, movement
across the ocean and morphology as it impacts land. The underlying computa-
tional mesh is built upon topographic or bathymetric information given on an
1 http://www.nd.edu/∼adcirc/
2 http://www.mmm.ucar.edu/mm5/
3 http://www.gfdl.noaa.gov/research/weather/hurricane.html
4 http://www.nnvl.noaa.gov/

http://www.nd.edu/~adcirc/
http://www.mmm.ucar.edu/mm5/
http://www.gfdl.noaa.gov/research/weather/hurricane.html
http://www.nnvl.noaa.gov/


342 W. Benger et al.

adaptively refined unstructured grid ranging from the atlantic ocean into the
canals of New Orleans, where the physical resolution approaches just 100m. The
numerical simulation outputs water elevation, given as a scalar quantity on each
surface vertex, plus wind and water flow directions, provided as a 2D vector field,
on each vertex as well. In our dataset, this output responds to a physical time
interval of every 30 mins during Aug 15th until Sep 1st, 2005, just after Katrina
had made landfall.

To show the atmospheric conditions that lead to the hurricane formation and
the resulting surge, we make use of wind, pressure and temperature fields from
the MM5 atmospheric model simulation covering the same time period. Only
the domain-2 from this hierarchical data set was used. Here, each time-step
is a structured 3D grid with dimensions 150x140x48 storing the wind velocity,
pressure and temperature values, output for every hour of simulation domain.

The satellite imagery is based on observational data captured every 15 min
from the GOES-12 satellite. GOES5 is an acronym for Geostationary Opera-
tional Environmental Satellite, they are the American counterparts to the Euro-
pean METEOSAT weather satellites. Here, we focus on the ”longwave” infrared
channel, 10.7μm measured at 4km resolution.

The dates for all data sets were available on the same temporal domain. In the
MM5 case, the available atmospheric simulation results covered the time span of
up to 72 hours starting at midnight each day. Since this yielded multiple datasets
corresponding to the same time coordinates, we decided to restrict the analysis
to data representing the first 24 hour period of each simulation time frame. While
this might result in a slight discontinuity of animations when crossing the date
boundary, it also ensures that the input datasets contain only the simulation
results based on the most recently acquired meteorological measurements.

A 5m resolution elevation grid of the New Orleans area is provided by a
LIDAR6 data set, obtained from the State of Louisiana. In addition, we used
satellite imagery of the terrain from the MODIS and LANDSAT instruments at
500m and 250m resolution respectively.

3.2 Data Management Challenges

Satellite images and GIS data are well representable in common image file for-
mats such as GEOtiff 7. In contrast, MM5 and ADCIRC data are more complex,
and no standard format exists for these kind of data types. A huge number of
file formats compete, each with particular features for each application. Mostly
file formats are optimized for a certain data type, and consequently become mu-
tually exclusive. For instance, a file format being able to cover MM5 data can
not necessarily handle ADCIRC data as well and vice versa. Even for each spe-
cific, allegedly simple class of data, such as a triangular surface, there co-exist
myriads of file formats. Supporting each of these is a tedious work wasting time

5 http://www.oso.noaa.gov/goes/
6 LIght Detection And Ranging http://www.lidarmapping.com
7 http://www.remotesensing.org/geotiff/geotiff.html

http://www.oso.noaa.gov/goes/
http://www.lidarmapping.com
http://www.remotesensing.org/geotiff/geotiff.html
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of application developers. In a scenario where n various independent applica-
tions with no a-priori mutual knowledge need to interact, supporting each other
application’s file format becomes a major n2 implementation effort.

Ideally, we would like to use a common file format which covers all cases
of types of scientific data and thus achieves maximum synergy effects. To find
such a unified description, a common denominator is essential, which, following
D. Butler [7,8], is naturally provided by the language of mathematics for the
domain of scientific data. D. Butler proposed to use the mathematical concept
of vector and fiber bundles to layout data, a concept which is successfully im-
plemented in the IBM DataExplorer, now available as OpenDX 8. Within the
classification scheme of the fiber bundle data model, MM5 outputs are dynamic
scalar and vector data on three-dimensional regular domain, while ADCIRC data
are described by a a dynamic scalar field given on a static triangular surface.

3.3 The “F5” Approach

We do not necessarily need to introduce a new file format from scratch. The Hi-
erarchical Data Format V.5 9 is a widely used I/O library developed at NCSA
with a corresponding file format, known as HDF5. The HDF5 API provides many
unique features, which are particularly valuable in the context of Grid comput-
ing [9]. However, while HDF5 provides a syntax for the efficient representation of
scientific data, there still remains ambiguity in how to formulate a certain type
of scientific data. The layout in the concept of a fiber bundle provides a direction
toward narrowing down such ambiguities, and at the same time defining generic
operations. Such a layout is still not unique per se; our version [10] has been
shown to be able of covering a wide range of data types. Among other features,
it intrinsically supports the notion of time and handles scalar, vector, tensor and
other multivalued fields of arbitrary dimensions on regular and irregular mesh
triangulation schemes.

The fiber bundle HDF5 formulation according to [10] (“F5”) casts data into a
non-cyclic graph of five levels, called the Slice, Grid, Topology,
Representation and Field levels, with two additional invisible levels describ-
ing internal memory layout. This graph maps well to the hierarchical grouping
scheme of HDF5 by identifying the nodes of the graph with HDF5 groups. Writ-
ing custom file converters to transform the time-varying surge surfaces, wind,
pressure and temperature volumes into the F5 format was a one-time effort. The
conversion of MM5 data was done via translation into the intermediate NetCDF
format10 generated by the utilities available from the MM5 site11. Even though
NetCDF shares some similarities with the HDF5 (self-description, platform in-
dependence), it is missing several of its crucial features, such as the capability
of organization of datasets in named hierarchies as well as allowing their cross-
referencing at metadata level. The second step of the translation focused on the
8 http://www.research.ibm.com/people/l/lloydt/dm/DM.htm
9 Hierarchical Data Format version 5 http://hdf.ncsa.uiuc.edu/HDF5/

10 http://www.unidata.ucar.edu/software/netcdf
11 ftp://ftp.ucar.edu/mesouser/user-contrib/mm5tonetcdf 1.2.tar.gz

http://www.research.ibm.com/people/l/lloydt/dm/DM.htm
http://hdf.ncsa.uiuc.edu/HDF5/
http://www.unidata.ucar.edu/software/netcdf
 ftp://ftp.ucar.edu/mesouser/user-contrib/mm5tonetcdf_1.2.tar.gz
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extraction of the desired data volumes from the NetCDF files, reorganizing them
in memory and storing the resulting buffers in correctly annotated F5 hierar-
chy. We simplified this approach by treating cell-related quantities as given on
vertices and σ-level as height coordinates .

A file-system like listing of the 5-levels of the F5 structure of MM5 data
(regular uniform grid with three fields) will then appear as

/T=1.0/MM5/Points/Cartesian Group

/T=1.0/MM5/Points/Cartesian/Positions Group

/T=1.0/MM5/Points/Cartesian/wind Dataset {43, 135, 174}
/T=1.0/MM5/Points/Cartesian/temperature Dataset {43, 135, 174}
/T=1.0/MM5/Points/Cartesian/pressure perturbation Dataset {43, 135, 174}

whereby the fifth level contains the actual data, displayed here with their shared
dimensionality.

The ADCIRC data set provides topological information about the connectiv-
ity of vertex points, explicit vertex coordinates and scalar values denoting surge
elevation on each vertex. The F5 structure listing appears as:

/T=1.0/ADCIRC/Connectivity Group

/T=1.0/ADCIRC/Connectivity/Points Group

/T=1.0/ADCIRC/Connectivity/Points/Positions Dataset {1190404}
/T=1.0/ADCIRC/Points Group

/T=1.0/ADCIRC/Points/Cartesian Group

/T=1.0/ADCIRC/Points/Cartesian/Positions Dataset {598240}
/T=1.0/ADCIRC/Points/Cartesian/elevation Dataset {598240}

Going via F5 reduced the loading time of the large time-varying datasets pro-
vided originally as text files from several minutes to a fraction of a second.
Moreover, the integrated caching algorithms in the HDF5 library itself eases
loading of data on demand, both for ADCIRC as well as for MM5, as both can
be accessed through the same interface. They may even be stored in the same
file, thereby allowing to specify relationships among both simulations types and
ensuring consistency (e.g., with respect to same timescale).

3.4 Data Import for Visualization

We used the Amira visualization tool [11] for rendering. It does not have an
intrinsic notion of time-dependent objects and supports only static geometries
well. Each Grid node in the fiber bundle hierarchy describes a geometry at a
certain time step and can thus be mapped into a static geometry. The enveloping
Slice level provides a sequence of Grid objects. Thus we extended the Amira
class hierarchy by deriving dynamic objects from their static pendants. This
recipe is straightforward to implement and scales well to the diverse data types.

As drawback, this approach does not allow to inspect more than one time
step at once (e.g. in different viewers) except by copying the entire visualization
network. Another implementation issue is that not all of the Amira base classes
allow easy modification of their properties once created.
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The mapping of Grid objects to static objects works fine for entirely time-
varying objects (as long as the topological type, e.g. of being a triangular sur-
face, remains the same). However, some components of the dynamic Grid may
well remain constant. In particular, the connectivity and vertex location of the
ADCIRC grid does not change through time, only the data values (surge eleva-
tion, wind velocity) evolve. We can address this issue by utilizing symbolic links
among HDF5 datasets - a feature provided by HDF5 similar to a Unix filesystem.
For instance, we make a symbolic link of the Grid’s connectivity information at
time 1290.0 to the connectivity information of time 0.0 to indicate that it did
not change, resulting a structure as follows:

/T=1290/ADCIRC/Connectivity Group

/T=1290/ADCIRC/Connectivity/Points Group

/T=1290/ADCIRC/Connectivity/Points/Positions Dataset,

−→ same as /T=0/ADCIRC/Connectivity/Points/Positions

/T=1290/ADCIRC/Points Group

/T=1290/ADCIRC/Points/Cartesian Group

/T=1290/ADCIRC/Points/Cartesian/Positions Dataset,

−→ same as /T=0/ADCIRC/Points/Cartesian/Positions

/T=1290/ADCIRC/Points/Cartesian/elevation Dataset {598240}

This way we can easily specify any property of an evolving Grid to remain con-
stant, equally referring to the entire time range, just a time interval or even
intermittent. This feature can well be utilized as certain ADCIRC runs are also
performed on a mesh that is modified once during the simulation in order to cope
with levee failure. We are not aware about any other file format which supports
a comparable mechanism to express partial time-dependency.

4 Specific Visualization Algorithms

4.1 Atmospheric Data (MM5)

Amira provides many means of visualizing vector fields such as LIC, streamsur-
faces and streamlines [12]. The non-commercial research version also includes
advanced algorithms for extracting and displaying topological features [13,14]
However, for our purposes of communicating the results of hurricane simulations
to the public and scientists unfamiliar with vector field topologies, we found the
the technique of illuminated stream lines [15] most intuitive beside simple vector
arrows icons. While vector arrows are frequently used as a first step and easily
convey the values of a vector field, they do not scale well to display its global
structure. Streamlines are superior to depict features such as the vortex of a
hurricane. The seeding of streamlines is a critical issue affecting the overall ap-
pearance. For a static view, we can manually seed the streamlines within region
of interest such as the city of New Orleans ( Fig. 1). This approach does not
extend to a dynamic vector field, where streamlines are no longer appropriate
at all due to their vastly changing character. However, we can reduce the length
of the streamlines radically such they only depict local variations of the vector
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Fig. 1. Streamlines of the hurricane wind vector field at landfall. The streamlines are
color-coded by temperature showing higher temperatures above sea surface than at
land indicating loss of energy after landfall, while at the same time depicting the push
onto the Lake Ponchartrain causing the flood in the city of New Orleans.

field, as these are more likely to be temporally smooth than global features. We
need to compensate the smaller line fragments by increasing the density of lines.
Consequently this increases the visual clutter again and requires suppressing of

Fig. 2. The pressure scalar field indicates the location of the eye of the hurricane (left).
We use it to set the transparency of the streamlines (right), thereby emphasizing the
hurricane’s eye in an automated way which is suitable for animation.
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regions in the volume where the wind is of minor relevance. Such regions are
indicated by the pressure, see Fig. 2. We therefore map this scalar field to the
transparency of the stream lines and get wind field indicators limited to the
vicinity of the eye of the hurricane.

4.2 Surge Data (ADCIRC)

The ADCIRC data set consists of more than one million triangles plus time-
varying scalar for surge elevation and a vector field for wind information. In
order to achieve good rendering performance we utilize OpenGL extensions such
as Vertex Buffer Objects. Surge elevation is most intuitively represented by mod-
ifying the vertex locations like a height field. For a triangular surface given in
3D, this is not straightforward because there is a freedom of choice in which
direction to extrude the surface at each vertex. For the special case here we may
just concentrate on the z (height) direction of the surface, which denotes the
bathymetry of the sea ground. We blend this bathymetric value and the surge
elevation, as this provides a visually appealing mean to display structure within
otherwise homogeneously watered regions.

4.3 Elevation Data (LIDAR)

A LIDAR data set is canonically visualized as a height-field. The extremely
high-resolution of GIS elevation models, 11Kx7K in our case renders 154 mil-
lion triangles using a brute-force triangulation method. Interactive rendering
is virtually impossible with this approach. We have implemented Continuous
Level-of-Detail (CLOD) techniques to dynamically simplify the mesh at run-time
depending on the view point. Several algorithms already exist in this area. We
chose the ROAM [16] algorithm due to its inherent simplicity and low memory
overhead. At every frame, ROAM recursively tessellates the terrain generating
triangles depending on the distance to the viewer criteria (or one could also use
surface roughness). One nice feature of the recursive method is that we are not
storing any per-vertex data but just generating them on the fly for the drawing,
freeing up huge amounts of memory. We use the automatic texture coordinate
generation functionality in OpenGL, mapping texture coordinates to the ver-
tices. The drawback of this approach is heavy computation on the CPU and
only using the GPU for drawing triangles.

4.4 Cloud Data (GOES)

The channel from the GOES satellites do not correspond to visual colors, so
they cannot be used to create a true-color image. Five channels are beyond the
capabilites of our trichromatic color perception anyway, so we face the chal-
lenge of appropriate representation. As we also require integrated display with
atmospheric, surge, LIDAR and GIS data, the cloud representation needs to be
minimalistic and we refrain from displaying all channels at once. The visible or IR
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Fig. 3. Match (left) and mismatch (right) of atmospheric simulation and satellite data

channels are appropriately displayed as a transparent 2D gray-scale layer; after
geospatial alignment their evolution allows depicting the match with atmospheric
data (see Fig. 3), where the discontinuity in the MM5 model data mentioned
above appears more or less prominently. Alternatively it is also reasonable to
represent the long-wave IR channel as height field, because this channel which is
directly related to the physical height of the cloud cover through their temper-
ature. Thus we can employ again the height field rendering algorithm described
earlier, using the GOES-12 visible channel as texture.

5 Conclusions

We have shown how various data sources ranging from computational models
of storm-surge and wind fields to observational data from satellites and sen-
sors can be integrated into a holistic, compelling and interactive visualization
of Hurricane Katrina. The selected methods illustrate the interaction between
topographical and surge data (LIDAR/ADCIRC), the development of the surge
as predicted from the atmospheric model (ADCIRC/MM5) and allow to as-
sess the deviation of the atmospheric model from observation (MM5/GOES), all
within the geospatial context provided by GIS reference images. We have devel-
oped efficient data layout mechanisms to ensure fast and uniform access to the
multiple time-varying datasets. Existing rendering techniques were also applied
and extended to better understand the phenomenon and her effects. All these
above efforts required new partnerships between coastal modelers, engineers and
computer scientists.
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Abstract. The use of high performance computing techniques has not
reached the level of simplicity needed to allow their use by the average
researcher. Interdisciplinary groups are still a necessity in many cases.
We present the result of a collaboration between astrophysicists and
computer science researchers as part of a project to develop a useful tool
for astrophysics research. Three different parallelization tools, OpenMP,
MPI and llc, are compared in order to determine which one is the most
appropriate in terms of performance and ease-of-use.

1 Introduction

High Performance computers have became an essential part of modern research,
but software tools used to harness their power have not reached the level of
simplicity expected by the average researcher. They are familiar with the logic of
sequential coding, but the time needed to learn these tools is seen as a distraction
from their field of research. Furthermore, most of the issues related to parallel
programming (such as concurrency, message passing, etc.) are foreign to them.
Last, but not least, codes are usually developed on their workstations which are
single processor systems. They can develop, test and run without having to deal
with queues, shared resources, etc., using tools they are comfortable with. This
generates situations where problems that can be solved with current technology
are put aside because the execution times are too large to consider the programs
useful. In many cases, only through collaboration with researchers in computer
science can these codes be transformed into tools that allow for further advances
in their fields.

In this work we expose a case of a simple sequential code, where parallel pro-
gramming is needed to enable fast computing. A high performance computing
background is needed to solve this parallelization problem. Indeed, astrophysics
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researchers at the Instituto de Astrof́ısica de Canarias (IAC) developed a For-
tran77 sequential code to generate magnification patterns induced by micro lens-
ing. The problem was the execution time. A simple pattern took aproximately
10 hours to complete. It was clear that only through the use of high performance
computing techniques could this code become useful. Our main objective was
to reduce the execution times to the point that would allow the generation of
large numbers of these patterns within a reasonable time. A second objective
was to evaluate different parallelization tools that can be used with these types
of problems.

The remainder of the paper is organized as follows: In order to understand the
value of this research and its computational complexity, an introduction to the
problem is given in Section 2. In Section 3 we describe the method to generate the
magnification patterns. Section 4 describes the different parallelizations that have
been implemented. Section 5 presents the results of the computational experience.
Finally, we summarize a few concluding remarks and future work in Section 6.

2 The Problem

Deflection of light by gravity is one of the most outstanding predictions of gen-
eral relativity. It was experimentally confirmed by an expedition to measure
the displacement of the apparent positions of stars on the sky caused by the
gravitational field of the Sun during the 1919 eclipse. In spite of its great im-
portance as a test of general relativity, the deflection of star light by the Sun or
any other star has a relatively weak effect. After the discovering of galaxies, as-
tronomers realized that the huge gravitational field of these objects may induce
strong optical effects like the formation of multiple images (in a way similar to
terrestrial atmospheric mirages). But, it was only 60 years after the expedition
to the 1919 eclipse, that a double image of a very far away object caused by
the gravitational field of an intervening galaxy (the lens galaxy) was discovered.
The distant source was a quasar, a galaxy that hosts in a tiny nuclear region a
super-massive black hole surrounded by a shining disc of in-spiraling matter (ac-
tive galactic nucleus). The brightness of the two images of the quasar is different
and depends on the source and lens distances and on the degree of alignment
among observer, lens and source. As far as this geometry is not changing, the
ratio between the brightness of the two images should be constant. However, the
distribution of matter in galaxies is not smooth but strongly discontinuous. It is
granulated in stars and, perhaps, other compact objects. Thus, the movement of
one star (or more realistically of a distribution of stars) crossing the light beam
of one of the quasar images can produce a small scale but measurable gravita-
tional lens effect (quasar microlensing). As long as the movements of the stars
in the regions where the light-beams of the two images cross the lens galaxy are
independent, microlensing will induce uncorrelated variability in the brightness
of the two images. This variability will give us information about two important
physical issues very difficult to study by other means: the distribution of stars
in the lens galaxy and the unresolved structure of active galactic nuclei.
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Fig. 1. A sample magnification pattern

The study of the experimental records of the brightness variability of lensed
quasars with time (light curves) faces a statistical (formally stochastic) prob-
lem. We must find which configurations of stars in the lens galaxy and relative
displacements of the source that can reproduce the observed variability. To ob-
tain statistically acceptable estimates of the physical magnitudes involved, a
large number of light curves based in random distributions of stars and rela-
tive displacements should be generated. Usually this is attempted by computing
magnification patterns that give, as a function of position, the magnification
induced by microlensing in the source plane. The displacements of the source
across this pattern will generate the model light curves.

1 for ( i = 0; i < end_y ; ++i )
2 for ( j = 0; j < end_x ; ++j )
3 /∗ Calcu late the d e f l e c t i on caused ∗/
4 /∗ by the s tar f i e l d ∗/
5 x1 = i

6 y1 = j

7 for ( index = 0 ; index < number_stars ; ++index )
8 x1 , y1 = deflect ( x1 , y1 , star [ index ] )
9 /∗ Translate the ray coordinates to the ∗/

10 /∗ r e su l t i n g matrix coordinates ∗/
11 x , y = transform ( x1 , y1 , N , end_x , M , end_y )
12 /∗ I f the r e su l t i n g coordinates are with in the ∗/
13 /∗ matrix range , update the matrix element . ∗/
14 i f x > 0 and x < N

15 and y > 0 and y < M

16 result [ x , y ] = result [ x , y ] + 1

Listing 1. Pseudo code
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3 The Algorithm

Magnification patterns are usually computed using the inverse ray shooting tech-
nique that consists of back shooting a regular grid of rays from the image plane
to the source, making the amplification in a given source-plane pixel propor-
tional to the number of light rays collected by it. This technique implies a high
computational cost. On one hand, around 28 rays per pixel should be shot to
obtain magnification patterns with reduced noise. On the other hand, the ray
equation includes contributions for thousands of stars that should be evaluated
for each shot.

Listing 1 presents the pseudo code to generate the magnification pattern. The
loops in lines 1 and 2 generate the regular grid of rays which represents the
image plane. The loop in line 5 determines the effect of the gravitational field of
each star on the ray path. Finally, in line 12, the resulting coordinates update
the matrix that represents the source plane.

The original sequential code used for the generation of the magnification pat-
terns is quite straightforward, but its execution time, even for cases with a small
number of stars, was unacceptable. Considering the fact that the number of exe-
cutions needed to obtain a statistically acceptable estimate is approximately one
hundred, we can only conclude that the usefulness was, to say the least, limited.
In order to make it a viable tool, execution time had to be reduced by at least
one order of magnitude. Clearly this could only be achieved through the use of
high performance computing.

1 /∗ Main loop ∗/
2 for ( i = 0; i < end_y ; ++i ) {
3 . . .
4 #pragma omp parallel for private ( j , . . . )
5 for ( j = 0; j < end_x ; ++j )
6 {
7 . . .
8 for ( index = 0; index < number_stars ; ++index ) {
9 . . .

10 }
11 i f ( x >= 0 && x < N &&
12 y >= 0 && y < M ) {
13 pos [ j ] = x + y ∗ N

14 }
15 }

17 /∗ Update the r e su l t i n g matrix ∗/
18 for ( j = 0 ; end_x ; ++j ) {
19 i f ( pos [ j ] != −1) {
20 result [ pos [ j ] ] += 1 ;
21 pos [ j ] = −1;
22 }
23 }
24 }

Listing 2. OpenMP code
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Fig. 2. Hits distribution after processing 100 lines

4 Parallelization

One should expect a high level of speed up in a parallel version of the sequential
code, given that the processing of each light ray is independent from the others.
While it may appear as a simple problem of parallelizing nested loops, a difficulty
arises from the way that the memory is accessed. Figure 1 is a common example
of a microlensing magnification pattern. Areas with a large number of ray hits
are shown in dark, while white areas represent a low density of ray hits.

As described in Section 3, the rays are launched as a regular grid (lines 2
and 5 of Listing 2) and are then deflected in different directions by the star field
causing a large amount of hits, that means updates of the same memory position
in some areas of the resulting matrix, while other areas get very few. We observe
that the distribution of the rays hits is irregular. Due to the random nature of
the star field, there is no way to determine any access pattern beforehand. In
Figure 2, we can observe the effect of the deflection after one hundred lines of
rays have been processed. What was originally a regular grid has became a cloud
of points spread throughout the resulting matrix. We are dealing with a sparse
access pattern with, as explained before, a high level of concurrency. Therefore,
apart from the concurrency problem, we also have to deal with minimizing the
number of cache misses that are intrinsic to this disperse memory access. A final
problem arises by the fact that the algorithm looses precision at the edges of the
star field. To avoid this problem, the resulting matrix represents only the central
area of the magnification pattern. A significant amount of rays fall outside the
matrix and do not produce an update. This generates a load imbalance situation.

In order to parallelize the code, these issues had to be taken into account.
We decided to try three different parallelization tools: OpenMP, MPI and llc.

Nowadays, OpenMP [1] and MPI [2] are universally accepted as the standard
tools to develop parallel applications. llc ([3], [4]) is a C based parallel language
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1 chunk_size = end_y / MPI_NUMPROCESSORS ;
2 start = MPI_NAME ∗ chunk_size ;
3 i f ( MPI_NAME == ( MPI_NUMPROCESSORS − 1) ) {
4 chunk_size += ( end_y % MPI_NUMPROCESSORS ) ;
5 end = end_y ;
6 } else {
7 end = ( MPI_NAME + 1) ∗ chunk_size ;
8 }

10 for ( i = start ; i < end ; i++ ) {
11 . . .
12 for ( j = 0; j < end_x ; ++j )
13 {
14 for ( index = 0; index < number_stars ; ++index ) {
15 . . .
16 }
17 . . .
18 i f ( x >= 0 && x < N &&
19 y >= 0 && y < M ) {
20 result [ x + y ∗ N ] += 1 ;
21 }
22 }
23 }

25 i f ( MPI_NAME == 0) {
26 for ( i = 0; i < ( MPI_NUMPROCESSORS − 1) ; i++) {
27 MPI_Recv ( s_aux , size , MPI_FLOAT , MPI_ANY_SOURCE ,
28 MSG_TAG , MPI_COMM_WORLD , &status ) ;
29 for ( j = 0; j < size ; j++) {
30 result [ j ] += result_aux [ j ] ;
31 }
32 }
33 } else {
34 MPI_Send ( result , size , MPI_FLOAT , 0 , MSG_TAG ,

MPI_COMM_WORLD ) ;
35 }

Listing 3. MPI code

that uses compiler pragmas similar to OpenMP to express parallelism. llCoMP,
the llc compiler, is a source to source compiler that generates MPI code. For
the interested reader we refer to [4] for further details regarding the language
and its implementation.

Listing 2 outlines the OpenMP code version. The main computational area of
the code consists of two nested loops (lines 2 and 5). Prior to reaching the code
in Listing 2, the access pattern to the resulting matrix had to be modified to
avoid concurrent accesses when parallelizing the inner loop. This was achieved
by using a temporary array of size (N * number of rays per pixel) to store the
address of the pixel to be updated in the resulting matrix. Upon leaving the
parallel loop, the resulting matrix gets updated by using the contents of the
temporary array as the index ( lines 18 − 23 in Listing 2).

The parallelization of the external loop (line 2) does not require modifications
to the memory access pattern in the innermost loop. While being the most sim-
ple part, it is also very memory intensive. The resulting matrix for the average
problem has a size of 64Mb. If this loop is parallelized, all the threads would
replicate this matrix. While this is not a problem in clusters where each proces-
sor has its own memory, it may be an issue on shared memory systems. For the
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1 #pragma l l c for

2 #pragma l l c reduce ( r e su l t , r e su l t aux , s i z e , LLC SUM)
3 for ( i = 0; i < end_y ; ++i ) {
4 . . .
5 for ( j = 0; j < end_x ; ++j )
6 {
7 . . .
8 for ( index = 0; index < number_stars ; ++index ) {
9 . . .

10 }

12 i f ( x >= 0 && x < N &&
13 y >= 0 && y < M ) {
14 result [ x + y ∗ N ] += 1 ;
15 }
16 }
17 }

Listing 4. llc code

same problem, the size of the temporary array is 32Kb. Therefore, parallelizing
the internal loop is the best choice for the OpenMP version. On the contrary, for
MPI and llc it was clear that the parallelization of the external loop was the
best choice due to the larger grain size. Still, in order to make a more complete
comparison between MPI and llc we also developed internal loop paralleliza-
tions using both tools. Finally, a master-slave implementation, both in MPI and
llc, has also been included as part of the computational experience in order
to evaluate the impact of the load imbalance pointed out at the beginning of
this section. For code complexity comparison purposes Listing 3 and 4 schemat-
ically present the MPI and llc implementations respectively for the external
loop parallelization.

In order to parallelize the external loop in llc we only have to add two
pragmas before the external loop. The first pragma declares a parallel for as it
is done in OpenMP and the second pragma defines a reduce operation to be
performed on the resulting matrix.

5 Computational Results

We present results for three different architectures: a shared memory system
Bull NovaScale 6320 server with 32 1.5 GHz Intel Itanium 2 processors with
a Quadrics QsNetII (Figure 3), a distributed shared memory system IBM RS-
6000 with 8*16 Nighthawk Power3 375Mhz processors with a SP Switch2 at
500MB/sec (Figure 4) and a distributed system Dell PC cluster with 32 Intel
Xeon 2.8 GHz processors using a gigabit Ethernet (Figure 5).

Figure 3 shows no difference between the OpenMP version, the external loop
parallelizations of MPI and llc and the internal loop MPI parallelization. On
one hand we can observe a fall in scalability of the llc internal loop paralleliza-
tion. This behavior is also present in Figure 4 and most noticeable in Figure 5,
the system with the lower interconnecting bandwidth. The llc internal loop par-
allelization seems to suffer a significant degradation which is probably caused by
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an inefficient handling of the excess communication. On the other hand the ex-
ternal loop parallelization of MPI and llc show no performance difference in
any of the systems. In Figures 4 and 5, the master-slave versions of the code
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also seem to scale equally well. The lower performance of the master-slave MPI
version on the IBM RS-6000 system was caused by a high system load during
the experiment.

It is clear from the graphs that the best performance across all architectures
are the external loop parallelization and the master-slave for MPI and llc.
We can also determine that the load imbalance situation described in section 4
does not seem to have any significant impact on performance. Due to the added
complexity of the master-slave, we can reduce our choice to the external loop
parallelization. Finally, the choice is only between MPI and llc. Comparing
Listings 3 and 4, the choice is clear; llc is simpler than MPI while offering the
same performance.

The overhead in communications in the internal loop llc parallelization that
we have pointed before, implies that as the number of processors increase, MPI
will be able to maintain a better scalability than llc. Given that the execution
time on the Bull system using 32 processors was under 10 minutes, it is clear
that the possible gain in performance provided by the higher scalability of MPI
does not compensate for the added complexity.

6 Conclusions

We can conclude that between the three tools that we have used, OpenMP,
MPI and llc, the best choice for distributed systems is llc. The simplicity
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of the OpenMP-like syntax, combined with its high performance makes it the
ideal tool for parallelizing this type of problems. For shared memory systems,
OpenMP should be the choice if memory usage is a problem.

We have also shown that, the cooperation between researchers in science and
high performance computing can overcome problems that for the scientist may
seem too computing intensive to be viable. In this particular case, through code
optimization and parallelization, we were able to reduce the execution times by
a factor of 56.

Work in progress consists of the development of methods for extraction and
analysis of the light curves from the magnification patterns using high perfor-
mance techniques. Once this step is completed, we will be ready to offer a com-
plete tool to the astrophysics community.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface, vol.
2.5 (2005)

2. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Uni-
versity of Tennessee, Knoxville, TN (1995), http://www.mpi-forum.org/
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Abstract. A kinetic particle-in-cell simulation and 3D point-rendering
visualisation are used to investigate a two-stream plasma instability, pos-
sibly found in the accretion disc of black holes. A plasma in an oblique
external magnetic field is considered. The instability gives rise to a quasi-
electrostatic wave able to trap electrons and accelerate them by cross-
field transport. The results of the simulation show an acceleration of the
electrons to speeds similar to the bulk speed of microquasar jets.

Keywords: collisionless plasma, oblique magnetic field, astrophysical
jets, electron surfing acceleration, PIC simulation, visualisation.

1 Introduction

Relativistic plasma flow in astrophysical environments such as microquasars[1],
active galactic nuclei or quasars[2] and gamma ray bursts[3], implies the existence
of efficient particle acceleration mechanisms. The transient jets of microquasars
can reach Lorentz factors1 of a few. The collimated jets of active galactic nuclei
may reach Lorentz factors of 10-100 and gamma ray burst jets probably reach
Lorentz factors of 100-1000. Since in-situ measurements through satellite exper-
iments at these remote environments cannot be performed as is done in solar
system plasmas[4], the underlying mechanisms have to be deduced from limited
observational data. Key similarities between microquasars, active galactic nuclei
and probably the long gamma ray bursts is the presence or formation of a com-
pact object (a black hole or a neutron star) surrounded by an accretion disc and
a jet coupled with the disc[5].

The accretion disc is formed by material that is accelerated towards the com-
pact object[6] but prevented from falling directly into it by the material angular
momentum. Thermal processes within the disc allow for the transport of angu-
lar momentum across the disc. The energies involved in mass accretion give that
these thermal processes may be the sources of jets, electromagnetic emissions and
cosmic ray particles. The collective mechanisms in the accretion disk dynamics
are intrinsically multi-scale and range from global thermo-viscous instabilities[1]

1 The Lorentz factor γ =
(
1 − (v/c)2

)−1/2 and v/c is the velocity magnitude to the
speed of light ratio.
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down to small scale kinetic instabilities, driven by charged particle beam dissi-
pation. Charged particle beams are known from satellite observations in solar
system plasmas and laboratory plasma experiments and may arise from internal
accretion disc shocks[7][8] or magnetic field reconnection events[9][10]. Macro-
scopic instabilities can be understood by hydrodynamic or magnetohydrody-
namic models[11] whereas the energy dissipation of charged particle beams are
kinetic in nature. Our research addresses the latter and is based on particle-
in-cell (PIC) simulations[12]. The PIC code solves Maxwell’s equations together
with the relativistic Newton-Lorentz equation as the particle equation of motion.

The purpose of our work is to examine the thermalisation of relativistic par-
ticle beams in case studies relevant for astrophysical plasma environments. In
particular we assess the efficiency of beam thermalisation in generating relativis-
tic flow, energetic particles and, within the limits of the kinetic approximation
and finite code resolution, electromagnetic radiation. The present work focuses
on the two-stream (Buneman) instability[13] in combination with a weak mag-
netic field not aligned with the beam flow direction. This instability results in
quasi-electrostatic upper hybrid waves which saturate by trapping electrons in
the wave potential[14]. The trapped electrons move on average with the phase
speed of the wave. In the presence of a magnetic field, with a component per-
pendicular to the wave propagation direction, the trapped electrons undergo
acceleration due to the cross-field transport. The special case of a perpendicular
magnetic field is known as electron surfing acceleration(ESA)[15][16]. ESA has
been shown to produce highly energetic electrons if the ion beam driving the
two-stream instability propagates with a mildly relativistic speed. The peak en-
ergy gain is however constrained by the stability of the saturated wave[17][18].
Previous work has shown that an increase in the beam speed from 0.6c to 0.9c to
0.99c yields peak Lorentz factors γ(0.6) = 10, γ(0.9) = 200 and γ(0.99) > 1000
[19][20] respectively. Such electrons will emit synchtrotron radiation through
their gyration in the external magnetic field. As a consequence of the perpendic-
ular magnetic field geometry, no magnetic field aligned relativistic plasma flow
is generated by the ESA. The electrons remain confined at the acceleration site
and are eventually cooled down by their synchrotron radio emission. Tilting the
magnetic field can introduce field-aligned flow that may feed relativistic astro-
physical jets. In Refs.[21][22] the relativistic boost of the magnetic field, however,
implied initial conditions similar to ESA2. In this paper the weaker Lorentz boost
gives a different scenario to that in Refs.[21][22] and our aim is to investigate
whether relativistic bulk flow speeds can be achieved for the considered plasma
parameters.

The outline for the paper is: Section 2 discusses the underlying equations to
the numerical code. Section 3 gives the simulation model and setup and dis-
cusses the point-rendering visualisation application.The PIC-simulation results
are treated in section 4.

2 A Lorentz transformation to the frame of reference of the wave affects only the
perpendicular magnetic field component.
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2 Particle-in-Cell Simulation

The TwoDEM PIC code is based on the virtual particle scheme[23] and approxi-
mates the phase-space distribution of a space plasma by a collisionless fluid. The
fluid is represented by a set of computational particles evolved in time by the
relativistic Newton-Lorentz equation,

dp
dt

=
d(mv)

dt
= q (E + v × B) , (1)

dx
dt

= v, (2)

where m is the relativistic mass of the particle and q the particle charge, and
Maxwell’s equations,

∇ × B = μ0j + ε0μ0
∂E
∂t

, (3)

∇ × E = −∂B
∂t

, (4)

using standard notation. The code automatically ensures ∇ · B = 0 to round-
off precision. The current assignment scheme, known as the virtual particle
scheme[23], fulfills exactly a discretised form of ∇ · E = ρ/ε0 and no separate
correction term is necessary. However, it results in higher noise levels. The sim-
ulation results are made more general with normalised units and the following
transformations from physical (unprimed) to normalised (primed) electric and
magnetic fields are used; E′ = eE/cmeωp,e and B′ = eB/meωp,e. The normalised
current density j′ = j/nece. We substitute time and space variables t′ = tωp,e

and x′ = xωp,e/c. The velocity is v′ = v/c and the charge and mass of particle
i are q′i = qi/e and m′

i = mi/me. Here me and e are the electron rest mass and
the fundamental charge magnitude respectively. The electron plasma frequency
ωp,e =

√
nee2

ε0me
, where ne is the electron number density. Under appropriate initial

conditions, waves will self-consistently grow from noise level to non-linear satu-
ration. We have chosen to focus on the dominant quasi-electrostatic two-stream
modes. Thus we are able to use a simple geometry of the simulation box and
resolve only one spatial dimension. The remaining spatial components are rep-
resented by one cell only. Periodic boundary conditions are set in all directions.
The code is implemented in Fortran 90 and parallelised with the MPI library.
Each computational node has the full electromagnetic field data available and
the simulation particles are distributed evenly, where a node always keeps the
same set of particles. At each time step, all nodes compute the partial current
that arise from its subset of computational particles. The partial currents are
then communicated to every node and the total current is summed up through
a MPI Allreduce command. The total current is used to update the electro-
magnetic fields in Maxwell’s equations and the fields then update the particle
velocities. Perfect load balancing is achieved since each node has the same num-
ber of particles. The drawback of the parallelisation scheme is the rapid increase
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of data communication with increasing simulation grid size. However, the scaling
is almost linear up to 20 processors for typical research problems.

3 Simulation Model

Free energy sources are abundant in astrophysical plasmas and fundamental
in the process of plasma heating. Since the plasma is collisionless the question
is what kinds of dissipation mechanisms allow for the thermalisation. Velocity
gradients in accretion disc and jet plasmas are likely to form shocks. Plasma
particles gyrate in the shock front magnetic field and are reflected into the up-
stream plasma, here the particle momentum is conserved in the shock frame of
reference. Such specularly reflected ions will form fast beams in the upstream
plasma frame of reference. The energy of an external disturbance will, in the
absence of collisions, become redistributed through the generation of instabili-
ties. Assuming the cold beam model in Ref.[13] with a positive beam speed, vb,
and solving for the most unstable electrostatic wave we obtain the frequency
ωu ≈ ωp,e and wave number ku ≈ ωp,e/vb. Thus the phase speed of the wave
is approximately equal to the speed of the beam feeding it. In the simulation

Fig. 1. The simulation box is placed in the upstream plasma in the foreshock region.
Two counter-propagating proton beams are present at time zero and cancel the initial
net current. The beams encounter the magnetic field at an oblique angle.

model, see Fig.1, we assume that the simulation box is located far from the shock
front. The shock generation itself and the reflection of protons are not modelled
here since this requires a full kinetic shock simulation, see Fig.2. In Fig.2 the
structure 1 is upstream protons rotated in the shock-compressed downstream
magnetic field and reflected back into the upstream region[8]. This proton beam
constitutes the energy source considered in the present work.

The electron plasma frequency is set to ωp,e = 2π × 105. The number den-
sities of the proton beams nb1 = nb2 = 0.1ne and the number density of the
background plasma protons np = 0.8ne. The initial thermal speed of the elec-

trons is vth,e =
√

kBTe

me
= 10−2c, where kB is Boltzmann’s constant and Te the
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Fig. 2. Proton distribution of a one-dimensional perpendicular shock developing when
an electron-proton plasma slab, coming from the right, impacts on an electron-proton
plasma slab at rest. The collision speed is 4.5VA, where VA = B/

√
μ0nimi is the

Alfven speed and B, ni, μ0 and mi are the magnetic field strength, the ion number
density, the magnetic permeability and ion mass respectively. Plot a) shows the (x, vx)
phase-space and plot b) the (x, vy) phase-space. Structure 2 is protons trapped in the
shock potential and carried across the upstream magnetic field. These protons undergo
shock surfing acceleration[24]. Structure 3 consists of islands of trapped protons[25].
The colour scale is the log10 of the number of simulation protons.

electron temperature. The thermal speeds of the background protons and beam
1 are set to vth,p = vth,b1 =

√
me

mp
vth,e whereas for beam 2 vth,b2 = 10vth,b1. The

asymmetry in the initial beam conditions is used in order to examine the robust-
ness of the physical model against geometry considerations. The proton mass to
electron mass ratio in the simulation is mp/me = 1836. The average velocities
along the simulation box x-axis for the background plasma particle species are
initially zero and the beam velocities are vb1 = −vb2 with vb2 = vbx̂ = 0.6cx̂,
with x̂ the unitvector. The chosen thermal speeds give the same temperature for
the background plasma species and beam 1. At the beginning of the simulation
there is no electric field present. The external magnetic field is directed in the
xz-plane, B = B0(cos θ, 0, sin θ), with B0 = 5 × 10−7 T and θ = 45◦. The total
simulation time Ttot = 500, 000Δt, with time step Δt = 5 × 10−9 s. The simula-
tion box length L = 1200Δx, where the cell size Δx = 3 m. The particle species
are represented with computational particles that are initially distributed spa-
tially homogeneously in the simulation box. The particles per cell (ppc) count
for the electrons is 1250 ppc and 450 ppc for each proton species.

Data Visualisation. The capacity of high-performing computer clusters is con-
tinuously improving but analysing ever growing amounts of data is turning into
a complex task. Especially when dealing with time-evolving, multi-dimensional
data. A common work situation is to assign the heavy computational work load
to a cluster and then analyse the data on desktop systems. Recently it has
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Fig. 3. The (x, px, py)-coordinates of the particles are stored in a matrix structure with
three columns and N rows for a single time step. The phase-space co-ordinates are then
treated as screen position co-ordinates. The pz-coordinate index a colour look-up table
for setting the particle colour. The index i is the identity number of a particle, N the
total number of particles and Nc is the number of colours in the colour table.

Fig. 4. The animation of data is done by fetching data and displaying it on screen in
a serial fashion. The pre-plot stage could be done outside the visualisation application
but would require extra storage. The main bottleneck is fetching the data from disk
and recent dual-core systems may offer a solution in parallelisation schemes.

become possible to implement and run customised visualisation applications on
common PCs, with the advantage of application design flexibility and user ac-
cessibility. The Open Graphics Library (OpenGL)[26] provides an interface to
the graphics hardware and is integrated into most platforms. A straightforward
technique of visualising the PIC-simulation data is to map the phase-space of
the computational particles to a three-dimensional coordinate system and render
them on screen. In order to use built-in structures in the OpenGL, before any
call to plot the data is issued, particle coordinate and colour data are arranged
in matrices with dimension 3 × N , where N is the total number of particles.
Fig.3 explains the internal data structures in the visualisation application and
how the four-dimensional phase-space data of each particle is mapped to screen
coordinates and colour. Dealing with time-evolving structures, we would like to
animate a sequence of time steps. The Fig.4 displays the animation sequence
where time step data is fetched from disk, arranged in the pre-plot stage, dis-
played on screen and finally discarded to make room for the next data.
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Fig. 5. The amplitudes of the most unstable quasi-electrostatic waves. The wave with
negative phase speed is shown in a) and the wave with positive phase speed in b).

4 Results and Conclusions

We have used a PIC-simulation to follow the growth and saturation of quasi-
electrostatic waves due to mildy relativistic proton beams in an obliquely mag-
netised plasma. The beam driven two-stream instabilities saturate by electron
trapping. Energy is transfered from the protons to the trapped electrons through
the exchange with the wave and by the particle transport across the magnetic
field. The initial conditions in the simulation corresponds to a mildly relativistic
shock in an accretion disc system and may be representative for a microquasar
foreshock region. The electric field amplitudes of the two most unstable quasi-
electrostatic waves driven by the two-stream instabilities are shown in Fig.5.

Fig. 6. Electron phase-space trajectories for (x, px) in a) and (py, px) in b). All mo-
mentum components have normalised values in the plot and the colour scale is based
on the absolute value of pz. The units of the x-axis in a) is simulation box cell numbers.
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Fig. 7. Plotting the (pz, px) phase-space in a) discloses a beam of electrons gaining
field-aligned momentum. The momentum in a) is in normalised units and the colour is
based on the absolute value of py. A magnetic field aligned energy gain is found in the
pitch angle plot b). The colour scale is the log10 of the number of simulation electrons
and 0 degrees is field-aligned.

Fig. 8. Proton beam populations after the collapse of the initial two-stream waves.
The (x, px) phase-space of the colder beam with positive speed is depicted in a) and
the hotter beam with negative speed in b). Zero indicates initial beam px-momentum
and the x-direction of the plots covers the entire simulation box length.

Both wave amplitudes grow exponentially and saturate at approximately the
same time. The differences in the curves are due to the initial thermal spread of
the beams. In the PIC-simulation the initial wave amplitudes are set by the tem-
perature dependent noise levels. The Fig.6a is a plot of the (x, px) phase-space
at a time when electrons are trapped in the potential of the quasi-electrostatic
wave propagating with negative phase speed in the simulation box. The closed
particle trajectories are formed by resonant electrons oscillating in the wave po-
tential. Electron orbits can also be seen starting to form for the positive wave
in the upper half of the plot. The Fig.6b displays the (py, px) phase-space of
the electrons and shows how the trapped particles have gained py-momentum.
Since the plasma is immersed in an oblique magnetic field we also expect to
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find a gain in pz. Animating the data over a subperiod of the simulation time a
‘beam’ of electrons grow in the (pz , px) phase-space. The beam electrons reach a
peak-value and then detrap when the electric field weakens, see Fig.5. The final
particle distribution is spatially isotropic. The screen capture in Fig.7a is taken
from the growth phase of the electron beam in (pz , px) phase-space. The pitch
angle plot in Fig.7b indicates a peak energy along the magnetic field direction
corresponding to a Lorentz factor of 4-6. This would allow the electrons to escape
the gravitational pull from the black hole with speeds close to that observed for
microquasar jets. Dilute proton beams are susceptible to non-linear modulations
similar to the electron distribution and can produce secondary instabilities, e.g.
the frying-pan distribution in Ref.[19]. The proton beams have lost about 1-2%
of their initial energy and display well-defined phase-space holes at the end of
the simulation, see Fig.8.
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Abstract. The particle-fluid model of auroral electrons that is pre-
sented in [1] is a major step forward within the field of dynamic models
of the auroral generation mechanisms. The model is, however, also an
example where the implementation of a physical model requires a lot of
knowledge from the field of computer science. Therefore, this paper con-
tains a detailed description of the implementation behind the particle-
fluid model. We present how the particles are implemented in doubly
linked lists, how the fluid equations are solved in a time-efficient algo-
rithm, and how these two parts are coupled into a single framework. We
also describe how the code is parallelized with an efficiency of nearly
100%.

1 Introduction

The aurora is created by electrons that are accelerated along the Earth’s mag-
netic field lines before they impinge on the ionosphere and create light through
excitation processes. To model the large-scale processes involved in the genera-
tion of auroras it is common to describe the electrons as a charged fluid, where
the fluid equations are solved self-consistently together with Maxwell’s equations.
However, as the electrons are accelerated they are also heated in a process that
is not properly described by a fluid model. Therefore, we have in [1] introduced
a particle-fluid model of the auroral electrons, where the field solver is comple-
mented by a particle pusher. By letting the electric field from the field solver
accelerate the particles, and then using the temperature of the particle distribu-
tion as a feed-back to the field solver, we obtain a self-consistent description of
the auroral electrons.

The physical description of the model is given in [1], and in this paper we
concentrate on the details of the implementation. We will describe how the set
of equations in the field solver are solved using an implicit algorithm in which
the discretized equations are rewritten on a block-tridiagonal form to achieve
good performance. We will also discuss how the particle data is implemented in
linked lists to obtain a time-efficient algorithm, and how the particles and the
field solver are coupled in a parallelized code. First, however, we will in the next
section describe the basics of the model.
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2 Model

We use a two-dimensional model where the coordinates are z along the Earth’s
magnetic field and x spanning different latitudes, as can be seen in Fig. 1. The
dynamics of auroral electrons is in real life controlled by a generator mecha-
nism located in the tail of the Earth’s magnetosphere. To mimic this process we
prescribe a generator force in our model. The generator creates an ion current
perpendicular to the magnetic field lines. At the flanks of the generator region
the perpendicular current is diverted into field-aligned currents connecting the
generator to the ionosphere. At the ionosphere these field-aligned currents are
closed by a perpendicular ion current. Thus, we have a current circuit where
the upward field-aligned current is carried by downgoing electrons that create
auroras.

Aurora

Acceleration

region

Field

aligned

electric

fields

Field

aligned

current

Electric

field

Equatorial

current

Plasma

flow

Driving

force

x

y

z

Fig. 1. The geometry of the auroral current circuit and the generator region in the
equatorial magnetosphere. The curvature of the magnetic field lines is neglected in our
model equations, but the convergence of the magnetic field lines is retained.

2.1 Field Solver

The electron fluid is in our model described by the equations

∂tEx = −A2∂zBy − (1 − A2)F (1a)

∂tEz =
Bz

B0
(∂xBy + jz) (1b)

∂tBy = ∂xEz − ∂zEx (1c)

∂tn = −∂zjz (1d)

∂t jz = −mi

m
nEz − ∂z

(
nTz +

j2z
n

)
− nT⊥

∂zBz

Bz
(1e)
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which are the non-zero components of Maxwell’s equations together with the
equation of continuity and the momentum equation. Here we use simulation
variables, where Ex and Ez are the electric fields, By is the perpendicular magnetic
field, A is the Alfvén velocity, F is the generator force, n is the electron density,
jz is the field-aligned electron current, while Tz and T⊥ are the field-aligned and
perpendicular temperatures. Bz(z) is the geomagnetic field and B0 is the field
strength at z = 0 in the equatorial plane. The mass ratio in the last equation
is the ion mass mi divided by the electron mass m. For an extensive derivation
of these equations and a detailed description of the physics they describe, the
reader is referred to [1]. Notice that the ion dynamics is neglected in the present
version of the model. This introduces constraints on the generator, and we choose
its length and time scales to be larger than the ion gyro radius and the ion gyro
period respectively.

The equation system in (1) is underdetermined since the time evolution of
the temperatures Tz and T⊥ is not included. To close the equation system, we
therefore introduce a particle pusher from which we can obtain temperatures
that are consistent with the field solver in each time step.

2.2 Particle Pusher

The field solver that solves equations (1) is coupled to a particle pusher ac-
cording to the cartoon in Fig. 2. This cycle is performed for each time step in
the simulation. The particles are accelerated by the electric field from the field

Compute temperature
from velocity distribution

Accelerate and
move electrons

Update fields Field solver

Particle pusher

Temperature Electric field

Fig. 2. Cycle performed for each time step to couple the field solver and the particle
pusher

solver, which implies that the particles move consistently with the fluid’s evo-
lution. From the velocity distribution of the electrons we can then determine
temperatures that can be used in the momentum equation (1e).

The particles move along z with velocity vz and gyrate the field line with
velocity v⊥. Their position and velocity are updated according to
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dtz = vz , (2)

dtvz =
−e

m
Ep − μ∂zBz , (3)

where −e is the electron charge, μ = mv2
⊥/2Bz is the conserved magnetic mo-

ment of the particle, and Ep is the electric field that accelerates the particle.
The electric field Ep is equal to the field-aligned electric field in the field solver,
but with a correction described in [1] to ensure that the density and current of
the particles are equal to the density and current of the fluid.

3 Implementation

3.1 Grid

The model is implemented on a two-dimensional grid of mesh size nx × nz illus-
trated in Fig. 3, where the generator boundary is at z = 0 and the ionosphere is
on the opposite side of the simulation region. Since the z-coordinate is aligned
with the magnetic field and the magnetic field lines are converging as they ap-
proach the ionosphere, the grid point separation Δx must decrease towards the
ionosphere. The size of the simulation region is Lz = 55,000 km in the z-direction
and Lx = 4,600 km in the x-direction at the generator boundary. The system
length in the x-direction at the ionospheric boundary is merely 200 km. The
grid is also chosen to be inhomogeneous for resolving the interesting features
of auroral acceleration that take place mainly at altitudes below 10,000 km
(z > 45,000 km) and at the field lines close to x = 0. The typical mesh size
in our simulations is nx × nz = 27 × 100. The value of nx is chosen to resolve
current filaments with a width of a few kilometers at the ionospheric boundary,
while the value of nz is large enough to get a good resolution of the acceleration
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Fig. 3. The inhomogeneous grid on which the model is implemented with the generator
boundary at z = 0 and the ionosphere on the opposite side of the simulation region
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region which has a length of a few thousand kilometers along z at an altitude
centered about roughly 6,000 km.

3.2 Field Solver

The set of equations in (1) is solved by a time-centered implicit method, based
on factorization of the two-dimensional spatial differential operators. Algorithms
of this type are discussed by, for example, [3]. If we for notational convenience
collect all the fields in a vector U = (Ex, Ez, By, n, jz)

T , we can after time dis-
cretization sum up (1) in the form

U(t + Δt) = U(t) + Δt {Q(U(t + Δt/2)) + G} , (4)

where Q(U) represents the U dependence of the right hand side of (1) and
G represents the inhomogeneous term involving the generator force F. We now
linearize Q in U(t + Δt) by a Taylor expansion:

Q(U(t + Δt/2))

≈ Q(U(t)) +
1
2

[U(t + Δt) − U(t)] · ∂UQ(U(t))

=
1
2

[U(t + Δt) + U(t)] · ∂UQ(U(t)) , (5)

where the second step follows from the homogeneous properties of Q. This results
in a linear set of equations:

[
I − Δt

2
∂UQ

]
· U(t + Δt) =

[
I +

Δt

2
∂UQ

]
· U(t) + Δt G . (6)

The operator ∂UQ, which contains both ∂x and ∂z , is now split into two parts
as ∂UQ = X + Z, where X contains only ∂x and Z contains only ∂z. This
decomposition is not unique, and it should be chosen in a way that makes the
product X · Z as small and simple as possible. Neglecting the term Δt2/4 X · Z ·
[U(t + Δt) − U(t)], which is of third order in Δt, we can factorize the terms in
equation (6) as in an alternating direction implicit (ADI) method to find

[
I − Δt

2
X

]
·
[
I − Δt

2
Z

]
· U(t + Δt) =

[
I +

Δt

2
X

]
·
[
I +

Δt

2
Z

]
· U(t) + Δt G . (7)

Introducing U∗ = [I − Δt/2 Z] · U(t + Δt) as a new variable, we can solve (7)
in two steps. First we solve

[
I − Δt

2
X

]
· U∗ = (8)

[
I +

Δt

2
X

]
·
[
I +

Δt

2
Z

]
· U(t) + Δt G



376 J. Vedin and K. Rönnmark

for U∗. Then we use [
I − Δt

2
Z

]
· U(t + Δt) = U∗ (9)

to solve for the fields at t + Δt. When the operators X and Z are expressed as
centered finite differences, each of these two steps consists of solving a block-
tridiagonal set of equations. The number of operations needed for this scales
linearly with the mesh size (nx × nz) and hardly requires any extra memory,
which makes this algorithm very efficient. The number of operations needed for
a direct integration of (6) would typically be proportional to (nx × nz)2.

3.3 Particle Pusher

In this model the particles are used roughly as in a regular Particle-In-Cell (PIC)
code, see for example [2]. The input to the particle pusher is the electric field
computed in the field solver, and the output from the particle pusher is the
temperatures Tz and T⊥. The electric field and the temperatures are given on
the grid points, but the particles can of course be located also in-between two
grid points. To handle this, a PIC code utilizes a weight scheme, and in this
model we use linear weights. The electric field (and also the magnetic field) used
in (3) is determined from the fields at the two grid points that are closest to
the particle’s position, as can be seen in Fig. 4. At the particle’s position zi, the
electric field is given by

E(zi) =
(

Zj+1 − zi

Δz

)
Ej +

(
zi − Zj

Δz

)
Ej+1 , (10)

where Ej and Ej+1 are the electric field values at the grid points Zj and Zj+1,
while Δz is the grid point separation. When the temperatures are computed, the
weighting is inverted, and the temperatures at a grid point get a contribution
from all particles located in the two grid cells surrounding the grid point, as can
be seen in Fig. 5. If Ti is the contribution to the temperature from a particle
located at zi, then

Tj =
(

Zj+1 − zi

Δz

)
Ti (11)

z

b

a

Zj+2Zj+1Zj
z

Zj−1
i

Fig. 4. To determine the electric field at the particle position zi we use triangular
shape functions. The electric field at grid point Zj is weighted by the value of the
shape function in point a and the electric at grid point Zj+1 is weighted by the value
of the shape function in point b. These two values are then assigned to the electric field
E(zi).
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i

Fig. 5. A particle at position zi will contribute to the temperatures at grid points Zj

and Zj+1. If Ti is the contribution to the temperature from a particle located at zi,
then Ti will be weighted by the shape function’s value at a before it is added to the
temperature at Zj and it will be weighted by the shape function’s value at b before it
is added to the temperature at Zj+1.

is the part of Ti that is added to the temperature at grid point Zj . Correspond-
ingly the temperature at Zj+1 gets the contribution

Tj+1 =
(

zi − Zj

Δz

)
Ti (12)

from a particle at zi.
During the simulation, particles that move outside the system boundaries

are removed and new particles are injected at a rate determined to maintain a
constant density and temperature at the boundaries. To handle this adding and
removing of particles in a sufficiently fast manner the particles are implemented
as a linked list. Actually, we implement the particles as six linked lists. There are
two types of particles, particles of magnetospheric origin that are injected at the
generator boundary and particles of ionospheric origin that are injected at the
ionospheric boundary. Each type of particles are stored in three separate lists.
The particles that are active in the simulation are stored in an inside-list, while
the particles that have been removed from the system are stored in a used-list.
Furthermore, we have an unused-list that is used as a reservoir for particles that
are to be injected. In this way we need not free and allocate memory for each
particle that is removed or injected. Used particles are simply transferred from
the inside-list to the used-list and particles that are to be injected are transferred
from the unused-list to the inside-list. When the unused-list becomes empty, we
rehash the particles in the used-list to give them the desired velocity distribution
and place them in the unused-list. By letting the initial unused-list hold some
extra particles, we can through this procedure avoid the need for any memory
allocation during the simulation. As a fallback, the program can allocate more
particles if the initial unused-list turned out to be too small.

The implementation with several lists is fast, and the memory overhead is
not significant. However, we need to implement the lists as doubly linked lists
in order to enable particles to switch lists. This implies some overhead in the
memory per particle since each particle need a pointer to both the next particle
and the previous particle in the list. The total memory per particle is still only
40 bytes since each particle, apart from the two pointers, only holds three keys:
z, vz, and μ.
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3.4 Particle-Fluid Coupling

The electrons are strongly magnetized which means that they are guided by
the magnetic field lines and therefore only move along z, although in a gyrating
motion. Hence, there are nx independent particle pushers in the total simulation.
In each particle pusher we need at least about 20 million particles to obtain
reasonably good statistics when computing the temperatures from the particle
distribution. For each x the particles use at least about 0.8 GB of memory, and
the entire simulation uses over 20 GB, which indicates that a parallelization is
needed. A huge number of particles, of course, leads to long computer times.
The ratio between the time spent in a single particle pusher and the time spent
in the field solver is roughly 1500 to 1.

Since almost all time is spent in the particle pushers and there are nx in-
dependent pushers, this application is perfectly suited for parallelization on nx

processors. The code, which is written in C, is therefore parallelized using the
Message Passing Interface (MPI) [4]. For each time step in the parallelized code,
every processor solves (8), then each processor solves (9) and calls the particle
pusher with its own value of x. Finally, before time is incremented, the fields in
the vector U, the temperatures and some help variables are synchronized on all
processors using MPI Allgather. This implies a message passing of about 0.2
MB for each time step.

The simulations are performed on the Sarek Linux Cluster at the High Perfor-
mance Computing Center North (HPC2N) [5]. This cluster has 384 64-bit AMD
Opteron 2.2 GHz CPUs in 192 dual nodes. The network, which is switched to
give similar performance between each pair of nodes, has a bandwidth of about
250 MB/s and a latency of a few microseconds. With this bandwidth, the mes-
sage passing will for each time step last only 10−3 s, while the entire time step
lasts for roughly 10 s. Thus, the time for communication is negligible. If the
load balancing between processors is good this would imply a parallelization ef-
ficiency of nearly 100%, and since each processor handles roughly equal amounts
of particles we have no reason to expect otherwise. The Sarek cluster also has
the advantage that each processor has access to 4 GB of RAM, which implies
that we can use the huge number of particles that is needed for good statistics
in the temperature calculations.

4 Discussion and Conclusions

According to the physical results presented in [1], the particle-fluid model pro-
duces results that are consistent with observations, and the model is a major step
forward compared to previous dynamic models of auroral electron acceleration,
for example [6], [7], and [8], where the variation in the electron temperatures
has been neglected. The implementation is, however, much more complicated
compared to implementing a pure fluid model.

The model proves to be very efficient to parallelize on the same number of
processors as the number of grid points in the direction perpendicular to the
magnetic field. A further parallelization of the code can be accomplished by
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letting the particles at a certain field line be distributed in several linked lists
and update each list on different processors. If the lengths of these lists are
approximately equal, which is easily accomplished by always injecting particles
into the shortest list, the load balancing of this parallelization would be perfect.
Furthermore, the only communication needed in this parallelization is summing
the temperatures of all lists into a single temperature along the field line, which
makes this parallelization very efficient.
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Size and complexity of advanced high-end computing systems present difficult
challenges to the optimization of application codes running on them. To improve
the efficiency and expand the potential of these applications, powerful tools are
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to collect, analyze, and present performance data from executions of high-end
computing applications.
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Abstract. The possibility of having available massive computer resour-
ces to users opens ideas for the future of interoperability between multiple
infrastructure systems. This wide system should be composed of multiple
high performance resource clusters and their users should share them to
solve big scientific problems. These resources have a dynamic behavior
and to reach the expected performance indexes it is necessary to tune the
application in an automatic and dynamic way. The MATE environment
was designed to tune parallel applications running on a cluster. This
paper presents the key ideas for tracking down application process in
a wide distributed environment like Computational Grids. We explain
how to enable the use of MATE for dynamic application optimizations
in such systems.

1 Introduction

With the advent of Internet there was an intensification of sharing information
and services availability and nowadays the commodity computers have the com-
putational power of the old mainframes. New systems like computer clusters be-
came more common and accessible to everyone to solve new classes of scientific
problems which have high performance requirements. Interconnection of clus-
ters with different administrative domains builds a new classes of systems called
Computational Grids to address available resource share [1]. In this context,
novel complex applications can be executed in this wide environment spawning
processes over more than a single cluster. The control of the application can be
done by using a high level scheduler like Condor-G [2] or Community Scheduler
Framework (CSF) [1]. The composing processes could be submitted using the
Globus Toolkit [1] to fulfill the requirements of security and resource localiza-
tion. They can be executed in a cluster using certain scheduler environments like
Condor [2] or OpenPBS [3].

One common use of Grid resources like processing nodes is to decrease ap-
plication execution time through parallelization. A user can describe the char-
acteristics of resources required by the application and the Grid system layers
drive the application execution to those nodes that can fulfill the expectations.
� This work has been supported by the MCyT (Spain) under contract TIN 2004-03388.
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Grid Information Services [4] present at these layers indexes different Grid re-
source properties. Meta-schedulers use these properties to select and provide
resources required by the application. The application submission is controlled
by the Grid system layers. The user may interact with a meta-scheduler which
uses job requirements and the information services to find the appropriate set
of available resources required for the execution. These resources may represent
complex parallel machines composed by many processors or single machines. Re-
source availability is dynamic at Grid environment and the meta-scheduler may
find different set of resources which fulfill application requirements.

At the machine layer, or Fabric Layer according to the terminology presented
by Foster in [5], the application execution is controlled by a batch queue system.
The application can use a single cluster to avoid communication overheads or
can be distributed over more than one cluster, possibly dealing with high latency
message passing communication problems. The application may get different
resources for different executions. Therefore, to enable the application tuning
process in such an environment, it is necessary to provide some mechanisms
that determine which resources are in use by the application.

We developed a Monitoring, Analysis and Tuning Environment (MATE) that
runs at clusters under PVM platform [6]. In our environment, an application ex-
ecution can be guided based on performance models to obtain better execution
time or less resource utilization. MATE uses the concept of tuning components
called tunlets which encapsulate the monitoring, analysis and tuning logic for
specific problems. By using MATE, application programs are dynamically instru-
mented to generate the monitoring data required by the performance models.
Based on generated trace data, the tunlets may request a tuning action (mod-
ification) to be performed on the application. This is a continuous process and
help applications to deal with dynamic system behavior.

This paper discusses how to attach our Monitoring, Analysis and Tuning
Environment in a Computational Grid in order to overcome the problem of
process location by providing two different approaches: enable MATE as a fabric
layer service or integrate it as a user application plug-in. Section 2 describes the
target Grid environment and characterizes the process tracking in such a system.
Section 3 presents related work. Section 4 describes the changes that we have to
apply in MATE to adapt it to the Grid environments. Finally, Section 5 presents
the conclusions of this work.

2 Computational Grids

According to Foster in [1]. A simplification of Computational Grid could be sim-
ply described as a wide collection of interconnected resources distributed under
different administrative domains [7]. The Grid is a distributed system architec-
ture generally composed by different levels of interconnect network between its
resources. Some resources are accessible by others, while some others are not.
Data communication between different resources may have different throughput
and latencies. These characteristics make it difficult to locate and even more
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difficult to solve typical problems of distributed systems like load imbalance,
synchronization bottlenecks that are difficult to locate and more difficult to
solve.

A common way of use of the computational power of a Grid is to spawn the
processes of a massive parallel application within the available node resource [1].
Following the Grid Protocol Stack, the Grid Fabric Layer is where the resources
are managed, acquired and controlled. In a typical environment, each processing
resource or Compute Element (CE) would be single host or a cluster controlled
by a local scheduler [1]. In case of a CE composed of multiple processors like
clusters or parallel machines, each machine is called a Compute Host (CH) [1].

An important problem that an application execution may deal in a Grid
environment is that such systems generally have a heterogeneous infrastructure
and in most cases, a dynamic system configuration. That behavior could lead to
performance drawbacks such as load imbalance problems, high latencies caused
by improper message fragmentation or inadequate buffer sizes. If the target
platform is changed (number of processors, processor speed, network bandwidth,
etc.) the required optimizations may be different. Grid brings new challenges in
performance analysis and tuning making classical approaches less useful. For
example, post-mortem analysis that presumes repeatability may not be used in
the grid platform as it is highly dynamic and rarely repeatable. In this sense, a
dynamic tuning tool seems to be relevant approach that could adapt applications
to runtime changes in the system configuration.

To instrument an application in a Grid environment, a monitoring tool should
track down the application process components to gather instrumentation data.
This starts to be a problem as CE allocation is indirectly selected through the
Grid Protocol Stack.

2.1 Process Tracking

Due to dynamic characteristic of the Grid, application processes may be exe-
cuted on different resources for different executions. The tracking process should
be able to detect application process startup as soon as possible. In that sense,
this detection can be done by the application program itself or by the CH where
the application program starts running. Following these ideas, to track down
process in such an environment, two approaches can be used: (i) bind the appli-
cation together with a tracking process in a single binary or (ii) have a tracking
process running on the CH selected for application running and waiting for the
application process.

In the first approach, the idea is to change the application program binary
in order to take control over the execution. This is done in a preparation stage
before execution submission. In this scenario, the execution of the application
process is controlled by the bound tracking process, which may be responsible
for gathering instrumentation or doing the dynamic tuning.

In the second approach, the tool is installed previously as CE infrastruc-
ture. In that sense, the tracking process waits for application process startup.
This can be performed by looking for application startup in a pooling method or
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monitoring the scheduler runtime events which represent the application startup.
The first approach can be done by application developers and users, targeting
better application execution time. The second one can be done by site admin-
istrators interested in efficiency, since installation requires administrative privi-
leges.

3 Related Work

There are many tools available for performance analysis. A good reference sur-
vey covering the available tools for performance analysis is presented on [8] and
a more deep Grid integration analysis is done on [9]. Most tools presented on [8]
and [9] are system monitoring tools. Most instrumentation tools are bound at
compile time such as TAU [10] and SCALEA-G [11]. Both TAU and SCALEA-G
also have dynamic instrumentation functionality. TAU redirects its trace data to
files and in case of dynamic instrumentation the startup is driven by the user.
The application is started by TAU tools through command line. SCALEA-G
has Grid integration and export instrumentation facility as middleware services.
The Paradyn [12] tool controls the application startup through a daemon run-
ning on target machines that are configured to connect to the tool front-end.
Monitoring tools that write trace data to local disc on the processing nodes do
not have problems to execute on Grid environment because the result files can be
scheduled for delivery at the end of execution. In case of online analysis on tools
like Paradyn, the dynamic behavior of resource selection presented on Section 2
difficult its use on Grid systems.

There is an initiative to provide control of process startup on batch schedulers
by providing a controllable shell with extensive configuration options called Tool
Daemon Protocol (TDP), presented on [13]. TDP can be used, for example, to
allow Paradyn to track process on different scheduler execution scenarios. The
idea behind TDP is to cheat the batch scheduler to give the control to a shell
which is responsible for environment configuration and execution control.

Another alternative to integrate automatic performance tuning is to provide
a the tool as a program library. Active Harmony [14] uses that approach which
provides an API that allows the running application to configure performance
parameters, to trigger execution points within its execution and to report metrics
by function calls. The Active Harmony philosophy is to treat the application as
a ’black-box’ controlled by the performance parameters. That approach differs
from MATE which runs outside process space and requires some knowledge
about the performance models that drives application execution in order to
tune.

4 Changes in MATE

MATE consists of an execution environment that permits dynamic tuning of
application without the need of code modification, compilation or linkage, based
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on Dyninst [15]. When an application runs under the control of MATE, its pro-
cesses are dynamically instrumented in order to generate monitoring information
required for automatic performance analysis and allows dynamic process changes
as result for tuning actions. MATE structure is explained on [6] and the detailed
architecture and implementation is presented on [16].

The two main components of MATE are the Application Controller (AC) and
the Analyzer. The AC is the component which interacts with the application
process, inserting instrumentation code and doing the dynamic tuning modifi-
cations [6,16]. The Analyzer consists of a container of tuning components called
tunlets. Each tunlet can encapsulate the logic of what should be measured, how
data can be interpreted by a performance model and what can be changed to
achieve better execution time or better resource utilization.

Figure 1 presents the iteration between MATE components. The Analyzer
interacts with the tunlets that request for application instrumentation. These
requests are forwarded to the AC. The AC receives the requests, instruments
the application and forwards the trace back to the Analyzer. This trace is dis-
patched then to the desired tunlets. The tunlet decides, based on its performance
model, what should be changed to tune the application and requests applica-
tion changes to the Analyzer. These requests are forwarded to the AC and the
dynamic changes are made on the application.

Fig. 1. Sequence of message exchange between MATE components

In the current version of MATE, the application is started under the control
of the Analyzer component. The AC binds itself as PVM Tasker, so, when the
Analyzer spawns the application the AC is notified to spawn each process. By
this sequence MATE has total control of the application and does steering ex-
ecution of its processes [16]. To work in a Grid environment, the first required
change is that, the Analyzer is started independently of the application and
the AC is in charge to start the tuning process. The Analyzer needs to steer
the execution of application processes to gather runtime information, to exe-
cute the analysis process and to perform tune modifications. In order to locate
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application processes components, MATE may use the application plug-in and
system service approaches. Currently, we have developed a prototype implemen-
tation on MATE without PVM dependencies in order to test the proposed Grid
integration approaches as a proof of concept.

4.1 Application Plug-In Approach

Considering the first approach on how to track down application processes pre-
sented on Section 2. To track down the application processes, our tool may be
bound to application binary and delivered with it through execution as an Ap-
plication Plug-in. In that strategy, we decided to generate the composed binary
using three applications: a glue code, the current application and the AC binary.
That preparation step can be done by the developer or even by the application
users before the execution. By doing that composition, at runtime, the first ex-
ecuted code is the one that is loaded on memory. The key idea is to put the
glue code as the first application in the composed binary. When the application
program runs on the CH, the glue code locates the application and AC code
within the composed binary, does some checkup initializations and executes the
AC code. When the AC executes, it starts the application child process using
the Dyninst library.

The information needed at runtime by the glue code is a fixed size informa-
tion record appended at the end of the composed binary during the preparation
phase. When the glue code runs, it uses this information record to un-pack the
AC and application code. After that, the glue code verifies if the environment
has Dyninst installed by checking its environment variables. If the environment
permits dynamic instrumentation, the glue code executes the AC code; other-
wise, it executes the application program without instrumentation. If the AC is
started, it creates the application process under its control. The glue code acts
as a wrapper process to AC or the application based on target system execution
properties.

Figure 2 shows an execution of a composed binary by the Fabric Layer repre-
sented by a Batch Scheduler. When AC starts it uses Grid Information Services
to locate the Analyzer in charge for the tuning session and establish a commu-
nication channel with it. The startup overhead of application plugin approach is
small in comparison to a long application execution and that is directed related
to the size of application binary and storage performance. In our experiments
with executables from 500kb to 1Mb the startup overhead is less than 0.2s which
is meaningless considering a long run application execution. The Analyzer lo-
cation and registration execution times are not critical because they consist of
simple sequence of web service calls.

4.2 System Service Approach

Another approach to process tracking is to wait process startup on Grid node
resources. Tracking action can be performed by a System Service running on the
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Fig. 2. Sequence of an instrumented application execution using the Application Plug-
in Approach

machines selected for application execution. In our context, that corresponds
to the AC process which is installed as an operation system daemon by the
site administrator. The key idea is to enable the machine with dynamic tuning
services that can be used by any application that executes on such machines.
With the AC daemon running on each machine of a cluster, this cluster is capable
of application tuning. The user should register the application on the Analyzer
in order to start the tuning process. By doing this, the Analyzer broadcasts the
location request containing application identification with the name and binary
checksum hash to all registered AC process using the Grid Information Services.
This is necessary due possible process name coincidences.

In response to the Analyzer action, the AC component starts the process of
application startup detection for a time period. That can operate in pull mode
or push mode. In pull mode, it monitors changes in proc file system to detect
applications process startup. When an application process name is found, the
AC ensures that the binary belongs to the application, attaches to the found
process and starts the steering execution. In push mode, the AC instruments the
batch scheduler with Dyninst and waits for the callback event generated by exec
system call. That allows a precise application startup detection and control. We
currently support OpenPBS [3] as proof of concept. In each of presented models
of execution, the target execution machine should support Dyninst, without that,
the dynamic tuning cannot be done.

Figure 3 presents the sequence of execution of an application process that is
located using the System Service approach. In both modes of application process
startup detection, the AC uses the Grid Information Services, represented in
figure 3 as MDS, to locate the Analyzer and establish a communication channel
with it.

The startup overhead using the System Service Approach depends of the
information propagation within the MDS hierarchy. The resource information in
different MDS sites is updated on configured recurrent intervals. The total time
of the subscribe action, notification and register messages is fixed and less than
1s on our tests experiments using one MDS site.
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Fig. 3. Sequence of process location using the System Service Approach

5 Conclusions

Performance tuning of Grid application becomes very complicated due to unique
Grid characteristics such as time varying resource demands, heterogeneous re-
sources, geographic distribution and network sharing. The dynamic behavior of
Grid environment reinforces the need of dynamic tuning tools since the user
has less control of the application target execution hosts. MATE can help appli-
cations to adapt on different execution configurations. On such an environment
process tracking is required as first step to tool integration. The proposed process
tracking approaches presented enable MATE for use on Grid environments.

The literature is not clear about the requirements that make a tool enabled for
Computational Grids, although, if this tool could be used transparently within
the Grid Protocol Stack, it can be used to operate on a Computational Grid in
conformance with Grid requirements. We presented two alternatives that enable
MATE to be used transparently in such a system within the Fabric Layer of the
Grid Protocol Stack.

In the presented Application Plug-in approach, MATE components bound
to application binary provides transparent process location on Grid executions
without need of infrastructure changes. In the pool and push operation modes of
the System Service approach, MATE components are integrated in the execution
machines as infrastructure components that require administrative privileges.
Both alternatives allow MATE to be used on Computational Grids to perform
automatic tuning.
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Abstract. We present our approach for automating the performance
analysis of parallel applications based on the idea of ASL performance
properties. Our tool Periscope automatically searches for inefficiencies
specified as ASL properties, leveraging a set of agents distributed over the
target machine and arranged in a tree-like hierarchy. Decomposing the
analysis using a set of agents allows the analysis process to be performed
in a scalable way. If the machine or target application scales in number of
nodes or processors used, Periscope similarly scales in number of agents
employed.

1 Introduction

Performance analysis of applications can be a complicated and time-consuming
task. Tools and methodologies have therefore been developed that try to auto-
mate the process of locating inefficiencies in applications and explaining their
reasons. With growing size and complexity of applications and high-performance
computing systems, automation becomes essential while manual analysis gets
increasingly infeasible. In this work we present our approach, and our tool
Periscope, for automated performance analysis based on the notion of ASL per-
formance properties.

The rest of this paper is organized as follows: Sect. 2 introduces the concept of
ASL performance properties and gives some examples. Sect. 3 then outlines our
properties-based performance analysis tool Periscope. In Sect. 4 we present re-
sults from conducting a performance analysis with Periscope on several OpenMP
benchmarks. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Performance Properties

Performance properties formalize what can be regarded as a situation of inef-
ficient execution, given a set of performance observations (measurements) for
an application. A property’s specification is given in a formal language called
ASL (Apart Specification Language) and it has three main constituents: con-
dition checks the existence of the property, confidence quantifies the certainty
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property ImbalanceInParallelLoop(ParPerf pd) {
let

imbal = pd.exitBarT[0]+...+pd.exitBarT[pd.threadC-1];

condition : (pd->reg.type==LOOP || pd->reg.type==PARALLEL LOOP &&
(imbal > 0);

confidence : 1.0;
severity : imbal / RB(pd.exp);

}

Fig. 1. The ASL specification of the ImbalanceInParallelLoop property

that the property holds and severity denotes how large the negative impact on
the performance is.

An example for a property describing imbalance in a parallel loop is shown
in Fig. 1. The specification of severity, confidence, and condition can refer to
elements of a data model (ParPerf in this case), that depend on the particular
programming model and the instrumentation and monitoring system available.
In Fig. 1, ParPerf contains summary data for OpenMP regions, type denotes
the type of the construct that the region represents, exitBarT refers to the
summed time spent in the exit barrier of the construct and threadC gives the
number of threads executing the region. The ParPerf structure has a number of
other entries and several other properties can be formulated using these entries.
A more detailed discussion can be found in [2].

3 The Periscope Tool

Periscope is a tool which automatically searches for performance properties dur-
ing the execution of a target application (online operation). Performance data is
analyzed on the fly by distributed components of Periscope called agents. The
agents are arranged in a tree-like hierarchy, as shown in Fig. 2.

On the lowest level, node-level agents (NLAs) are responsible for the detection
of properties on a single node (assuming a system that is composed of several
SMP nodes). A node-level agent tries to instantiate each property for each pos-
sible property context (e.g., source code region) according to the data model
as far as it is available up to the point of invocation of the search command.
Evaluated and positively identified properties are passed up the agent hierarchy,
processed by potentially grouping together similar properties (see below), and
reported to the user by the front-end.

The high-level agents aggregate the results of the lower-level agents and pass
the detected properties on towards the root of the agent tree (the tool’s front-
end). The periscope agents use a custom sockets-based binary protocol to com-
municate with each other, leveraging the ACE framework [3]. The protocol is
designed to support platform-independent messaging. That is, the front-end can
reside on a different hardware platform as the target application and the agents.
The front-end can even run on the users desk-computer or, in fact, anywhere on
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the internet as long as the required sockets-based communication links can be
established. The protocol is based on synchronous messages (the sender awaits
the receivers acknowledgement) and can carry data.

User commands are distributed from the front-end to the node-level agents
to control (start, stop) the search process and from the node-level agents to
the front-end (the detected performance properties). Properties with the same
property context and with similar severity and confidence values are combined.
For example, the set of properties

(1) WaitAtBarrier "opt33" 0.34 1.0 "ssor.f 186"
(2) WaitAtBarrier "opt33" 0.33 1.0 "ssor.f 207"
(3) WaitAtBarrier "opt34" 0.30 1.0 "ssor.f 186"
(4) WaitAtBarrier "opt34" 0.01 1.0 "ssor.f 207"
(5) LockContention "opt34" 0.01 1.0 "0xBF232343"

is passed on as

WaitAtBarrier "opt33,opt34" 0.32 1.0 "ssor.f 186"
WaitAtBarrier "opt33" 0.33 1.0 "ssor.f 207"
WaitAtBarrier "opt34" 0.01 1.0 "ssor.f 207"
LockContention "opt34" 0.01 1.0 "0xBF232343"

That is, properties (1) and (3) are combined into a compound property with
averaged severity and confidence values, while (1) and (4) are not combined,
because they have different property contexts. Properties (2) and (4) are not
combined, because their difference in severity exceeds the predefined threshold
of ten percent.

The front-end displays the search results to the user and takes a user’s com-
mands in order to display the agent hierarchy graph and to control the search
process for performance properties. Currently, a command line interface (CLI)
implementation of the Periscope front-end exists, but a front-end with a graph-
ical user interface (GUI) could easily be developed as well.

The Periscope front-end is started on a node with interactive access, and the
user has to specify the name of the target application and a set of nodes that can
be used to instantiate the agent hierarchy. After invoking the agent hierarchy, the
CLI front-end interactively responds to user commands much like an operating
system shell.

3.1 Periscope Startup and Usage

The startup process of Periscope proceeds in a hierarchical and distributed way,
beginning at the front-end, over the high-level agents, and ending at the node-
level agents. The Periscope startup procedure is pictured in Fig. 3. The slanted
numbers shown in the figure indicate the sequence of steps that happen during
the Periscope tool startup. The startup sequence is:

1. First, the target application is started by relying on external mechanisms
(i.e., the application is started without involvement of Periscope). Depending
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Fig. 2. Periscope agents are arranged in a hierarchy. At the lowest level, node-level
agents detect performance properties. Intermediate agents integrate the results of the
node-level agents. A single master agent forms the connection to the tool’s front-end.
A registry service is used by the components to discover each other and to establish
communication links.
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Fig. 3. The startup process of the Periscope tool

on the programming language used and the computing platform on which the
program is executed, special launcher commands have to be used in this step.
For example, MPI programs are typically started with the help of a utility
program that invokes the MPI processes and establishes their communication
environment. However, this startup process is not fully standardized and
hence a completely portable mechanism to start MPI programs cannot be
integrated in a performance tool.
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2. When the target application begins its execution, at some point the first
call to the Periscope monitoring library occurs by virtue of the (static) in-
strumentation added to the application’s code. This initial call can either be
caused by the first encounter of an OpenMP construct or MPI call or by an
explicit initialization call added by the programmer.

3. The Periscope performance tool is now instantiated using a multi-level hi-
erarchical startup process. The tool user starts the front-end specifying the
name of the target application. Since several applications can be analyzed
at the same time (using different instances of the Periscope tool, but sharing
the same registry server), the application’s name must be given to identify
a particular target application. The user must also specify a list of nodes
that should be used to host the Periscope agent hierarchy. Typically, this is
a subset of the nodes comprising the supercomputer system, which are set
aside for performance analysis.

4. Upon start, the front-end registers itself and queries the registry service
for entries matching the given target application name. The location of the
registry server is either inferred from the command line arguments, from
environment variables, or from the Periscope configuration file.

5. The master agent is started by the front-end using a remote program invoca-
tion mechanism such as ssh or rsh. At least one of those programs is typically
available on high performance computing systems, since the startup process
for MPI application often also relies on such services.

All arguments for the invocation of the master agent are supplied by com-
mand line options. Since the master agent also receives the list of application
IDs and hosts from the front-end via command line options, it only needs to
contact the registry service to register itself.

6. Each high-level agent that is started is responsible for the startup of the
sub-tree for which it is the root. Similar to the master-agent, it takes the
application IDs and hosts and separates them into n partitions and invokes
sub-agents that are responsible for these partitions. When a partition consists
of only one node, a node-level agent is started.

7. Finally, at the lowest level, a node-level agent is invoked on each node on
which application processes execute. Each node-level agent (NLA) is pro-
vided with the list of IDs specifying the application processes for which the
NLA is responsible on the local node using a command line option.

When the node-level agent is started and ready to process performance
data it sends a message to its parent. Upon reception of this message form
all its child agents, a high-level agent similarly passes this message on to its
parent, until finally the message arrives at the front-end, which hence infers
that the entire Periscope agent hierarchy is up and running.

8. The user can now resume the execution of the target application by issuing
the start command from the front-end. This command is passed down the
agent hierarchy until it arrives at the node-level agents, where it causes the
resumption of the application processes.

9. Performance data is generated by the Periscope monitoring library and ana-
lyzed periodically by the node-level agents. The user can start the search
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process for properties at any time by issuing the check command from
the front-end. This command is propagated through the agent network and
causes the node-level agents to instantiate and check for performance prop-
erties.

10. Detected performance properties are propagated up the agent hierarchy.
Each high-level agent aggregates the property set it receives before pass-
ing it on to its parent. This minimizes the amount of data that has to be
transferred and increases the comprehensibility of the performance analysis
results for the user by combining similar performance properties on different
nodes.

For example, this is useful for master-worker applications where typically
two different classes of processes (one or more master processes and several
workers) can be distinguished. If the behavior within each class of proces-
sors is sufficiently similar (i.e., the same properties are detected for the same
program regions with similar severity and confidence values), Periscope can
combine the reported properties and thus raise the level of abstraction re-
ported to the user.

4 Evaluation

To evaluate the usability of the Periscope approach we have analyzed inefficien-
cies of the OpenMP version of the NAS parallel benchmarks (size “C”). The
NAS benchmark suite consists of five kernels (EP, MG, CG, FT, and IS) and
three simulated CFD applications (LU, BT, and SP). The applications were ex-
ecuted on a 32-CPU SGI Altix system based on Itanium-2 processors with 1.6
GHz and 6MB L3 Cache using a batch system. The number of OpenMP threads
was set to eight and the Periscope node-level agent was executed on a separate
CPU (i.e., nine CPUs were requested for the batch runs).

The following table shows which performance properties were discovered in
each of the NAS benchmarks, the numbers shown in this table count the different
instances a particular property was detected.

Property BT CG EP FT IS LU MG SP
ImbalanceAtBarrier 1 3
ImbalanceInParallelLoop 12 13 1 8 2 9 12 16
ImbalanceInParallelRegion 6 9 1 2 8 2 5
UnparallelizedInSingleRegion 3
UnparallelizedInMasterRegion 4 13 2 5
CriticalSectionContention 1

The Imbalance- properties refer to the fact that threads perform a different
amount of work (prior to a barrier, in a parallel loop or in a parallel region,
respectively). The Unparallelized- properties refer to the usage of single and
master constructs resulting in serialization of the execution. CriticalSection-
Contention captures the situation that several threads contend to enter a critical
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section, resulting in waiting time for some threads. A number of other properties
were tested but not detected by Periscope in the NAS benchmarks.

The following table shows the five most severe inefficiencies discovered in the
NAS benchmarks by Periscope. Severity refers to the percentage of total execu-
tion time lost due to the inefficiency.

Benchmark Property Region Severity (%)
MG ImbalanceInParallelLoop mg.f 608--631 8.31
FT ImbalanceInParallelLoop ft.f 606--625 6.76
BT ImbalanceInParallelLoop rhs.f 177--290 4.46
BT ImbalanceInParallelLoop y solve.f 40--394 3.53
BT ImbalanceInParallelLoop rhs.f 299--351 3.47

5 Related Work

Expert [8] is a tool for automated post-mortem performance analysis of C/C++
and Fortran applications. The execution of an instrumented application gener-
ates a trace file, which is scanned for patterns of inefficient execution by Expert.
The detected inefficiencies are displayed using a viewer with three panes, the
first giving the kind of inefficiency and the other two detailing its location (with
respect to program resources and machine organization). In contrast to Expert,
Periscope is an online tool and performance analysis can be conducted during
the execution of the application. The set of bottlenecks covered by the two tools
is somewhat similar, with Expert having the advantage of having full trace in-
formation available while Periscope’s properties currently rely on profiling data
only.

Paradyn [4] is an automated online performance analysis tool leveraging dy-
namic instrumentation techniques. Paradyn looks for performance problems
starting with a root hypothesis. In each step of the search process the cur-
rently tested hypothesis is then refined along one of the dimensions of the W 3

(why, where, when) search model. In comparison to Periscope, Paradyn has the
advantage of using dynamic instrumentation and is thus able to tailor instru-
mentation overhead to the current hypothesis. Until recently [7] data analysis
and the search for bottlenecks was performed centrally at the tool’s front-end,
a limiting factor for scalability. In contrast, in Periscope the analysis process is
performed inherently distributed by the node-level agents.

MATE [5,6] (Monitoring, Analysis and Tuning Environment) is a project that
tries to expand beyond automated performance analysis by incorporating meth-
ods for automated program tuning. MATE relies on dynamic run-time code
patching using the Dyninst API [1] to gather performance data and to dynam-
ically adapt the running application to improve its performance.
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6 Conclusion

We have presented Periscope, our tool for automated performance analysis based
on the idea of capturing situations of inefficient execution in the form of ASL
properties. Using Periscope, developers can quickly locate the most severe ineffi-
ciencies and discover their reasons. We have tested Periscope on several OpenMP
benchmarks and have discovered bottlenecks of up to 8% in overall execution
time.
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Abstract. Automatic trace analysis is an effective method of identifying
complex performance phenomena in parallel applications. To simplify the
development of complex trace-analysis algorithms, the earl library in-
terface offers high-level access to individual events contained in a global
trace file. However, as the size of parallel systems grows further and
the number of processors used by individual applications is continuously
raised, the traditional approach of analyzing a single global trace file be-
comes increasingly constrained by the large number of events. To enable
scalable trace analysis, we present a new design of the aforementioned
earl interface that accesses multiple local trace files in parallel while
offering means to conveniently exchange events between processes. This
article describes the modified view of the trace data as well as related
programming abstractions provided by the new pearl library interface
and discusses its application in performance analysis.

1 Introduction

Event tracing is a well-accepted technique for post-mortem performance analysis
of parallel applications. Time-stamped events, such as entering a function or
sending a message, are recorded at runtime and analyzed afterwards with the
help of software tools. For example, graphical trace browsers, such as vampir

[1] or paraver [2], provide a zoomable time-line display, allowing a manual,
fine-grained investigation of parallel performance behavior.

However, regarding the large amounts of data usually generated, automatic
off-line trace analyzers, such as expert from the kojak toolset [3,4], can pro-
vide the user with relevant information more quickly by automatically searching
traces for complex patterns of inefficient behavior and quantifying their signif-
icance. In addition to usually being faster than a manual analysis performed
using the aforementioned trace browsers, this approach is also guaranteed to
cover the entire event trace and not to miss any pattern instances.
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To simplify the analysis logic incorporated in expert, it has been designed
on top of earl [5], a high-level interface to access individual events from a
single global trace file. As opposed to a low-level interface that allows reading
individual event records only in a sequential manner, earl offers random access
to individual events. Not to restrict trace-file size, earl assumes access locality
allowing it to buffer the context of recent accesses in main memory while reading
events outside this context from file. In addition, to support the identification of
pattern constituents, earl provides a set of abstractions representing execution
state information at the time of a given event as well as links between related
events, such as corresponding enter and exit events for function instances.

Unfortunately, sequentially analyzing a single and potentially large global
trace file does not scale well to applications running on thousands of proces-
sors. Even if access locality is exploited as described above, the amount of main
memory might not be sufficient to store the current working set of events. In
addition, the preceeding step of merging local event trace data generated by in-
dividual processes into a global trace file is very time-consuming. Moreover, the
amount of trace data might not even fit into a single file, which already suggests
to perform the analysis in a more distributed fashion.

To enable scalable trace analysis for modern large-scale systems and applica-
tions running on them, we have designed a parallel trace-data interface pearl as
a building block for parallel trace analysis algorithms and tools. In this article,
we describe the modified view of the trace data in combination with program-
ming abstractions representing this view. We start our discussion with a review
of related work in Section 2, followed by a description of the serial interface in
Section 3. In Section 4, we detail the programming abstractions offered by the
new parallel interface, before presenting the intended usage as a framework for
implementing automatic parallel trace analysis in Section 5. Finally, we conclude
the paper and outline some further improvements in Section 6.

2 Related Work

In [6], Wolf et al. review a number of approaches addressing scalable trace analy-
sis. The frame-based slog trace-data format [7] supports scalable visualization,
whereas dynamic periodicity detection in Openmp applications [8] prevents re-
dundant performance behavior from being recorded in the first place. Important
to our approach has been the distributed trace analysis and visualization tool
vampir Server [9], which already provides parallel trace access mechanisms, al-
beit targeting a “serial” human client in front of a graphical trace browser as
opposed to fully automatic and parallel trace analysis. Miller et al. have used
a distributed algorithm on multiple local trace data sets [10] to calculate the
critical path, which identifies parts of the program responsible for its length of
execution.

Unlike common linear storage schemes for event trace data, the tree-based
main memory data structure called cccg [11] allows potentially lossy compres-
sion of trace data while observing previously specified deviation bounds. Since
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we are considering to use cccgs as an alternate base data structure for our trace-
data interface, the parallel programming abstractions described in this paper are
designed in such a way that the underlying data structure can be easily changed
when the library is compiled.

3 Serial Programming Interface: Earl

earl (Event Analysis and Recognition Library) is a C++ class library that
offers a high-level interface to access event traces of mpi, Openmp, or shmem

applications. In the context of earl, an event trace is stored in a single global
trace file that includes events from all processes or threads in chronological order.
The user is given random access to individual events allowing the retrieval of
distinct events by their index within the chronologically sorted sequence. Loops
iterating over the entire trace can be easily implemented by querying the total
number of events beforehand.

In addition, earl provides execution state information at the time of a given
event in the form of event sets describing a particular aspect of this state. The
state being calculated is either local or global. Local state always refers to a single
process or thread, whereas global state may encompass multiple processes or
threads. Local state information provided by earl includes the call stack in form
of the enter events of currently active region instances; global state information
includes the set of messages currently in transit represented by their respective
send events, completed collective operations represented by their respective exit
events, and the global call tree derived from the different call stacks, as it evolves
over time. Based on this state information, earl also provides links between
related events, which are called pointer attributes. Pointer attributes can also
be divided into local and global attributes. There is one local attribute pointing
to the enter event of the currently active region instance and allowing traversal
of the call stack. Several global attributes support functions, such as locating the
send event corresponding to a given receive event, uniquely identifying call paths,
traversing the global call tree, or following the ownership history of Openmp locks
between threads.

The intended trace analysis process supported by earl is a sequential traver-
sal of the event trace from beginning to end. As the analysis progresses, earl

updates the execution-state information and calculates pointer attributes for the
most recent event being read, which always point backwards to avoid a costly
look-ahead. To make the trace analysis process more efficient, earl buffers the
context of the current event so that events within this context can be directly
accessed from main memory. This context includes the last n events (i.e., the
history), including the entire related execution-state information.

To avoid re-reading the trace file from the very beginning in cases where an
event outside the context is requested, earl additionally stores the complete
execution state information at regular intervals in so-called bookmarks. The his-
tory size as well as the bookmark distance can be flexibly configured, however,
since these parameters have a significant performance impact with respect to
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memory consumption and the number of required file accesses and, in addition,
these effects are highly application dependent, finding an optimal set of param-
eters is a non-trivial task. For more details about earl, the interested reader
may refer to the user manual [12].

4 Parallel Access to Trace Data: Pearl

In this section, our new parallel programming interface for accessing event trace
data is presented. Before going into the details of the programming abstractions
provided, we start with an outline of the overall design and show how it differs
from the previous approach described above.

4.1 Design Overview

Similar to earl, our new parallel trace data access interface, which we call
pearl, is also implemented as a C++ class library. However, we no longer assume
a single global trace file, as was the case for the serial interface. Instead, pearl

operates on multiple process-local trace files.
For simplicity, our initial implementation of the pearl library focuses only

on single-threaded mpi-1 applications. However, during the entire design it was
taken into account that we plan to extend this approach to alternate parallel
programming models, such as Openmp or mpi-2. Therefore, the pearl library
interface is subdivided into a generic part, which is independent of the program-
ming model used, and an mpi-specific part, implemented by deriving specialized
subclasses from the generic interface. Once support for multi-threaded applica-
tions has been added, pearl will access one local trace file per thread.

The benefit behind the approach of using multiple local trace files instead
of a single global file is twofold. First, it avoids the time-consuming step of
merging the process-local trace files generated by the measurement system into
a single global file. And second, it allows us to effectively exploit the distributed
memory and parallel processing capabilities available on modern supercomputer
systems. As a consequence, the analysis algorithms and tools based on pearl

will usually be parallel applications in their own right with expected scalability
improvements compared to serial versions.

The originally envisaged usage model of pearl assumes a one-to-one mapping
between analysis and target-application processes. That is, for every process of
the target application, one analysis process responsible for the trace data of
this application process is created. However, the pearl library itself imposes no
restrictions on how many traces can be handled by a single analysis process, as
long as sufficient system resources (especially memory) are available. It is even
possible to implement sequential tools based on pearl, processing the local
traces one after another.

The trace data is exposed to the user through two fundamental classes, namely
GlobalDefs and LocalTrace. Before describing both classes in more detail, the
required organization of trace files and how it is established are explained.
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4.2 Trace File Organization

To generate trace data suitable for pearl, we have modified the original kojak

measurement system. An essential change has been omitting the merge step and
storing event data and the definitions of entities referenced by events in sepa-
rate types of files, which correspond to the classes GlobalDefs and LocalTrace
mentioned above.

Event data stored in trace files refer to static program entities, such as the code
regions entered or left. However, to avoid redundancy and save storage space,
event records contain only identifiers referencing these entities and the identifiers
are defined separately. During measurement each process assigns local identifiers
to these entities, and subsequently uses these local identifiers in event records
whenever the corresponding entities are referenced.

Immediately after program execution, the measurement system unifies the
local definitions and generates a single global definitions file, where each en-
tity is assigned a global identifier. In addition, to allow the conversion of local
into global identifiers, the measurement system creates one mapping table per
process. In this way, the actual event files, which still contain local identifiers,
need not be rewritten and costly i/o can be avoided. This unification step was
previously performed using a separate executable, but has recently been fully
integrated it into the measurement system itself. A more comprehensive descrip-
tion of these mechanisms can be found in [13].

4.3 Accessing Global Definitions

In the context of the pearl library interface, information about static program
entities that can be shared between all processes or threads of a parallel trace
analysis tool is represented by the class GlobalDefs. That is, every process has
to create a single instance of this class for each experiment it analyzes, which
on instantiation reads the corresponding global definitions file generated by the
measurement system. All processes read the same file, because they share the
same set of global definitions.

The GlobalDefs instance provides the user with details regarding the hi-
erarchical structure of the computer system used during trace file generation,
consisting of machine, node, process, and thread descriptions as well as their
relationships, such as the topological distribution (either from a logical point of
view or with respect to the hardware). In addition, it offers ways to query infor-
mation on groups of locations in the system hierarchy (i.e., threads or processes),
which are, for instance, used to specify mpi communicators.

Moreover, the GlobalDefs object stores the details of instrumented code re-
gions and call sites, as well as the global call tree of the application that is
currently analyzed. This global call tree will be generated by the measurement
system at the end of execution of the target application and stored in the global
definitions file. Alternatively, the pearl library provides functionality to recon-
struct the global call tree during the trace analysis as an optional preprocessing
step. However, this reconstruction can not be performed before the entire event-
trace data has been loaded into memory. Note that different from earl, the call
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tree is no longer defined in terms of links between individual events (i.e., pointer
attributes), but in a separate data structure which simplifies the handling of
call-path information.

4.4 Accessing Event Data

In addition to the GlobalDefs object, each analysis process (or thread in case of
multi-threaded applications) has access to one local event trace represented by an
instance of the class LocalTrace. Since we assume that the internal in-memory
representation of a local trace is smaller than the memory available to a single
process on a parallel machine, the entire local trace can be kept in main memory,
relaxing the aforementioned limitations resulting from strict forward analysis. In
other words, the pearl library can provide performance-transparent access to
individual events plus local execution state information.

To make sure that our assumption of being able to keep the entire trace
data in memory is not too restrictive for the future, the LocalTrace interface
provided by pearl is designed in such a way that it allows to select between
different underlying trace data structures, which can be chosen when the library
is compiled. At present, pearl offers (i) a linear list with full functionality and
(ii) rudimental support for cccg graphs. The latter option will be extended and
further investigated. To support very long traces, it would even be possible to
add an earl-like backend using a sliding-window approach and sophisticated
buffering mechanisms.

While reading the event trace into memory, the LocalTrace object automat-
ically performs two important operations: First, it corrects the timestamps of
the individual events using linear interpolation to – at least partially – compen-
sate for unsynchronized clocks. And second, it “globalizes” all identifiers used
in the trace file by creating references to the corresponding static program enti-
ties provided by the single GlobalDefs instance, using the per-process mapping
tables mentioned in Section 4.2. That is, the event objects created from the
event records provide pointers into the same set of objects. After these on-the-
fly transformations, which are completely transparent to the user, the instances
of class LocalTrace provide a unified view of the event data with respect to
timestamps and references to global definition objects. This is especially useful
when exchanging event data between processes, as described in Section 4.5.

Individual events of local traces can be accessed through the Event class which
provides access to all possible event attributes, following the Composite design
pattern [14]. For navigating through the local trace, this class also exposes Iter-
ator semantics available via simple operator--() and operator++() methods.
With respect to the iterator functionality, the two classes LocalTrace and Event
provide an interface that is very similar to that of the C++ Standard Template
Library (stl) container classes and their corresponding iterators. For example,
the LocalTrace class provides begin() and end() methods returning reason-
able Event instances. In fact, it is even possible to apply stl algorithms, such as
for each() or count if(), to local traces. Not to impose too many restrictions
on the underlying data structure, we have refrained from providing event access
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by index. However, our experience suggests that iterator functionality in com-
bination with traversal of pointer attributes is sufficient to implement complex
applications such as a parallel trace analyzer.

In addition to the iterator functionality, instances of the Event class also
provide pointer attributes for more sophisticated navigation tasks. As a result
of the parallel in-memory event storage, pointer attributes can now also point
forward, but no longer to remote events. Currently, there are pointer attributes
to identify the enter and exit events of the enclosing region instance. These can
be used to determine the duration of the communication operation (i.e., region
instance) belonging to a given communication event. The return values of these
pointer attribute methods are always new Event (i.e., iterator) objects that can
be subject to further navigation operations. Local call stacks are easily calculated
on the fly by traversing the chain of pointer attributes. Another special attribute
identifies the call path of an event by providing a pointer into the global call
tree. In this way, pearl applications can easily identify events with equivalent
call paths, a feature used to automatically associate bottlenecks with the call
paths causing them. However, in contrast to the serial version, all other global
states and pointers now have to be established on the application level using the
event exchange operations discussed below.

4.5 Exchanging Event Data Between Processes

To facilitate inter-process analysis of communication patterns, pearl provides
means to conveniently exchange one or more events between processes. Remote
events received from other processes are represented by a class RemoteEvent,
which provides a public interface very similar to the class Event, but without
iterator semantics and pointer attributes, since we do not have full access to the
remote event trace.

There are generally two modes of exchanging events: point-to-point and col-
lective. Point-to-point exchange allows a RemoteEvent instance to be created
with arguments specifying the source process, a communicator, and a message
tag. In addition, the corresponding source process has to invoke a send method
on the local Event object to be transferred.

Moreover, the exchange of multiple events can be accomplished in one batch
by first collecting local events in an object of the class EventSet on the sender’s
side and instantiating an object of class RemoteEventSet on the receiver’s side
by supplying message parameters to the constructor. Each event stored in these
sets is identified by a numeric identifier which can be used to assign a role to it,
for example, to distinguish a particular constituent of a pattern. However, both
set classes are able to transparently handle multiple role identifiers for one and
the same event to avoid sending its data twice.

Unlike point-to-point communication, the collective event exchange provided
by pearl has the form of a reduction operation that identifies the earliest or
latest event (i.e., minimum or maximum operation based on the timestamps) in
participating processes’ local EventSets, and creates a corresponding instance
of class RemoteEvent for those processes.
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5 Example: Scalable Parallel Trace Analysis

The strength of our sequential interface earl has been the provision of truly
parallel abstractions that allows access to higher-level structures, such as mes-
sages and collective operations, which requires the ability to match correspond-
ing events across several processes. In the case of our new parallel interface, this
is more difficult, since matching those events incurs costly communication. To
minimize this communication overhead, the intended usage of pearl is that of a
replay-based analysis. This approach has been successfully utilized to implement
a parallel trace-based performance analyzer functionally almost equivalent to
the mpi-1 part of the aforementioned serial trace analyzer expert.

The central idea behind a replay-based analysis is to analyze each communi-
cation operation using an operation of similar type, that is, by reconstructing
the original communication behavior of the target application currently under
investigation. For example, to analyze a message transfer in point-to-point mode,
the related event data is also exchanged using a single point-to-point operation.

To accomplish the analysis, the new analyzer is executed on as many cpus as
used by the target application – assuming a one-to-one mapping between analysis
and application processes. That is, for every process of the target application,
one analysis process responsible for the trace data of this application process
is created. Using a one-to-one mapping, the analysis can be efficiently carried
out immediately after trace generation as part of the same job. In the future,
however, we plan to relax this model and allow a smaller number of analysis
processes which might be useful if the analysis should be performed on a different
system.

As a first step, each process of the analyzer instantiates a GlobalDefs as
well as a LocalTrace object, thereby loading the corresponding trace data into
main memory. Next, they traverse their local traces in parallel using the iter-
ator functionality provided by the LocalTrace and Event classes and meet at
the synchronization points of the target application by replaying the original
communication. For this purpose we use the event data exchange abstractions
described in Section 4.5. See Figure 1 for an exemplary illustration of how this
principle works for the Late Sender pattern.

Since the pearl library provides performance-transparent access to all events
of a local trace, the analysis is no longer restricted to a pure forward analysis.
That is, pearl offers the possibility to not only exchange the data of a commu-
nication event (and potentially also the enter event of the surrounding function
call accessible via a pointer attribute), but also the data of the corresponding
exit event or any other event occurring in the “future”. Our current prototype
implementation of the parallel analyzer does not yet take advantage of this fact,
but this is likely to change in subsequent versions.

Using the replay-based analysis approach implemented with pearl, we were
able to analyze execution traces of a parallel-tree application called pepc-b

running on 1,024 cpus and the asci benchmark smg2000 running on up to
16,384 cpus. Thereby, the largest data set consisted of more than 40 billion
events, which amounted to approximately 230 GBytes of disk space. By contrast,
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Fig. 1. Comparison of old and new approaches: (a) Illustration of the Late Sender
pattern. (b) In a sequential earl-based analyzer, the detection of the Late Sender pat-
tern is triggered by a receive event. All other relevant events are found through pointer
attributes. (c) In the parallel, i.e., pearl-based approach, an EventSet is created when-
ever a send event is found by an analysis process. This send event and the associated
enter and exit events are added to the set. This set is then sent to the corresponding
receiver, which in turn instantiates a RemoteEventSet when the corresponding receive
event is reached. Now the receiving process has access to all relevant constituents and
can therefore verify the existence of the Late Sender pattern.

sequentially analyzing such a huge amount of data using an earl-based analyzer
was impractical. A more elaborate discussion of the parallel analyzer and the
experimental results can be found in [15].

6 Conclusion and Future Work

This paper presented the design of a new parallel trace data access library called
pearl. Instead of using a single and potentially large global trace file, as was
the case for our previous serial approach, the new library operates on multiple
process-local trace files. This allows effective exploitation of the distributed mem-
ory and processing capabilities of modern supercomputing systems for parallel
trace-analysis algorithms and tools.

The library offers basic functionality to easily access event-trace data, fol-
lowing well-known design principles. Because of the distributed data storage
scheme, the entire event trace is held in main memory, thus yielding performance-
transparent access to individual events. In addition, the interface provides a
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global view of static program entities referenced by the events, such as code re-
gions or communicators, and of the call tree. Compared to its serial predecessor
earl, pearl’s storage scheme and usage model allows pointer attributes to point
forward in time, which gives tool builders more flexibility in recognizing event
patterns. On the other hand, pearl no longer offers global abstractions, such
as pointer attributes pointing to other processes or execution state. These have
been replaced by mechanisms to conveniently exchange events between processes
that, when used in conjunction with the concept of parallel reply, can provide
almost equivalent but significantly more scalable trace-analysis functionality.
Moreover, the basic design of the library offers the option of selecting between
different trace data structures when the library is compiled. In this context, we
are planning to fully implement support for the tree-based cccg data structure
and to explore its use for automatic performance analysis.

As an example of a parallel trace analysis application based on the pearl

library, we have outlined some details of our current prototype implementation of
a scalable performance analyzer. The analyzer and the underlying pearl library
at present focus only on mpi-1 applications, however, we intend to extend them
to support other parallel programming paradigms, such as mpi-2 and Openmp.
Finally, we plan to exploit the advantages of efficient event access to implement
more sophisticated patterns that are impractical to recognize within the serial
earl framework.
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Abstract. Performance is a crucial issue of parallel/distributed appli-
cations. One kind of useful tools, in this context, are the automatic per-
formance analysis tools, that help developers in some of the phases of
the performance tuning process. KappaPI 2 is an automatic performance
tool, with an open extensible knowledge base about typical inefficiencies
in message passing applications, and it is able to detect and analyze these
inefficiencies, and then make suggestions to the developer about how to
improve their application behavior.

1 Introduction

Designers and developers of parallel/distributed applications, expect that their
applications reach high performance indexes to meet the expectations of HPC.
In this context, performance analysis is a crucial issue.

However, there is a lack of useful tools, and the most popular approach to
carry out the performance analysis is the use of visualization tools [1,2] to show
several indexes obtained from the execution of the application. The analysis of
these views is a difficult and time consuming task that requires a high degree of
expertise from the developer.

To overcome this situation, more user-friendly tools are needed. Such tools
should provide a step ahead from the visualization techniques. To fulfill these
requirements, some automatic performance analysis tools have been developed,
like Scalea [4] and Expert [3]. These tools take data from the execution of the
application, in form of profiling or tracing data, and try to detect performance
bottlenecks in the application. To identify these bottlenecks, these tools uses cer-
tain performance property specification, for example, derived from the APART
specification Language (ASL) [5].

KappaPI 2 is an automatic performance analysis tool that extends these ideas,
enhancing the use of current knowledge of performance inefficiencies in the mes-
sage passing environments, and providing support in the performance analysis
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process in form of recommendations directed to the developer. The application
developer can use the recommendations provided by the tool to improve the
performance of the applications.

The rest of the paper is organised as follows. Section 2 shows basic concepts
and goals inside the general architecture in the KappaPI 2 approach. Section
3 surveys related work on automatic performance tools. Section 4 summarizes
typical KappaPI 2 tool operation, showing some internals (as we devoloped in
KappaPI 2 tool prototype) of the main mechanisms about detection, classifica-
tion and suggestions, related to the performance bottlenecks. Section 5 presents
some experimental results obtained by the tool prototype. Finally, section 6
summarizes our conclusions.

2 KappaPI 2

In KappaPI 2 [9] the main goal is to provide useful hints to the application
developer, to enhance the performance of their applications. The tool uses a
series of specifications or performance knowledge as input data. This knowledge
represents a set of parallel performance bottlenecks that can be found in the
execution of parallel/distributed applications on message passing environments
(MPI and PVM in our case).

The main goal of the tool architecture is to provide the mechanisms to support
an automatic performance analysis tool that has the following features:

– Performance knowledge specification: Independent specification mechanisms
to introduce new performance inefficiencies. Facilitate the introduction of
new performance bottlenecks in the tool’s knowledge base, without hard-
coding this knowledge in the tool.

– Independence from background message passing system: The tool builds
abstract entities that are independent from the particular trace file format
or the message passing primitives.

– The performance inefficiency detection engine must read the performance
knowledge specification and classify the inefficiencies found in the trace.

– Relate inefficiencies to the source code of the application: the source code
must be examined to determine why the inefficiency appears.

In KappaPI 2 (figure 1), the first step is to execute the application under the
control of a tracing tool (for PVM or MPI environments) that captures all the
events related to the message passing primitives that occur while running the ap-
plication. Our tool takes this trace (obtained from the post-mortem application
execution) and the performance inefficiency knowledge base as inputs, to detect
the performance bottleneck patterns defined from a structural point of view. In
our case, a performance problem pattern is defined as a well know inefficiency
structure on a message passing application.

After this pattern detection process, the tool sorts the found performance bot-
tlenecks according to certain indexes of importance, to classify the bottlenecks in
a rank. The most important found are taken to analyse their root causes of ap-
pearance. After it is carried out a bottleneck cause analysis, based on well known
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Fig. 1. Module architecture of the KappaPI 2

bottleneck use cases, and the application source code analysis. And finally the
tool provides a set of recommendations (hints) to the user, indicating how to
modify the source code of his application to overcome the detected bottlenecks.

3 Related Work

Several automatic performance analysis tools can be related to KappaPI 2, in-
cluding the first version of KappaPI [7], Scalea [4], Expert [3].

In the first version of KappaPI, detection of performance bottlenecks focused
on idle intervals affecting the largest number of processes. Processor efficiency
was used to measure execution quality, and idle processor intervals represented
performance inefficiencies. The knowledge about the performance inefficiencies
was a closed, hard coded set of bottlenecks, and no mechanisms were provided
to add new bottleneck specifications. Similar limitation also affects root cause
analysis. In these terms, respect to original KappaPI, one of the main important
point is the introduction of one open database of knowledge about performance
problems, without recoding each problem, in a hard coded way, by means of using
independent specification languages (based in standards like XML) defining each
problem in form of structural pattern of events involved in the problem, and the
constraints related to where and when the problem appears.

Scalea [4] uses an interface called JavaPSL API to specify the performance
properties [5], using a Java syntax in a form of classes for each problem. The
user can specify new properties (by adding new Java classes) without changing
the implementation of the tool’s search phase.

In Expert [3,8], the specification of the performance properties are realised
using script languages based on internal APIs (for trace manipulation, and in-
formation retrieval related to the events). Expert tries to answer the question of
where the application spends time. It summarizes the indexes of each problem
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found and accumulate their times to compare its impact to the total applica-
tion execution time. Main differences between KappaPI 2 and Expert are: a)
Bottleneck specification from a structural point of view, meanwhile Expert uses
bottleneck detection/matching programming (in different base programming lan-
guages). b) Expert specification is based on some trace API, that the user needs
to know in order to specify the bottleneck property; in Kappa PI 2 the use of
the trace is only internal. KappaPI 2 also offers abstraction mechanisms from
trace formats and environments: we can use different tracers in different environ-
ments (PVM, MPI). c) Expert does not offer direct techniques for source code
analysis, or any kind of recommendations to help the developer to improve the
application. d) In Kappa PI 2 an additional level of specification is added for
bottleneck analysis causes. The user can provide knowledge about bottlenecks
and their analysis process.

4 KappaPI 2 Operation

First of all, it is necessary to execute the application, with a tracer tool (adapted
to MPI or PVM), that collects all the events related to the message passing prim-
itives that occur during the application execution. The stored trace is used as
input for the detection phase, based on the matching of the bottleneck structural
specification between the specified events and their presence in the application
trace.

At starting the detection phase, KappaPI 2 needs to read the knowledge about
performance inefficiencies, by means of structural bottleneck specification. Each
bottleneck in the knowledge base is specified as a structural pattern, defined
with:

– Root event: The main event as root of the bottleneck.
– Event instances: Which other events appear.
– Constraints: When and where, constraints of relating events.
– Computations: Small computations required to evaluate some rank indexes.

For example, we can see an example of one classical bottleneck, the Blocked
Sender [9], in the figure 2:

We can observe different events from the trace, each line in this Gantt chart,
has the events related to one of the tasks, three tasks are involved in this bottle-
neck. In a task the execution of each primitive generates two events: one for the
entry point (in time) for the primitive call, and other exit point of the primitive
call.

And in the resulting specification, an XML based specification, with structure
as commented previously, we need to consider event instances involved, temporal
order constraints, and calculations to realize.

We need to include the constraints related to time, which event appear after
or before another, and place constraints relating events to their tasks, and also
computations needed to evaluate the ranking of the bottleneck, in this case an
idle time waiting for the initiation of a second point to point operation. In the
specification, we see these items:
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Fig. 2. Blocked Sender: A third task is blocked waiting for a communication, not
started

Part of Blocked Sender specification
<PATTERN Name="Blocked Sender">
<ROOTTYPE>RECV</ROOTTYPE>
<INSTANCES>
<EVENT NAME="S1" TYPE="SEND" TO="ROOT"></EVENT>
<EVENT NAME="S2" TYPE="SEND" TO="R2"></EVENT>
<EVENT NAME="R2" TYPE="RECV" FROM="S2"></EVENT>
...

</INSTANCES>
<CONSTRAINT>
...
<COND TYPE=">" OP1="E2.stamp" OP2="E1.stamp"></COND>
<COND TYPE=">" OP1="E2.stamp" OP2="E3.stamp"></COND>
<COND TYPE="=" OP1="E3.taskId" OP2="E2.taskId"></COND>

</CONSTRAINT>
<EXPORT>
<COMPUTE NAME="idle_time" AS="-"
OP1="E2.stamp" OP2="E1.stamp"></COMPUTE>

</EXPORT>
</PATTERN>

In our tool knowledge catalog we have specifications about different classical
performance bottlenecks, some related to point to point communications, col-
lective communications and synchronisation. The performance problems in this
specification catalog include:

– Late Sender (LS)
– Late Receiver (LR)
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– Blocked Sender (BS): A third task receive operation cannot be initiated
because second task has a previous not initiated communication from a first
task.

– Multiple Output (MO): Multiple messages from one task to the others.
– Wrong Order (WO): Of the messages between two tasks.
– Early root in 1 to N collectives (E1N).
– Delayed root in N to 1 collectives (DN1).
– Early tasks in N to N collectives (ENN).
– Block at Barrier (BB).

And also the catalog provides specifications that help the detection and opti-
misation of particular structures of parallel applications, like master-worker [6],
and pipelines. Some of these performance problems are described in previous
works on KappaPI [6,7]. Others can be found in related work in performance
analysis tools [5,8], as for example the works about ASL language in the APART
project [5], and the concept of compound event, as form to express a structural
specification of a performance bottleneck with related constraints.

In the next internal process in the tool, we do the knowledge reading process
(obtaining the bottleneck catalogue), which builds a tree with the common roots
and paths between the bottlenecks, making a decision tree, which classifies the
knowledge. During detection phase the decision tree was walked for problem
matching. As we can see in the figure 3:

TRACE_SEND

TRACE_RECV

e4

e1

TRACE_RECV

e3

TRACE_SEND

e2

R

R

S

S

Root  Node(Late Sender & 
Blocked Sender)

End Node

(Late Sender)

End Node

(Final Node Blocked Sender)

R (receive call)

S (receive send)

Fig. 3. Detection phase using a walk in the decision tree

In this example of a decision tree, it only represents two bottlenecks: later
sender and blocked sender. The blocked sender is that there is a receiver that
is blocked by a sender. And his sender is blocked by another receiver which is
blocked by a sender. And a later sender is a receiver blocked by a sender. As we
can see, two different bottlenecks can have common roots.

In this case in the trace showed, the two first nodes detect a Late sender, if
appears a receive event connected with the sender, as in the example trace, a
Blocked sender problem is found.
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One walked path in the tree, define a bottleneck from the root to end node,
but two problems can share steps in a path, if the bottlenecks can have common
partial paths.

Considering this, one end node of a problem isnt necessary a final bottleneck
detected, we need to maintain it as a possible path to extend to another bot-
tleneck, if more related events appears to continue with the bottleneck which
shares path. In some terms, the bottleneck can be seen has a specialization (or
composition) of the first.

Once a bottleneck is detected, its information is captured and stored as a
match in a table of inefficiencies, which is used as classification scheme based on
indexes of presence and importance of the bottleneck. When the detection phase
has finished, a table of main problems is provided.

These bottlenecks, with information related to source code (where the events
are produced, in form: which calls, in which file and line number in source code),
are analysed to determine the causes of their occurrence.

In this point a second level of specification (based also in XML standard) is
used. Each bottleneck has a set of cases to test (like a series of use cases of the
bottleneck), referred to a different kinds (or instances) about how the bottleneck
can be found. It provides information about the possible cases of the bottlenecks,
based on a description of preconditions to test for determining which exact case
of the match of the problem have been found.

These condition tests require to analyse some source code, for example to
determine data dependences, or information about parameters in use, or if it is
feasible to make some code transformations. And in that case these evaluated
tests can be used to determine what cause (or what initial conditions) provoke
the bottleneck, and suggest after, in a hint form, how the user can actuate to
solve (or minimize) the bottleneck.

For example, in a simple case: In a isolated Late Sender bottleneck, you can
test if it’s possible to do the primitive message passing call for the send opera-
tion before in time in the sender task, or test if the receiver can do the receive
operation after, obtaining a better synchronization scheme (minimizing the time
delay). The tests, in this case, are about the source code points of send and re-
ceive primitive calls, and the data dependence around the code blocks involved,
and test possible code reorganizations, to improve a better point to point com-
munication.

One simple test for Late Sender (simplified)
1 <ANALYSIS name="Late Sender">
2 <points>
3 <place name="recv" event_info="E1">
4 <place name="send" event_info="E2">
5 </points>
6 <test type="CODE_UP" place_name="send">
7 <message>Hint: Receive delays</message>
8 <hint_true>
9 Code in send call can be located before

10 this place, no data dependences
11 </hint_true>
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12 <hint_false>
13 Try to refactor this code, can be located
14 before this place
15 </hint_false>
16 </test>
17 ...
18 </ANALYSIS>

The source analysis process is done by means of structural source code rep-
resentation, based in a XML like representation (developed in APART project
works [10]). We can analyze some blocks of code, and determine their structure,
or see information about symbols, or detect the context of a message passing
call (in a loop, conditional...). This representation is used to get information of
a particular point of source code (point of interest in case analysis). Afterwards,
some quick parsers (for small dedicated tasks) detect some of the conditions of
interest for the use case evaluated.

In that sense, we can see that KappaPI 2 works with source code between two
visions:

– Uses a representation of source code (based in APART SIR) in the XML
mark-up language, for block code structure inspection, and to locate caller-
calls positions.

– Uses a small API (quick parsers API) to test some basic conditions around
lines of source code, like: data dependences, reorganizations of code (e.g. if a
portion of code is moveable up or down a number of lines), test parameters
of a primitive call, etc...

Finally, once a case is found the tool provides a recommended action (hint) to
be done on the source code to overcome or eliminate the found bottlenecks. One
hint template is associated with each use case, and the hint template is filled by
the information recollected in all previous tool phases about the bottleneck (re-
lated events, recollected metrics, indexes calculated, etc...). When one use case is
validated, the user finally obtains the hints, in a form of recommendations about
how he can improve his source code to avoid or minimize the main performance
bottlenecks detected.

We can see an example of recommendation for a simple case of a detected of
one Later sender bottleneck:

Hint template for a Late Sender
[Late sender] situation found in tasks [0] and [1],
the sender primitive call can be initiated before
(no data dependences)
the current call is on line [35] of the file [ats_ls.c].

Where info in brackets is filled by the tool, starting with the hint template, and
using the data recollected in the use case of analysis of the Late Sender.
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5 Experimentation

We have carried out a series of study cases, with different kind of tests, for the
validation of the architectural phases of the tool: detection, classification, cause
analysis (with extra source code analysis), and final recommendations for the
developer.

Various tests are made using standard synthetic code [9], some performance
benchmarks, and some real scientific applications, in terms of validation of anal-
ysis phases of the tool, and final results of improvement of the application per-
formance.

With real applications, we try to show a complete cycle of analysis, and some
performance improvements obtained by suggestions emitted by the performance
tool.

For example with the Xfire PVM application, which is a physical simulation
system, for study the forest fire propagation [11]. Basically this is an intensive
computing application (with a master-worker model), which models the propa-
gation of a forest fire considering the weather and vegetation parameters, and
proceeds with a time discrete simulation; where in each time step it evaluates
the next position of the forest fire. Running this application within a cluster of
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Fig. 4. Main bottlenecks found in Xfire
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16 nodes, with different configurations, we have obtained by KappaPI 2 some
data about bottlenecks found:

We observe an important bottleneck increase in the 8 and 16 nodes cases.
The tool in the hint mentions the detection of the main bottlenecks, LS and one
BS, with two tasks involved, which are in the same node (from the detection
of structures [6], the tool knows that one is a master and the other one slave).
The tool suggest as a hint to exam the code of tasks creation, pointing out the
line of code associated, in this case one pvm spawn primitive call. The proposed
modification is to make explicit the mapping of the tasks into physical nodes,
touching the dynamic creation of tasks (in pvm spawn).

Running the new modified application, in the problematic cases (8 and 16
nodes) makes an improvement of performance of 10% on the global application
execution time.

6 Conclusions

We discussed an automatic performance analysis architecture oriented toward
the end user to avoid the high degree of expertise needed to improve message-
passing applications. The performance analysis knowledge involved in the current
tool prototype, is open to the introduction of new models for performance bot-
tlenecks. It is able to make useful suggestions about the source code, to improve
the application execution time and therefore avoid the performance problems.

Past and present experimentation corroborates that the detection of parallel
performance problems based on structural patterns, the use of an open tool to
incorporate knowledge in a highly flexible form, and the generation of suggestions
directed to the developer is a feasible approach that helps the performance tuning
process significantly.

The architecture implementation in the KappaPI 2 tool prototype, has been
tested on a range of applications, including some benchmarks (to test bottleneck
detection coverage), and real applications, to see real improvements in applica-
tion performance. And shows the current prototype as a useful tool for enhance
application performance avoiding main bottlenecks effects.
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Abstract. In this paper we present an approach to online automatic
monitoring of memory hierarchies in threaded applications. Our envi-
ronment consists of a monitoring system and an automatic performance
analysis tool. The CMM monitoring system uses static instrumentation
of the source code and information from the hardware counters to gener-
ate performance data for selected code regions and data structures. The
monitor supports threaded applications by providing per-thread perfor-
mance data or by aggregating it. It also provides a monitoring request
API for the performance tools. Our tool AMEBA performs an online au-
tomatic search for cache and thread-related ASL properties in the code.

1 Introduction

With SMP architectures being more and more a commodity computing resource
and with paradigms such as OpenMP, the programming of threaded applications
became a task that almost any average programmer can master. A great number
of HPC applications originated this way. But this is where the easy part ends.
While debugging of such an application is not as easy as writing it, obtaining
performance and scalability from it could really be a daunting task.

Memory bottleneck problems already present in serial programs obtain a
greater significance in threaded applications. In addition, new problems are
added to the traditional problems, e.g., false sharing. Usual profiling and trac-
ing tools cannot find the new problems, what is needed is more extensive and
complex monitoring and analysis.

Traditional performance tools assist in analyzing the raw data but do not
guide the developer in the iterative performance optimization process. He decides
which performance data to collect and which graphical display is best to identify
a performance problem. This requires knowledge of performance analysis which
most average application developers do not have. By building automatic analysis
tools we can make performance analysis accessible to every developer.

Automatic Monitoring Environment for Bottleneck Analysis (AMEBA) [1]
is our approach to automatic analysis of threaded applications in SMPs. By
� This work is part of the EP-CACHE project funded by the German Federal Ministry

of Education and Research (BMBF) and the Periscope project funded by the German
Science Foundation (DFG).
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using the Configurable Monitor for Memory Hierarchies (CMM) [2] monitoring
environment, our tool is able to automatically search for complex cache problems
in serial and OpenMP regions of an application.

The performance problems are expressed as APART Specification Language
(ASL) [3] properties. A property evaluated and holding for a region means that
there is a performance problem in that region. The search for bottlenecks can
even be refined to single data structures in specific regions of the application.

In order to provide the performance data needed for the evaluation of prop-
erties, CMM uses either simulation or the available hardware counters in the
processors. Particularly interesting for the monitoring of threads and data struc-
tures is the port of CMM to Itanium-based SMPs and especially to ccNUMA
architectures, such as the SGI Altix 3700.

The rest of this document is organized as follows: Section 2 shows the support
of CMM for threaded applications. Section 3 is an overview of our automatic
tool, AMEBA. Section 4 introduces new ASL properties related to threads and
cache problems. We evaluate the CMM monitoring system and the automatic
search with AMEBA in Section 5. Sections 6 and 7 present related and future
work respectively.

2 The CMM Monitoring Environment

The goal of CMM is to provide detailed information about the memory access
behavior of Fortran OpenMP programs. Programs written in other programming
languages can also be monitored with CMM, provided that language-specific
instrumenters for program regions and data structures are available.

The CMM environment, shown in Figure 1, is structured in several layers.
Each layer represents a different abstraction for the addresses of data structures.
While the hardware monitor is configured through a low level API using physical
addresses to restrict the monitoring to an address range, the second level, ePAPI,
achieves a higher level of abstraction by working with virtual addresses. At
the top of the architecture, the Monitoring Request Interface (MRI) provides
performance tools with a symbol-based interface. Tools can for example request
the execution time of a specific loop or the number of cache misses within a
region of the source code.

CMM can be used by a broad range of performance analysis tools such as
GUIs, trace analyzers, or automatic performance tools. In Figure 1 three tools
are shown which already use CMM. One of the tools is a trace archiver which
configures the monitor to produce trace data and then saves this data in a format
readable by VAMPIR [4]. Another tool which uses CMM is Performance Cockpit,
an Eclipse-based GUI [5] which allows the user to explore the source code of his
program and to interactively request performance data for single regions or data
structures. The last tool shown in the figure is the AMEBA automatic analysis
tool [1].

Mapping monitored information to code regions and data structures is done
by source code instrumentation. That is, code regions such as functions, function
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Fig. 1. The layers of the CMM monitoring architecture. Each layer represents a differ-
ent abstraction for the address of data structures.

calls, loops, or I/O operations are marked in the source code by a code region
instrumenter. Due to the overhead of instrumentation at runtime, the user can
guide the instrumentation process and select those types of regions to be instru-
mented. For example, instrumentation can either be performed automatically
for all types or regions or can be limited to subroutines and parallel regions thus
ignoring sequential loop nests. Additional instrumentation may be necessary to
restrict measurements to memory accesses of specific data structures. Such an
instrumentation inserts calls to a library that gathers data structures’ address
information at runtime.

During the execution of the instrumented application, performance tools ac-
cess the performance data via the MRI. In addition to the dynamic information,
the performance analysis tools can also use the static information (information
about the program’s structure) generated by the instrumenter. This informa-
tion is helpful for discovering problems dependent on the application’s static
information and is necessary for the generation of region-related performance
measurement requests through the MRI.

2.1 Monitoring Threads with the CMM Environment

The CMM environment’s support for threaded applications includes the instru-
mentation of OpenMP regions, the thread-specific configuration of monitoring
resources in runtime, and the ability to deliver thread-related performance data.

In order to configure single threads upon a monitoring request, CMM has
a thread management utility for storing thread-related information. The
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environment uses this utility to determine how many threads are executing the
monitored application and which thread issued a call to the monitoring library.

Figure 2 (a) shows how the configuration for thread-related monitoring works.
After a thread has entered the monitoring library and a monitoring request
is pending for the current region, CMM determines which thread has entered
the monitoring library. If the thread id matches one of threads specified in the
monitoring request, the hardware resources are configured accordingly, otherwise
the execution control is immediately returned to the application.

MRI Request
                 Runtime Information: MRI_LC1_DATA_READ_MISS

Region: 13    25

     Active Object: T1, T3

Thread_Nr: T1 Thread_Nr: T4Thread_Nr: T3Thread_Nr: T2

Is current Thread_Nr 
equal to T1 or T3 ?

YES
Configure the 

Hardware Counters

YES
Configure the 

Hardware Counters

NO
Do Nothing

NO
Do Nothing

ENTER_REGION 
(13, 25)

ENTER_REGION 
(13, 25)

ENTER_REGION 
(13, 25)

ENTER_REGION 
(13, 25)

Master Thread

Fork

Join

!$ omp parallel

!$ omp end parallel

program test

end program

Save values monitored 
on the team

Aggregate the saved 
values with the master’s

Propagate monitoring to 
the team

Add MRI Request
RI: L1 Misses
AO: Process

Application CMM

(a) (b)

Fig. 2. (a) Configuration of monitoring for multithreaded applications. (b) Propagation
of monitoring configuration on threads.

CMM also implements a monitoring propagation mechanism which correctly
handles thread-related MRI requests no matter where in the code they are spec-
ified. To understand how this mechanism functions, consider Figure 2 (b). Let
us assume that a simple program containing the main program region and an
OpenMP parallel region is being monitored. A monitoring request is specified
for the main program region which requires the number of L1 cache misses for
the whole program. The specified active object is: ”process” which means ”all
the threads” for a multithreaded application.

As the program execution starts, CMM gets the execution control and deter-
mines that an MRI request is specified for the main program region. The master
thread is configured accordingly. Additionally, CMM saves a copy of this config-
uration which contains the requested runtime information (kind of performance
data), the requested active objects, and, if specified, the requested data struc-
ture. The monitoring is started for the master thread and the program continues
executing.

The program runs with only the master thread until the OpenMP parallel
directive is executed. As shown in the figure, according to the fork-join model
of OpenMP, a team of threads is created. If the OpenMP parallel directive was
instrumented, all the threads enter the monitoring library of CMM. At this
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point, CMM propagates the saved configuration to all the threads on the team.
The monitoring is started on all the threads except the master which is already
monitoring.

At the end of the parallel region, the team of threads enters again the moni-
toring library. CMM stops the monitoring on all the threads but the master and
saves the monitored runtime information for the threads whose monitoring was
stopped. At the end of the program, the master thread enters the monitoring
library one last time and its monitoring is stopped. The runtime information col-
lected by the master is aggregated with the saved values of the team according
to the aggregation specified in the MRI request. Finally, the aggregated result
is saved as the MRI request’s result.

3 The AMEBA Automatic Performance Analysis Tool

Our analyzer, AMEBA, performs an automated iterative search for performance
problems. AMEBA is an online performance tool, meaning that the automatic
search happens while the application is running. The search process is iterative
in the sense that AMEBA starts with a set of potential performance properties,
performs an experiment, evaluates the hypotheses based on the measured data,
and then refines the hypotheses. The refinement can either be towards more
specific performance properties or towards subregions and data structures of the
already tested region.

AMEBA is built over the model shown in Figure 3. This model includes a set
of fixed base classes which are implemented in the tool and a set of derivative
classes which are implemented separately for a specific monitoring environment,
hardware system or application domain. Those classes are dynamically loaded
at runtime, which greatly improves AMEBA’s versatility and extensibility.

The base classes include the Strategy which specifies the search process, the
Property which describes the performance problems, the PropertyContext which

LC1MissesOverMemRef
(properties)

MRIContextProvider
(AMC_MRI)

PropertyContext
(Asl)

ContextProvider
(Asl)

MRIExperiment
(AMC_MRI)

RefineStrategy
(strategies)

MRIApplication
(AMC_MRI)

Strategy
(Asl)

SummaryPerf
(Asl)

Property
(Asl)

SeqPerf
(Asl)

MRISeqPerf
(AMC_MRI)

Experiment
(Asl)

ParPerf
(Asl)

MRIParPerf
(AMC_MRI)

Application
(Asl)

Region
(Asl)

AMEBA Dynamically Loaded Classes
MRI Implementation

ASL Base Classes

ASL Compiler

Fig. 3. AMEBA Classes derived from the ASL data model
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holds the performance data needed to evaluate the property, and the Con-
textProvider which sets the connection with the monitoring system. The classes
derived from the PropertyContext contain summaries of the performance data
specific to sequential (SeqPerf) or parallel (ParPerf) regions, and specific to the
monitoring environment (MRI(Seq/Par)Perf).

4 Threads and Cache-Related ASL Properties

As stated before, AMEBA uses the APART Specification Language (ASL) to de-
scribe the performance problems in terms of condition, confidence, and severity.
Consider for example the following ASL Property:

property UnbalancedLC1DataMissRateInThreads(ParPerf pp, float t){
let
miss_rate(int tid)=pp.lc1_miss[tid]/pp.mem_ref[tid];
mean=sum(miss_rate(0),...,miss_rate(pp.nrThreads))/pp.nrThreads;
max = max(miss_rate(0),...,miss_rate(pp.nrThreads));
min = min(miss_rate(0),...,miss_rate(pp.nrThreads));

in
condition: max(max - mean, mean - min) > t;
confidence: 1;
severity: max(max - mean, mean - min) * pp.parT[0]; }

where pp is the summary of performance data for a parallel region and parT[0]
is the execution time of the master thread.

This property specifies that there is a problem in parallel regions if the L1
cache miss rate in a thread deviates from the mean value achieved over the
threads beyond a given percentage t. The thresholds (percentage here) are pre-
defined by the expert who defined the properties or can be set manually by the
application expert. Furthermore it specifies that the problem is more severe if it
is found in regions where most of the execution time is spent. We also are 100%
confident about the existence of the problem in regions where the condition is
true because our measurements are based in precise counter values and are not
statistical values.

ASL performance properties can be hierarchically ordered and properties can
be specified starting from existing predefined ASL templates and existing ASL
properties (meta-properties). An ASL compiler is used to generate C++ classes,
in the form of definition and partial implementation, from ASL specifications.
Finally the tool developer includes the classes in his automatic analyzer.

[3] and [6] already defined ASL properties for serial regions as well as for
MPI and OpenMP regions based on time measurements. We extended this set
of properties by describing performance problems whose existence can be discov-
ered with the help of performance data delivered by the CMM environment. The
properties we defined determines cache problems in parallel regions of threaded
applications running on SMP nodes and are divided into five groups. Each group
is defined by an ASL template. With the help of this template ASL properties
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are created for L1, L2, and L3 caches as well as refinements for write and read
misses.

1. PropPerThread. The properties created from this template determine the
existence of a performance problem in one specific thread. The most impor-
tant use of these properties is not to be directly searched by the automatic
performance tool (although this is possible), but to serve as parameters for
the creation of other meta-properties.

2. PropOnAllThreads. This template is used to create properties which hold
for all threads running a parallel code region.

3. PropInSomeThreads. The properties created from this template hold for
a parallel region if the performance problem is exhibited in at least one of
the threads.

4. MeanMissRatePar specifies that there is a problem in the parallel region
if it exhibits a high mean value of cache misses among the threads.

5. UnbalancedDMissRateInThreads specifies that there is a problem in
the parallel region if the differences of cache misses measured for different
threads are too large.

If a performance problem expressed by an ASL property is the refinement
of another performance problem, we organize them in an hierarchical order. In
AMEBA we implemented search strategies which take this organization into
account. For example UnbalancedLC1DataMissRateInThreads is actually a re-
finement of the problem specified by LC1DataMissRateInSomeThreads.

5 Evaluation

We evaluated our automatic performance analysis approach using several bench-
mark applications. The evaluation includes two main aspects. The first aspect
is the evaluation of the CMM monitoring environment, the overhead introduced
by the performance monitoring. The second aspect is the evaluation of our au-
tomatic tool, AMEBA.

The evaluation of the CMM was based on four applications. Three of them
are benchmark applications taken from the SPEC OMP2001 and the NAS Par-
allel Benchmark (NPB) 3.2. The fourth evaluation application is a Gaussian
Elimination code parallelized with OpenMP. The evaluation of the CMM envi-
ronment was performed on 4X Itanium2 SMP nodes of the Infiniband Cluster
at the LRR-TUM.

To evaluate the overhead introduced by the instrumentation and the monitor-
ing, three versions were compiled for each of the applications. The first version
is the original application. The second version is the instrumented application
linked to an empty monitoring library. That is, each function in the monitoring
library returns immediately. This way, we measure the instrumentation’s over-
head. The third version is the instrumented application linked to the CMM’s
monitoring library.

For the third version, we performed two sets of runs. Once, the application
was executed but no monitoring requests were made. This way, we measured the
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overhead introduced by the monitoring library. The second set of runs included
full monitoring during the whole application’s execution. The monitoring con-
figuration was done so that all the four performance counters of Itanium were
occupied.

All experiments were executed with four threads and a different CPU was
used by each thread. Table 1 shows the resulting execution times for the ex-
periments compared to the execution times of the original applications. The
deviations from the original execution times was calculated for experiment X
as: DeviationX = (T imeX − T imeoriginal)÷ T imeoriginal. As shown by the table,
the overhead introduced by CMM is very low to insignificant.

To evaluate the AMEBA automatic tool we used up to 32 CPUs on the
SGI Altix 3700 Bx2 at the Leibniz Rechenzentrum (LRZ) in München. We
searched for thread-related properties using a strategy which searches only on the
OpenMP regions of the application. The strategy searches first for the properties
LC2DMissRateInSomeThreads and LC3DMissRateInSomeThreads. For regions
where one of these properties hold, the search refines by evaluating the properties
UnbalancedLC2DMissRatePar and UnbalancedLC3DMissRatePar.

These are the results of the automatic search. For the sake of presentation we
only show the results for FT from the NAS Parallel Benchmark.

The results for FT running with 16 threads

Region LC2DMissRate UnbalancedLC2D
reg. type file line InSomeThread MissRatePar
DO_REGION, ft.f, 227 0.0796055 0.34044
DO_REGION, ft.f, 567 0.0553533
DO_REGION, ft.f, 612 0.0546933

Region LC3DMissRate UnbalancedLC3D
reg. type file line InSomeThread MissRatePar
DO_REGION, ft.f, 227 0.0364304 0.439014

The results for FT running with 32 threads

Region LC2DMissRate UnbalancedLC2D
reg. type file line InSomeThread MissRatePar

Table 1. Execution times for different runs of the applications showing the overhead
of instrumentation, monitoring library, and measurements

Applications LU FT SWIM PGAUSS
Instrumented regions 113 55 29 11

Entered regions 2E+08 8E+06 3604 537726
Original execution time (seconds) 1546.5 219.8 388.5 680.1
Instrumentation overhead (time) 0.42% 0.52% 0.03% 0.09%

Monitoring library overhead (time) 2.45% 1.75% 0.13% 0.17%
Measurements overhead (time) 2.63% 1.66% 1.84% 2.54%
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DO_REGION, ft.f, 227 0.079456 0.791722
DO_REGION, ft.f, 567 0.0555033
DO_REGION, ft.f, 612 0.0545275

Region LC3DMissRate UnbalancedLC3D
reg. type file line InSomeThread MissRatePar
DO_REGION, ft.f, 227 0.0299765 0.537159

The LC2-related properties hold for a region if the miss rate is higher than 5%
the LC3-related properties hold if the miss rate is higher than 2%. The threshold
for UnbalancedLC(2,3)DMissRate is set to 30%. This means that we consider a
region to have a problem if the miss rate in one of the threads deviates by at
least 30% from the mean miss rate over all the threads.

The automatic search results show that FT seems to have the same cache
problems when running with 16 and 32 threads. There are three regions with
LC2 cache miss problems, and one of them also has LC3 miss problems. What
we also observe is that the problem of unbalanced cache misses is aggravated
when running with 32 threads.

6 Related Work

The Paradyn tool by Miller et al.[7] is the closest related work. The Performance
Consultant module of Paradyn uses a W 3 (Why there is a problem, Where in
application is the problem, and When the problem occurs) search model to au-
tomate the identification of performance problems by analyzing data provided
by means of run-time dynamic instrumentation. Performance problems are sim-
ply expressed in terms of a threshold and a counter-based metric. The dynamic
instrumentation of measurement probes in the running code is also guided by
the Property Consultant.

EXPERT[8] developed at the Forschungszentrum Jülich, performs an offline
hierarchical search for patterns of inefficient executions in trace files. EXPERT
uses source code instrumentation for MPI, OpenMP, and hybrid applications
and defines more complex bottlenecks than Paradyn by using Python for the
specification of performance properties. The huge amount of raw performance
data it produces and the long execution time of the post mortem analysis, pose
the main limitations of this tool for use with large parallel programs.

JavaPSL[9] is a language for specifying performance properties based on the
Apart Specification Language (ASL) developed in the European Working on
Automatic Performance Analysis Tools (APART). Performance properties are
formalized as Java abstract classes taking advantage of Java language mecha-
nisms such as polymorphism, abstract classes, and reflection. JavaPSL is used in
a tool called Aksum[10] which relies on source code instrumentation to generate
raw performance data, stores it in a relational database and then automatically
searches for the existence of the predefined performance properties.
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7 Future Work

In the future we would like to support automatic reduction of the monitoring
overhead. This could be done by automatically guiding the instrumentation pro-
cess. The automatic tool may run the instrumented application for a certain
period of time and discover the regions with minor impact on the overall appli-
cation’s performance, but high impact on the monitoring overhead. To eliminate
these regions from the search, a reinstrumentation of the program may be re-
quested by the tool.

CMM could also be extended to support additional programming languages.
Actually, only Fortran 90 OpenMP is fully supported. We plan to support C and
C++ by using existing instrumenters, or implementing new language-specific
ones. Finally AMEBA could be extended from an automatic performance ana-
lyzer to an automatic performance optimizer.
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Andreas Knüpfer, Bernhard Voigt, Wolfgang E. Nagel, and Hartmut Mix

TU Dresden, Center for Information Services and
High Performance Computing (ZIH), 01062 Dresden, Germany

{andreas.knuepfer, wolfgang.nagel, hartmut.mix}@tu-dresden.de,
voigt@zhr.tu-dresden.de

Abstract. Performance Tracing has always been challenged by large
amounts of trace data. Software tools for trace analysis and visualization
successfully cope with ever growing trace sizes. Still, human perception
is unable to “scale up” with the amounts of data.

With a new model of trace visualization, we try to provide less data
but additional information or rather more convenient information to hu-
man users. By marking regular repetition patterns and hiding the inner
details, less complex visualization can offer better insight. At the same
time potentially interesting irregular sections are revealed.

The paper introduces the origin of repetition patterns and outlines the
detection algorithm used. It demonstrates the new visualization scheme
which has also been incorporated into Vampir NG as a prototype. Finally,
it gives an outlook on further development and possible extensions.

1 Performance Tracing

Event tracing is a well-established method for performance analysis of computer
programs, especially in parallel and High Performance Computing (HPC) [5,9].
It has a reputation for producing large amounts of trace data where “large” has
always been defined by the time’s standards.

Many advancements in HPC contributed to that. This includes faster proces-
sors and growing parallelism. Also, more detailed instrumentation and additional
data sources increase trace data volume. Last but not least availability of larger
memory and storage capacities allowed traces to grow.

Therefore, trace analysis and visualization has always been a challenging task
on contemporary computers and always will be. The more so as one cannot
require an actual super-computer for analyzing super-computer traces.

But what is the effect from the human users’ perspective? Could screen res-
olution grow with an appropriate rate? Can human perception scale with the
growing amounts of data as well? And is there really more information when
there is simply more data1?

1 Let “information” be what contributes to the users insight while “data” is just the
byte sequence transporting information.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 430–439, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The next chapter tries to address those questions. Then, Section 3 will propose
a new visualization methodology to provide more convenient information or to
the user with less data. The following Section 4 will outline the algorithms for
pattern detection. In the final Section 5 there is a conclusion as well as an outlook
on improved analysis methods based on patterns.

2 Data vs. Information of Traces

There are several reasons for growing trace sizes. First, there may be larger
software projects with bigger source codes. Also, it might grow larger due to op-
timization and specialization of code. Second, instrumentation and measurement
evolve, providing additional data, for example performance counters in proces-
sors, in communication sub-systems and in I/O backends. Third, longer or faster
running programs with more and more parallelism will increase the number of
repeated executions of certain program parts.

The former two reasons have only secondary effect on growing trace data
sizes. They will hardly increase it by orders of magnitude. Only the latter is
responsible for traces of tens of gigabytes, today. On average the trace size will
double when iteration count or run-time is doubled or when there are twice as
many parallel processes. (This involves a certain redundancy which is exploited
by approaches like introduced in Section 4.1.)

In terms of information to the user the same situation looks different. Assum-
ing an interesting situation can be described as “sequence A = (a1, a2, . . . ) is
repeated n times”. That might have been inferred from a Vampir display showing
distinguishable iterations like in Figure 2.

How would the statement “sequence A is repeated 4n times” relate to it?
(Compare Figure 1) Would this fact be four times as useful to the human user?
Or would it carry an “equal amount” of information? Or even less information
because it might not be distinguishable anymore with limited screen resolution?
Thus, information is difficult to quantify, although data size is evidently fourfold.

Fig. 1. Vampir screen-shot of 32 identical iterations hardly distinguishable with current
horizontal resolution. Note that iterations are of strictly regular structure unlike run-
time which shows some notable delays.
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Fig. 2. Vampir screen-shot showing a subset of 8 iterations from above (Figure 1).
Only with this zoomed version iterations’ structure becomes visible.

However, hidden in the data there are some additional information of interest.
First, whether there is a (strict) regular standard behavior among iterations.
Most likely this is independent of iteration count. Second, if there are outliers
and abnormal cases differing from regular behavior.

This additional information is not accessible to the human user by pristine
visualization. Rather sooner than later human perception will be overcharged by
too much data. Could one tell for the iterations shown in Figures 1 and 2?

Therefore, we want to propose a new scheme of visualization that reduces the
amount of data in favor of information perceivable by human users. Nevertheless,
all familiar information and data will still be available on demand.

3 Visualization of Repetition Patterns

The new visualization approach focuses on Process Timeline Diagrams like found
in the Vampir NG [1] tool, for example. For each and every function call a
rectangle represents a state of execution, compare Figure 3a. Now, in a simplified
Process Timeline Diagram all regular repetition patterns of arbitrary size and
nesting depth are replaced with a single highlighted rectangle. See Figure 3b
for an example. Those rectangles indicate a region with regular behavior, inner
details are not shown.

main

foo foo foo

b b b b b b b b b b bb

main

pattern 3

Fig. 3. Plain Process Timeline Diagram of some nested function calls (a), left, and
simplified Pattern Diagram of the same situation (b), right. The highlighted rectangle
’pattern 3’ states that there is a repetition of regular call sequences.
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pattern 2pattern 2pattern 2

b

main ...

bbc

foo

Fig. 4. Pattern Diagram after pattern 3 in Figure 3b has been decomposed. The
fourth call to foo is not covered by the pattern because there is one differing sub-call.

However, this may hide too much information. Therefore, patterns can be
decomposed interactively. This replaces every instance of a pattern by its direct
sub-patterns. See Figure 4 for an example. All sub-patterns can be decomposed
as well until the fully decomposed view is identical to the traditional one (Figure
3a). In addition to decomposing patterns there is a context dialog available on
demand to provide the pattern structure as well as statistics about all occur-
rences.

This kind of visual representation allows an easy distinction of regular and
irregular parts of a trace. For example, the fourth iteration in Figure 4 is not
covered by a pattern because there is a small structural difference. In general
such important differences can hardly be perceived directly from a traditional
timeline display. Either, because there are too many details to figure out, or
because differences are not visible at all when there are more details than actual
screen pixels.

4 Pattern Detection

Actual pattern detection is based on Complete Call Graphs (CCG) [8]. From
this general purpose data structure it derives the so called Pattern Graph [10]
which contains the pattern information.

4.1 Complete Call Graphs

Usually, the handling of event trace data is done in simple and straight forward
linear data structures like arrays and lists. Such data structures can be quite
efficient in terms of their inherent memory access performance. Some of them
support efficient search algorithms like binary search. However, they do not allow
compression of redundant event sequences as frequently found in HPC program
traces [6,7,8].

Complete Call Graphs do allow in-memory compression that is fully trans-
parent to read access. The compression scheme can be adjusted to work lossless
or lossy with respect to event properties like time, duration, etc. Deviations due
to lossy compression can be controlled by customizable bounds.

The Complete Call Graph data structure resembles the complete call tree. It
is not limited to the simple caller -callee relation, which is commonly known as
the Call Graph or Call Path [2,3,4]. Instead, it holds the full event sequence
including time information in a tree.
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An instance of such a tree structure is maintained for every process covered.
The actual tree is formed by nodes representing the nested function calls. Non-
function-call events like messages, hardware counter samples, etc. are attached
as leaf nodes.

The data structure allows linear traversal with respect to event timestamps
similar to arrays and linear lists. Furthermore, it can be searched with respect
to time stamps with O(log N) complexity.

bar

100

foo

10 100 20

foo

10 100 20

bar

100

foo

10 101 20

bar

101

foo

10 100 20

bar

100

main

100 130 100 130 100 131 100 130 100

root

200 1021 0

P 0

Fig. 5. Example of a CCG. All subtrees with foo as root node are mapped onto a single
instance while the redundant copies are discarded. Please, note that the third instance
of foo deviates from the other instances. It is nonetheless going to be compressed given
that its deviation is below a specified bound.

HPC applications typically feature very many almost identical iterations
which cause repetitive, i.e. potentially redundant, sub-sequences in the event
stream. Those are mapped to identical or similar CCG subtrees2. The compres-
sion scheme replaces (many) redundant sub-trees with a reference to a (single)
representing instance reducing the number of graph nodes. CCG compression has
proven very suitable for HPC traces. For real-life examples compression ratios
Rn in the order of 100 : 1 to 1000 : 1 have been observed [6,8].

Naturally, compressing (i.e. transforming the CCG in the described way) con-
flicts with the global tree property3. However, this is no limitation to the algo-
rithms for construction, compression and querying since the local tree property
is maintained4 and because the nodes graph is acyclic.

2 Where the meaning of similar needs to be defined.
3 The global tree property requires that every node has exactly one parent node except

for the root node which has none.
4 According to the local tree property every node has n ∈ N0 child nodes.
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Fig. 6. Pattern examples: In the first example (top) a sequence with two patterns is
shown. First, a pattern of length one appearing three times. And second, a pattern
with two states appearing twice. The second example (bottom left) shows the pattern
ABC appearing twice (marked) while the conflicting pattern BCA is ignored (underlined).
The third example (bottom right) shows how the pattern ABC (underlined) is ignored
in favor of the shorter pattern BC (marked).

To successfully map multiple sub-trees of uncompressed CCGs certain node
transformations are required in order to reveal equalities or similarities. Most
notably, this applies to the timestamp assigned to all events. According to their
nature, timestamps are strictly increasing for every process. Thus, at first glance
there is no exploitable repetition inside a single process trace. Therefore, the tree
nodes are transformed to store time durations instead of absolute timestamps,
which resolves this matching issue (see Figure 5).

More details about the CCG data structure as well as efficient algorithms
for construction and querying, further optimizations and benchmark figures are
presented in detail in [6,7,8].

4.2 Pattern Graph

Based on an existing CCG the pattern graph is computed. It contains only graph
nodes’ pattern affiliation but no run-time information or further details. A pat-
tern is defined as follows:

Definition: Pattern
A pattern is a sequence of l states which is consecutively repeated k times. A
state is either a function call or a hierarchy of calls. Patterns can be nested.
Overlapping patterns are not allowed, instead smaller pattens are preferred
against longer patterns. For overlapping pattern candidates of same length
the earlier one is preferred.
(See Figure 6 for some examples of patterns and conflicting patterns.)

The pattern detection algorithm is applied to every function call node in the
CCG, i.e. to every non-leaf node of the CCG. Assume the node has m child
references c0, ..., cm−1. Then the detection algorithm checks for every suitable
pattern length l = 1, ..., m/2 if there is a pattern at position i = 0, ..., m − l − 1,
i.e. cj ≡ cj+l∀j = i, ..., i + l − 1. If there is a mismatch at position j the next
position i′to check is j + 1 instead of i + 1. Compare Figure 7. The operation ≡
is a simple pointer comparison.
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i i+l

0 l

l= 1, ... m/2

m−l−1 m−1
...

Fig. 7. Pattern detection algorithm: successively compare pointers at indices j and
j + l for all j = i, ..., i + l − 1 with l = 1, ..., m/2 and i = 0, ..., m − l − 1

Fig. 8. Example screen-shot of Vampir NG’s process timeline display [1] in traditional
way, showing four iterations of a complex call hierarchy

Fig. 9. Pattern display showing the same situation as above (Figure 8). The main
pattern of the four iterations has already been decomposed into two different sub-
patterns (see arrows).

The computational complexity for pattern detection at a single node with
m child references results in O(m2) for this algorithm. Note that without the
restriction to consecutive sub-sequences the complexity would increase to O(m3).
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Fig. 10. Global pattern display with the same zoom level as above (Figure 9). The
latter sub-pattern is shown like before. A mouse-over event at one instance of the former
sub-pattern highlights all occurrences of that pattern in all processes in a lighter color
(second arrow). A thumbnail view at right hand side provides a global overview.

For a whole CCG with n nodes the pattern detection algorithm has a com-
plexity of O(n · m). Here, m is the maximum number of child function calls
per function. Unlike the branching factor b of a CCG, which can be limited by
a given constant, m is unbounded. In the worst case of a completely flat call
hierarchy m equals n.

The term n is the node count of the compressed CCG. Depending on com-
pression ratio Rn it is much smaller than the uncompressed node count N :

n =
N

Rn
.

Since soft properties, i.e. properties subject to lossy compression, are unimpor-
tant for pattern detection, it is suitable to always use the maximum compressed
CCG, and thus have smallest node count n.

The pattern detection algorithm can easily be parallelized by processing CCG
nodes independently [10]. Only a simple synchronization operation for pattern
tokens will be necessary in order to obtain a consistent global graph.

5 Conclusion and Outlook

The pattern detection and visualization outlined above have been incorporated
into the Vampir NG tool as a prototype [10] see Figures 8, 9 and 10. Patterns
are represented just like ordinary states but highlighted in orange. That is true
for global as well as local timeline displays (Figures 9 and 10).

At first, highest level patterns are shown, hiding all inner details. Via context
menu a pattern can be decomposed. That means all occurrences of that pat-
tern are decomposed revealing contained sub-patterns or states. By this means
there is always a consistent display – for every pattern either all instances are
decomposed or none.
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A mouse-over event on any pattern will highlight all occurrences of that pat-
tern in light orange in all displays (see Figure 10). This allows an easy overview
about local or global distribution of patterns.

Further improvement in user interface design might introduce alternative vi-
sual representation for patterns. For example, height of rectangles showing pat-
tern occurrences could be adapted to the maximum call depth of the contained
call hierarchy.

Another prospective development might be towards a generalization of pat-
tern definition. So far, pattern detection relies on structurally identical patterns.
Then, pattern matching could accept certain variation, e.g. regard loops as equal
if they have identical inner structure but different iteration counts. Again, this
might involve alternative visual representation.

Last but not least, pattern detection opens new opportunities for automatic
performance analysis (like in [11]). Instead of analyzing performance properties
of single function calls, now whole pattern occurrences could be addressed. This
might reveal standard behavior for frequently appearing patterns, for example
with respect to run-time, hardware performance counter values, communication
speed etc. Based on this, outliers or performance flaws could be identified.
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Abstract. Tools to observe the performance of parallel programs typi-
cally employ profiling and tracing as the two main forms of event-based
measurement models. In both of these approaches, the volume of per-
formance data generated and the corresponding perturbation encoun-
tered in the program depend upon the amount of instrumentation in the
program. To produce accurate performance data, tools need to control
the granularity of instrumentation. In this paper, we describe develop-
ments in the TAU performance system aimed at controlling the amount
of instrumentation in performance experiments. A range of options are
provided to optimize instrumentation based on the structure of the pro-
gram, event generation rates, and historical performance data gathered
from prior executions.

Keywords: Performance measurement and analysis, parallel computing,
profiling, tracing, instrumentation optimization.

1 Introduction

The advent of large scale parallel supercomputers is challenging the ability of
tools to observe application performance. As the complexity and size of these
parallel systems continue to evolve, so must techniques for evaluating the perfor-
mance of parallel programs. Profiling and tracing are two commonly used tech-
niques for evaluating application performance. Tools based on profiling maintain
summary statistics of performance metrics, such as inclusive and exclusive time
or hardware performance monitor counts [1], for routines on each thread of exe-
cution. Tracing tools generate time-stamped events with performance data in a
trace file. Any empirical measurement approach will introduce overheads in the
program execution, the amount and type depending on the measurement method
and the number of times it is invoked. However, the need for performance data
must be balanced with the cost of obtaining the data and its accuracy. Too much
data runs the risk of measurement intrusion and perturbation, yet too little data
makes performance evaluation difficult.

Performance evaluation tools either employ sampling of program state based
on periodic interrupts or direct instrumentation of measurement code. Sampling
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generally introduces a fixed overhead based on the inter-interrupt sampling in-
terval. Thus, sampling is often considered to be generate less perturbation on
performance. Unfortunately, sampling suffers from lack of event specificity and
an inability to observe inter-event actions. For these reasons, sampling is less
viable approach for robust parallel performance analysis. Here, we consider di-
rect measurement-based techniques where instrumentation hooks are inserted
in the code at locations of relevant events. During execution, events occur as
program actions and the measurement code is activated to inspect performance
behavior. Because event generation does not occur as the result of an interrupt,
the number of events generated is instead tied to how often the program code
executes. In some cases, this could be significant. Furthermore, the time be-
tween event measurements is not fixed, which can affect measurement accuracy.
Whereas direct instrumentation and measurement can produce robust perfor-
mance data, care must be taken to maintain overhead and accuracy. We use the
term “instrumentation optimization” to describe this objective.

In this paper, we discuss our work in optimizing program instrumentation in
the TAU performance system [2]. Section §2 gives further background and moti-
vation for the problem. Sections §3 and Sections §4 describe how we can limit the
instrumentation based on selective instrumentation and runtime measurement
control. Section §5 discusses our future plans.

2 Motivation

Given a performance evaluation problem, certain performance data must be
observed to address it. How should the program be instrumented and measure-
ments made to capture the data? If the measurements cost nothing, the de-
gree of instrumentation is of no consequence. However, measurements introduce
overhead in execution time and overhead results in intrusion on the execution
behavior. Intrusion can cause the performance of an application to change (i.e.,
to be perturbed). Performance perturbation directly affects the accuracy of the
measurements. Accuracy is also affected by the resolution of the performance
data source (e.g., real time clock) relative to the granularity of the metric being
measured (e.g., execution time of a routine). Thus, it is not enough to know
what performance data needs to be observed. One must understand the cost
(overhead, intrusion, perturbation, accuracy) of obtaining the data.

Optimization of instrumentation is basically a trade-off of performance data
detail and accuracy. If a measurement is being requested at a granularity too fine
for the measurement system, the performance data will be faulty. Clearly, instru-
mentation should be configured to prevent the measurement from being made at
all. At the other end of the spectrum, there can be situations where more data
is gathered than necessary for a certain level of accuracy. Here, instrumentation
optimization would be used to limit unnecessary overhead.

Most users are not so sophisticated in their performance measurement prac-
tices. Therefore, performance tools must provide mechanisms that enable users
to understand instrumentation effects and accuracy trade-offs, and adjust their
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performance experiments accordingly. Balancing the volume of performance data
produced and the accuracy of performance measurements is key to optimizing
the instrumentation. Techniques for improving performance observability fall
into three broad categories:

– Instrumentation – Techniques that reduce the number of instrumentation
points inserted in the program.

– Measurement – Techniques that limit and control the amount of information
emitted by the tool at the instrumentation points, and

– Analysis – Techniques that scale the number of processors involved in pro-
cessing the performance data, and techniques that reduce and reclassify the
performance information.

In this paper, we will limit our discussion to instrumentation and measurement
based approaches.

3 Instrumentation

There are two fundamental aspects to optimizing instrumentation: deciding
which events to instrument and deciding what performance data to measure.
Event selection can occur prior to execution or at runtime. However, what is
possible in practice depends entirely on the instrumentation tools available. Dif-
ferent types of events also determines the complexity of the instrumentation
problem. The following discusses the possible instrumentation approaches and
optimization issues that arise.

3.1 Event Types

Because direct instrumentation inserts measurement instructions in the program
code, events are most often defined with respect to program flow of control.
Standard events include the begin and end of routines and basic blocks. Other
events may be defined at arbitrary code locations by the user. Events can also
be defined with respect to program state. These events are still instrumented for
with code insertion, but are ‘enabled’ depending on the value of state variables
or parameters. We also distinguish between paired entry/exit events and events
that are atomic.

The different types of events represent, in a sense, the range of possible event
instrumentation scenarios. This could range from having all routines in a pro-
gram code instrumented to having only a few specific routines instrumented,
such as in a library. Clearly, the more events instrumented for, the more mea-
surements will be active. Also, it is important to distinguish events that occur on
individual threads (processes) of execution. Hence, the more threads executing,
the more concurrent events are possible.

3.2 Instrumentation Mechanisms

Coinciding with the types of events to instrument are the mechanisms for in-
strumentation. There are five common approaches:
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– Compiler – Instrumentation occurs as the program is being compiled. The
choice of events is determined by the compiler, but options may be provided.
Instrumentation for gprof-style profiling is generally done.

– Library – A library has been pre-instrumented and this instrumentation can
be invoked by a program just by relinking. The MPI library is a special case
of this since it also provides a “profiling interface” (PMPI) for tool developers
to build their own instrumentation.

– Source (automatic) – This is an instrumentation approach based on source
rewriting. The Opari [3] and TAU instrumentor [2] tools work in this manner.

– Source (manual) – A manual instrumentation API often accompanies mea-
surement tools to allow users to create their own events anywhere in the
program. For non-trivial applications, the effort to do so becomes quite cum-
bersome.

– Binary – Instead of working at the source level, some tools can instrument
binary code, a form of binary rewriting. For the most part, the events are
the same except lower-level code features may be targeted. Binary rewriting
is hard and ISA specific.

– Dynamic – Some tools work at runtime to instrument executable code. For
instance, DyninstAPI [5] can dynamically instrument running parallel exe-
cutions based on code trampolining techniques.

The choice of which instrumentation mechanism to use is based on different
factors. One factor is the accessibility (visibility) of events of interest. Another is
the flexibility of event creation and instrumentation. These factors affect whether
the mechanism can meet the event requirements. However, mechanisms are some-
times chosen based on their perceived overheads. For instance, source instrumen-
tation has been criticized for its effects on code optimization, while binary and
dynamic instrumentation purport to work with optimized code. On the other
hand, source-instrumented measurement code also undergoes optimization, and
can generate more efficient code than dynamically-instrumented measurements
inserted under pessimistic assumptions of register usage and other factors.

3.3 Selective Instrumentation

Given the above discussion, instrumentation optimization with respect to events
reduces essentially to a question of selective instrumentation. Put another way,
we want to conduct performance experiments that capture performance data
only for those events of interest, and nothing more. If a mechanism does not
allow instrumentation of some event of interest, it is less useful than one that
does. When there are many events that can be instrumented, a means to select
events will allow only those events desired to be instrumented. Each of the
mechanisms above can support event selection, but not all tools based on these
mechanisms support it.

In the TAU project, a variety of instrumentation techniques are used: source
pre-processing with PDT [4], MPI library interposition, binary re-writing and
dynamic instrumentation with DyninstAPI [5], and manual. For each of these
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mechanisms, TAU allows an event selection file to be provided to control what
events are to be ‘included’ in and ‘excluded’ from instrumentation. The speci-
fication format also allows for instrumentation to be enabled and disabled for
entire source files.

Unfortunately, it is common for naive performance tool users to ignore such
support and ask for all events to be instrumented. There are two downsides of
this. First, it is probably true that not all of the events are really needed. Second,
some events may be generated that are very small, resulting in poor measurement
accuracy, or high-frequency, causing excessive buildup of overhead. Of course, a
user could use TAU’s selective instrumentation to disable such events, but they
might not be aware of them.

TAU’s selective instrumentation file also allows rules for instrumentation con-
trol to be specified. TAU provides a tool, tau reduce, to analyze the profiles
and apply the instrumentation rules. Effectively, the output is a list of routines
that should be excluded from instrumentation. Naive instrumentation of paral-
lel programs can easily include lightweight routines that perturb the application
significantly when measured. What rules should the user then write?

If the user does not specify the rules for removing instrumentation using
tau reduce, TAU applies a default set (e.g., the number of calls must exceed one
million and the inclusive time per call for a given routine must be less than 10
microseconds to exclude the routine). The program is then re-instrumented using
the exclude list emitted by tau reduce. To ensure that other routines that were
above the threshold for exclusion before do not qualify for exclusion after re-
instrumentation (due to removal of instrumentation in child routines), the user
may re-generate the exclude list by re-running the program against the same set
of rules. When any two instrumented executions generate no new exclusions, we
say that the instrumentation fixed-point is reached for a given set of execution
parameters (processor size, input, and so on) and instrumentation rules. The
instrumentation is sufficiently coarse-grained to produce accurate measurements.

The selective, rule-based instrumentation approach implemented in TAU is a
powerful methodology for performance experimentation. Users can create mul-
tiple event selection files and apply them depending on their experimentation
purposes. However, there is still an issue of optimization with respect to the
amount of performance data generated. This is discussed in the next section.

4 Measurement

Event instrumentation coupled with measurement code produces a “ready-to-
run” performance experiment. Profile and trace measurements are the standard
types used to generate performance data. Issues of instrumentation optimization
regarding choice of measurement trade off detail for overhead. That is one part
of the story. The other part has to do with the number of events generated versus
overhead and measurement accuracy.
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4.1 Measurement Choice

The overhead to generate the performance data during profiling and tracing is
roughly comparable. However, because tracing produces more data, it runs the
risk of additional overhead resulting from trace buffer management. Extremely
high volume trace data can be produced. When this is unacceptable, one al-
ternative is to switch the measurement method to profiling. The general point
here is that the choice of measurement method is an effective means to control
overhead effects, but with ramifications on the type of data acquired.

Once events have been specified for an experiment, TAU allows users to chose
between profiling and tracing at runtime. The details of data produced for each
event are decided both at link time and through environment settings.

4.2 Runtime Event Control

However, let us assume for the moment that only ‘null’ measurements are made,
that is, no performance data is created and stored, but the ‘instrumented’ events
are still detected. Since events are, in general, defined by their code location in
direct instrumentation, the number of times an event occurs depends on how
many times control passes through its code location. The event count is an
important parameter in deciding on measurement optimization, regardless of
whether profiling or tracing is used.

As the count for a particular event increases, the measurement overhead (from
either profiling or tracing) for that event will accumulate. Since not all events
will have the same count, the intrusions due to the overheads are distributed
unevenly, in a sense, across the program and during execution. The intrusions
may be manifested in different ways, and may lead to performance perturbations.

The only way to control the degree of measurement overhead is to control
the event generation. That is, mechanisms must be used to enable and dis-
able events at runtime. We call this technique event throttling. During program
execution, instrumentation may be disabled in the program based on spatial,
context, or location constraints. Spatial constraints deal with event count and
frequency, context constraints consider program state, and location constraints
involve event placement.

TAU allows the user to disable the instrumentation at runtime based on rules
similar to the ones employed by the offline analysis of profiles using tau reduce.
For instance, the number of calls to each event can be examined at runtime.
and when it exceeds a given user specified threshold (e.g., 100000 calls), it can
be disabled [6]. This is an example of a count threshold. Disabling decisions
can additionally consider measurement accuracy. For instance, if the per-call
execution value for an event is below a certain threshold (e.g., 10 microseconds
per call), the event is disabled. TAU disables events at runtime by adding them
to the profile group (TAU DISABLE). Subsequent calls to start or stop that
event incur a minimal overhead of masking two bitmaps to determine enabled
state.

Profilers based on measured profiling have timers that track routines of groups
of one or more statements. A timer has a name and a profile group associated
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with it. A routine may belong to one or more profile groups. Performance analysis
tools such as Vampir[7] and ParaProf[8] organize timer-based performance data
by groups.

4.3 Group Based Control

During program execution, instrumentation may be disabled in the program
based on spatial, context or location based constraints imposed. TAU provides
an API for controlling instrumentation at runtime.

Logically related timers or phases may be grouped together by classifying
these in a common profile group. Directory or file based association of routines
is common. TAU provides a mechanism for enabling or disabling the program in-
strumentation based on groups. The top-level timer that is associated with main
in C or C++, and the program unit in Fortran 90 belongs to a special group
(TAU DEFAULT) that is always enabled. The user may annotate the program
at special points in the program based on certain conditions, to enable and/or
disable instrumentation belonging to certain groups. These groups may be op-
tionally specified on the command-line of the program as a set of groups that
should be instrumented for the entire program. Limiting instrumentation based
on groups, however, has the same disadvantages as knowing during program
instrumentation which files or sets of routines to exclude from instrumentation.

4.4 Full Program Instrumentation Control

TAU allows the user to enable or disable all program instrumentation using the
above instrumentation control API. This is useful for limiting the instrumenta-
tion (and generation of trace records) in parts of the program based on program
dynamics. For regular iterative parallel applications where a program executes
a sequence of iterations, it might be helpful to enable the instrumentation in a
given subset. For instance, instead of enabling the instrumentation for tracing
a million iterations of the program, it may be sufficient to trace the first and
the last thousand iterations. The user may choose to disable the instrumenta-
tion based on the rank of a MPI process. For instance, it may be useful to limit
the instrumentation for a large number of processors to only generating trace
records for only one out of a hundred processors. This technique is similar to
sampling by space[9]. TAU’s trace merging and conversion utilities do not require
all tasks to generate trace data. This technique cannot be applied effectively for
MIMD applications where each task may have potentially different performance
characteristics.

4.5 Context Based Control

TAU provides a unique depth limited instrumentation control option. A user can
specify that a routines instrumentation be turned off when it executes beyond a
given callpath depth. The limit may be specified as a runtime parameter. When
this depth is specified as one, only the top level routine is active; at a depth of
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two, only the top level routine and the instrumented routine called directly by it
are active and so on. When a routine executes below this threshold at some point
in execution, and beyond this threshold at other points, only the former instance
is recorded in the trace files. At the expense of truncating the performance
information for those routines that execute beyond the given threshold, we can
limit the performance data to the top few routines. The message communication
events are not affected by this option.

4.6 Callpath Based Control

The KOJAK toolkit [3] includes the Expert tool that automates performance
bottleneck diagnosis by examining communication events. In the analysis phase,
it ignores routines that do not directly call MPI routines along a calling stack.
To generate traces for Expert, it is useful to limit the instrumentation to only
those routines that call an MPI routine. This is done by first configuring TAU to
generate callpath profiles[2]. TAU allows a user to specify a callpath depth as a
runtime parameter. All callpaths originating from a given instrumented routine,
and extending to its parents are truncated when these exceed the threshold.
So, the user sets a sufficiently high threshold of callpath depth so that every
callpath reaches the top level routine. Then, a script parses the profile files and
extracts the names of routines that directly or indirectly called an MPI routine.
This list is then fed to the instrumentor as an include list, and it instruments
only routines that had a calling path to the MPI routines. This technique can
dramatically reduce the trace size for Expert. The drawback is that if a routine
calls an MPI routine at some instances in its execution and does not invoke MPI
calls at others, all of its instances are recorded, although Expert ignores those
instances where it does not invoke MPI routines. This can potentially increase
the trace file size and it requires a re-execution of the program with callpath
profiling enabled.

4.7 Trace Based Control

It is possible to address the above problem by keeping track of all calls in an
event buffer. When an MPI routine is executed, we need to examine the buffer
and move trace records by eliminating those records that do not directly call the
given MPI routine. This problem has a drawback that this scheme cannot work
effectively with fixed size buffers that are commonly found in trace generation
libraries. When a buffer overflow event takes place, all records are to be flushed
to the trace file. However, if an MPI event has not taken place, it is unknown
whether one will take place in the future or not. So, to preserve the trace in-
formation, we must increase the size of the trace buffer and keep processing the
trace records. When it does encounter an MPI event, the trace buffer can be
examined again and un-necessary instances of routines removed at runtime, and
the buffers flushed to disk. This scheme does not sufficiently address the con-
cerns as, the program could run out of memory in expanding the trace buffers
and be forced to write the records to disk.
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4.8 Callstack Based Control

To better address the previous requirement, TAU has introduced a callstack
based runtime instrumentation control option for tracking only those instances
of a routine that directly or indirectly invoke an MPI call. Trace records are
generated for routines on the calling stack when an entry into an MPI routine
(all MPI routines belong to a special group) is detected. When a routine entry
takes place, we store the exact time it occurred on the callstack. Each routine
on the callstack has a flag that indicates if it has been recorded in the trace file.
When an MPI routine is started, we traverse the callstack recursively from the
given routine and generate trace records if the routine has not been recorded.
We stop when we encounter a routine that has been recorded. This limits the
trace file to just those instances of events that are ancestors of an MPI call. By
using elements of profiling and tracing together, we can better address efficient
trace generation.

5 Conclusion

Parallel performance systems strive to build measurement systems as efficiently
as possible. However, users can make poor instrumentation and measurement
choices that lead to performance data proliferation and inaccuracies. Perfor-
mance tools should support users in effective performance experimentation by
providing mechanisms for optimizing instrumentation. This is true for specifying
events and measurements to meet the objectives of the experiment, as well as
controlling the degree of overhead and data accuracy.

The TAU performance system implements a robust set of instrumentation op-
timization methods. Some are discussed here. Other techniques implemented in
TAU included compensation of instrumentation overhead, APIs for event group-
ing and control, context-based control based on callpath depths, and callstack-
based control. It should be understood that all of the techniques work in parallel
execution.
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Abstract. The global address space (GAS) programming model pro-
vides important potential productivity advantages over traditional par-
allel programming models. Languages using the GAS model currently
have insufficient support from existing performance analysis tools, due
in part to their implementation complexity. We have designed the Global
Address Space Performance (GASP) tool interface that is flexible enough
to support instrumentation of any GAS programming model implemen-
tation, while simultaneously allowing existing performance analysis tools
to leverage their tool’s infrastructure and quickly add support for pro-
gramming languages and libraries using the GAS model. To evaluate the
effectiveness of this interface, the tracing and profiling overhead of a pre-
liminary Berkeley UPC GASP implementation is measured and found to
be within the acceptable range.

1 Introduction

Parallel performance analysis tools (PATs) such as KOJAK [1] and TAU [2]
have proven to be useful in tuning time-critical applications. By simplifying the
instrumentation process, organizing performance data into informative visualiza-
tions, and providing performance bottleneck detection capabilities, these tools
greatly reduce the time needed to analyze and optimize the parallel program
under investigation. However, the majority of these tools support only a limited
set of parallel programming models, focusing primarily on the message-passing
model. As a result, programmers using newer parallel models are often forced to
manually perform tedious and time-consuming ad-hoc analyses if they wish to
optimize the performance of their parallel application.

While some work has been done in this area, the great majority of newer
programming models remain unsupported by performance analysis tools due
to the amount of effort that must be traditionally invested to fully support a
new model. In particular, models providing a global address space (GAS) ab-
straction to the programmer have been gaining popularity, but are currently

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 450–459, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



GASP! A Standardized Performance Analysis Tool Interface 451

underrepresented in performance analysis tool support. These models include
Unified Parallel C (UPC) [3], Titanium [4], SHMEM, and Co-Array Fortran
(CAF) [5]. Due to the wide range of compilers and techniques used to support
execution of parallel applications using the GAS model, performance analysis
tool writers face many challenges when incorporating support for these models
into their tools. Among these problems are the technical issues associated with
instrumenting code that may be highly transformed during compilation (e.g. by
parallel compiler optimizations), and the challenge of adequately instrumenting
parallel applications without perturbing their performance characteristics. The
latter is especially challenging in the context of GAS languages where commu-
nication is one-sided and locality of access might not be linguistically explicit,
such that statically indistinguishable accesses may differ in runtime performance
by orders of magnitude.

In this paper, we present a Global Address Space Performance (GASP) tool
interface [6] that is flexible enough to be adapted into current GAS compilers
and runtime infrastructures with minimal effort, while allowing performance
analysis tools to efficiently and portably gather valuable information about the
performance of GAS programs. The paper is organized as follows. Section 2
provides the background and motivation in specifying such an interface. Section
3 gives a high-level overview of the interface, and Sect. 4 presents the preliminary
results of the first implementation of the GASP interface. Finally, in Sect. 5,
conclusions and future directions are given.

2 Background and Motivation

The traditional message-passing model embodied by the Message Passing In-
terface (MPI) currently dominates the domain of large-scale production HPC
applications, however its limitations have been widely recognized as a significant
drain on programmer productivity and consequently GAS models are gaining
acceptance [7]. By providing a shared address space abstraction across a wide
variety of system architectures, these models allow programmers to express inter-
process communication in a way that is similar to traditional shared-memory
programming, but with an explicit semantic notion of locality that enables high-
performance on distributed-memory hardware. GAS models tend to heavily em-
phasize the use of one-sided communication operations, whereby data commu-
nication does not have to be explicitly mapped into two-sided send and receive
pairs, a tedious and error-prone process that can significantly impact program-
mer productivity. As a result, programs written under these models can be easier
to understand than the message-passing version while delivering comparable or
even superior parallel performance [8,9].

Most large-scale parallel systems employ communication hardware that re-
quires explicit interaction with networking components in software, and conse-
quently the compilers and libraries that support the execution of GAS programs
often need to perform a non-trivial mapping to convert user-specified one-sided
communication operations into hardware-level communication operations. As a
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result, it can be challenging to determine the appropriate location for insertion
of instrumentation code to track performance data. Furthermore, the one-sided
nature of GAS model communication inherently biases available information to
the initiator, making it more complicated for PATs to infer the state of the com-
munication system and observe communication bottlenecks that may be incurred
on passive participants. Finally, the instrumentation process has the potential
to interfere with compiler optimization that normally takes place, which may
perform aggressive rearrangement and scheduling of communication.

Several instrumentation techniques are used by existing parallel PATs. Un-
fortunately, none of these techniques provide a fully effective approach for GAS
programming models. Source instrumentation may prevent compiler optimiza-
tion and reorganization and lacks the means to handle relaxed memory models,
where some semantic details of communication are intentionally underspecified
at source level to allow for aggressive optimization. Binary instrumentation is
unavailable on some architectures of interest, and with this method it is often
difficult to correlate the performance data back to the relevant source code, es-
pecially for systems employing source-to-source compilation. An intermediate
library approach that interposes wrappers around functions implementing oper-
ations of interest does not work for compilers that generate code which directly
targets hardware instructions or low-level proprietary interfaces.

Finally, different compilers and runtime systems may use wildly different im-
plementation strategies (even for the same source language), which further com-
plicates the data collection process. For example, existing UPC implementa-
tions include direct, monolithic compilation systems (GCC-UPC, Cray UPC)
and source-to-source translation complemented with extensive runtime libraries
(Berkeley UPC, HP UPC, and MuPC). These divergent approaches imply suffi-
cient differences in compilation and execution such that no single existing instru-
mentation approach would be effective for all implementations. A näıve way to
resolve this issue is to simply select an existing instrumentation technique that
works for one particular implementation. Unfortunately, this approach forces
the writers of performance analysis tools to be deeply versed in the internal and
often fluid or proprietary details of the implementation, and can result in system-
dependent tools that lack portability, to the detriment of the user experience.

It is clear that a new instrumentation approach must be found to handle these
GAS models. The alternative we have pursued is to define a standardized perfor-
mance interface between the compiler and the performance analysis tool. With
this approach, the responsibility of adding appropriate instrumentation code is
left to the compiler writers who have the best knowledge about the execution
environment. By shifting this responsibility from tool writer to compiler writ-
ers, the chance of instrumentation altering the program behavior is minimized.
The simplicity of the interface minimizes the effort required from the compiler
writer to add performance analysis tool support to their system. Concomitantly,
this simple interface makes it easy for performance analysis tool writers to add
support for new GAS languages into existing tools with a minimum amount of
effort.
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3 GASP Interface Overview

The Global Address Space Performance interface is an event-based interface
which specifies how GAS compilers and runtime systems communicate with per-
formance analysis tools (Fig. 1). Readers are referred to the GASP specifica-
tion [6] for complete details on the interface – this paper restricts attention to a
high-level overview for space reasons.

Fig. 1. High-level system organization of a GAS application executing in a GASP-
enabled implementation

The most important entry point in the GASP interface is the event callback
function named gasp_event_notify (Fig. 2), whereby GAS implementations
notify the measurement tool when events of potential interest occur at runtime,
providing an event ID, source code location, and event-related arguments to the
performance analysis tool. The tool is then free to decide how to handle the infor-
mation and what additional metrics to record. In addition, the tool is permitted
to make calls to routines that are written in the source language or that use
the source library to query model-specific information that may not otherwise
be available. Tools may also consult alternative sources of performance informa-
tion, such as CPU hardware counters exposed by PAPI [10] for monitoring serial
aspects of computational and memory system performance in great detail.

The gasp_event_notify callback includes a per-thread, per-model context
pointer to an opaque tool-provided object created at initialization time, where
the tool can store thread-local performance data; the GASP specification is de-
signed to be fully thread-safe, supporting model implementations where arbitrary
subsets of GAS model threads may be implemented as threads within a single
process and virtual address space.

3.1 GASP Events

The GASP event interface is designed to be highly extensible, allowing language-
and implementation-specific events that capture performance-relevant informa-
tion at varying levels of detail. Additionally, the interface allows tools to intercept
just the subset of events relevant to the current analysis task.
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typedef enum {
GASP_START,
GASP_END,
GASP_ATOMIC,

} gasp_evttype_t;

void gasp_event_notify(gasp_context_t context,
unsigned int event_id,
gasp_evttype_t event_type,
const char *source_file,
int source_line, int source_col, ...);

Fig. 2. Structure of GASP event notification

A comprehensive set of events has been defined for capturing performance
information from the UPC programming model and includes the following ba-
sic categories. Shared variable access events capture one-sided communication
operations occurring implicitly (through shared variable manipulation) and ex-
plicitly (through bulk transfer and asynchronous communication library calls).
Synchronization events, such as fences, barriers, and locks, serve to record syn-
chronization operations between threads. Work-sharing events handle the explic-
itly parallel regions defined by the user. Start-up and shutdown events deal with
initialization and termination of each thread. There are also collective events
which capture broadcast, scatter, and similar operations, and events which cap-
ture memory management operations on the shared and private heaps.

The GASP interface provides a generic framework for the programming model
implementation to interact with the performance analysis tool, and the GASP
approach is extensible to new GAS models through the definition of model-
appropriate sets of events. The GASP interface is also designed to support
mixed-model applications whereby a single performance analysis tool can record
and analyze performance information generated by each GAS model in use and
present the results in a unified manner.

Finally, GASP provides facilities for user-defined, explicitly-triggered perfor-
mance events to allow the user to give context to performance data. This user-
defined context data facilitates phase profiling and customized instrumentation
of specific code segments.

3.2 GASP Instrumentation and Measurement Control

Several user-tunable knobs are recommended by the GASP specification to pro-
vide finer control over instrumentation and measurement overheads. First, the
--inst and --inst-local compilation flags are used to request instrumentation
of operations excluding or including events generated by shared local accesses
(i.e. one-sided accesses to local data which are not statically known to be local).
Because shared local accesses are often as fast as normal local accesses, instru-
menting these events can add a significant runtime overhead to the application.
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By contrast, shared local access information is useful in some analyses, particu-
larly those that deal with optimizing data locality and performing privatization
optimizations, and thus may be worth the additional overhead. Instrumentation
#pragma directives are provided, allowing the user to instruct the compiler to
avoid instrumentation overheads for particular lexical regions of code at compile
time. Finally, a programmatic control function is provided to toggle performance
measurement for selected program phases at runtime.

4 Preliminary Results

A preliminary GASP implementation was added to Berkeley UPC [11] to test
the effectiveness of the GASP interface. To test this implementation, we ran the
UPC implementation of the NAS parallel benchmark suite version 2.4 (“class
B” workload) under varying instrumentation and measurement conditions. For
the CG, MG, FT, and IS benchmarks, we first compiled each benchmark using
an installation of Berkeley UPC version 2.3.16 with all GASP code disabled. We
used the best runtime for each benchmark as a baseline, and then recompiled
each application against the same version of Berkeley UPC with GASP support
enabled. We subsequently re-ran each benchmark under the following scenarios:

Instrumentation: A trivial GASP tool was linked to each benchmark that in-
tercepted all gasp_event_notify calls and immediately returned. This scenario
records the absolute minimum overhead that results as a consequence of GASP
instrumentation being inserted into a program.
Instrumentation, local: The same trivial GASP tool used in the previous scenario
was linked to each benchmark, and the --inst-local flag was also passed to the
compiler. This scenario demonstrates the absolute minimum overhead imposed
by GASP instrumentation that tracks both remote and local references in the
global address space.
Measurement (profiling): We linked each benchmark against an actual perfor-
mance analysis tool named Parallel Performance Wizard (PPW) [12] that records
statistical information about each benchmark’s runtime characteristics. In par-
ticular, the total amount of time spent executing one-sided memory operations
is collected and stored relative to the source line in which the operation was ini-
tiated. This scenario does not include local data accesses in the instrumentation.
Measurement (profiling with PAPI): This scenario used the same tool as the
profiling scenario, but in addition to raw temporal data the PAPI hardware
counter library was used to collect the total number of cycles and number of
floating-point instructions consumed by each profiled entity. This scenario does
not include local data accesses in the instrumentation.
Measurement (tracing): In this scenario, the same performance analysis tool
recorded a full trace of the program’s activity, storing information about each
UPC operation such as byte count and source/destination threads in one-sided
memory operations. This scenario does not include local data accesses in the
instrumentation. Additionally, this scenario includes time spent writing trace
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Fig. 3. Berkeley UPC GASP overhead for NAS benchmark 2.4 class B on a 32-node,
2-GHz Opteron/Linux cluster with a Quadrics QsNetII interconnect
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data to disk using a small trace buffer periodically flushed at runtime, but not
time spent during the post-execution merge phase.

Each benchmark was run under each scenario a total of ten times, and an
average was used to determine the percentage increase in overall execution
time against the baseline after any data outliers were discarded. The measured
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Fig. 5. Parallel Performance Wizard interface displaying performance data for the NPB
MG benchmark

Fig. 6. Jumpshot timeline view of NPB CG benchmark

variance for the data set was low, with standard deviation peaking at less than
a few percent of overall runtime for the MG benchmark.

Figure 3 presents the results from our profiling and tracing experiments, giv-
ing a breakdown of the overheads obtained from each scenario listed above. In
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all cases, the overhead imposed by profiling was less than 5%, and the worst
overhead for tracing (which is typically more expensive than profiling due to
the disk I/Os needed to capture a complete record of events) was less than 9%.
These overheads are well within acceptable limits for obtaining representative
performance data.

Figure 4 compares the overhead of the “Instrumentation” and “Instrumenta-
tion, local” scenarios showing the minimum incremental cost of profiling local
memory accesses in addition to remote accesses. It is encouraging that the in-
strumentation overhead alone for each benchmark was under 1.5% and 3.0% for
remote and remote+local instrumentation (respectively), even in this relatively
untuned GASP implementation. This outcome shows that the overall design of
GASP is sound enough to accurately capture the fine-grained performance data
typically associated with GAS models.

5 Conclusions and Future Directions

This paper introduces the Global Address Space Performance (GASP) inter-
face that specifies a standard event-based performance interface for global ad-
dress space languages and libraries. This interface shifts the responsibility of
where to add instrumentation code from the tool writer to the GAS com-
piler/library writer, which improves the accuracy of the data collection process
and reduces measurement perturbation. In addition, any performance analysis
tool can quickly add support for GAS models by simply defining the body of
a single, generic gasp_event_notify function when corresponding GASP im-
plementations are available. To evaluate the effectiveness of such an interface, a
preliminary version of the GASP interface was implemented in Berkeley UPC
and overhead was measured and was found to be within an acceptable range.

To further evaluate and improve the interface, we’re currently working to de-
fine GASP event sets for additional GAS models and plan to integrate GASP
instrumentation into several GAS implementations including the Titanium com-
piler and several UPC and SHMEM implementations. In doing so, we aim to
encourage more compiler developers to adopt the GASP interface in their own
implementations. Indeed, as of January 2007, three additional UPC compiler
vendors have committed to adding GASP support in upcoming releases. In ad-
dition, we are currently developing a new comprehensive parallel performance
analysis tool called Parallel Performance Wizard (PPW) that makes full use of
GASP. While a full description of the tool is beyond the scope of this paper,
we encourage readers to try the PPW tool for free at the PPW website [12].
Figure 5 shows a screenshot of the tool’s user interface, and Fig. 6 shows our
tool integrating with the Jumpshot timeline viewer via a SLOG-2 trace export
to allow the user to browse a visualization of trace data. Finally, we hope to
extend the GASP interface to support other parallel programming models such
as MPI-2, OpenMP, Chapel, Fortress, and X10.
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Abstract. Straightforward trace collection and processing becomes in-
creasingly challenging and ultimately impractical for more complex, long-
running, highly parallel applications. Accordingly, the scalasca project
is extending the kojak measurement system for mpi, openmp and par-
titioned global address space (pgas) parallel applications to incorporate
runtime management and summarisation capabilities. This offers a more
scalable and effective profile of parallel execution performance for an
initial overview and to direct instrumentation and event tracing to the
key functions and callpaths for comprehensive analysis. The design and
re-structuring of the revised measurement system are described, high-
lighting the synergies possible from integrated runtime callpath sum-
marisation and event tracing for scalable parallel execution performance
diagnosis. Early results from measurements of 16,384 mpi processes on
IBM BlueGene/L already demonstrate considerably improved scalability.

1 KOJAK/SCALASCA Event Tracing and Analysis

The kojak toolset provides portable automated measurement and analysis of
hpc applications which use explicit message-passing and/or implicit shared-
memory parallelisations with mpi, openmp and pgas [2,3]. Via interposition
on library routines, preprocessing of source code directives/pragmas, or inter-
facing with compilers’ function instrumentation, a comprehensive set of com-
munication and synchronisation events pertinent to the execution of a parallel
application can be acquired, augmented with timestamps and additional metric
measurements, and logged in trace files. These time-ordered event traces from
each application thread are subsequently merged into a global time-ordered trace
for analysis, via automatic rating of performance property patterns or interactive
time-line visualisation.

Despite the demonstrated value of the event tracing approach, using kojak,
vampir [4], DiP/Paraver [5] or commercial alternatives such as Intel Trace Col-
lector and Analyzer, a key limitation is the trace volume which is directly pro-
portional to granularity of instrumentation, duration of collection, and number
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of threads [6]. Multi-process and multi-thread profiling tools such as mpiP [13],
ompP [14] and proprietary equivalents, avoid this limitation by aggregating exe-
cution statistics during measurement and producing performance summaries at
completion. A variety of tracing and profiling options have been incorporated
by the tau toolkit [7], including flat (function), specifiable-depth callpath and
calldepth profiling. Measurement tools can generally exploit library interposi-
tion, via re-linking or dynamic library loading, to track mpi usage, however,
implicit parallelisation with openmp and function tracking typically require dy-
namic instrumentation [8] or re-compilation to insert special instrumentation.

scalasca is a new project which is extending kojak to support scalable per-
formance measurement and analysis of large-scale parallel applications, such as
those consisting of thousands of processes and threads. Parallelisation of post-
mortem trace analysis via replay of events and message transfers required re-
construction of the trace measurement and automated analysis foundation [9].
This is being complemented with runtime summarisation of event measurements
into low-overhead execution callpath profiles, which will also be used to re-
configure instrumentation and measurements or direct selective event tracing.
Reports from both runtime summarisation and trace analysis will use the same
cube format, so they can also be readily combined, for presentation and in-
vestigation with the associated browser [10]. Ultimately, improved integration
of instrumentation, measurement and analyses will allow each to be progres-
sively refined for large-scale, long-running, complex application executions, with
automation providing ease of use.

After describing the synergies possible from integrating runtime callpath pro-
filing and event tracing, the design of the revised measurement system is intro-
duced, and specific usability and scalability improvements that have been incor-
porated are detailed, followed by discussion of initial results with the prototype
revised implementation of event tracing which demonstrate its effectiveness at a
range of scales.

2 Runtime Measurement Summarisation

An approach without the scalability limitations of complete event tracing is
runtime measurement summarisation. As each generated event is measured, it
can be immediately analysed and incorporated in a summary for events of that
type occurring on that program callpath (for that thread). Summary informa-
tion is much more compact than event traces, with size independent of the total
collection duration (or the frequency of occurrence of any function): it is equiv-
alent to a local profile calculated from the complete event trace, and combining
summaries produces a global callpath profile of the parallel execution.

For measurements which are essentially independent for each process, such as
interval event counts from processor hardware counters, runtime summarisation
can effectively capture the profile without the overhead of rendering a bulky
vector of measurements. On the other hand, performance properties related to
inter-process interaction, such as the time between when a message was sent and
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available to the receiver and its eventual receipt (i.e., “late receiver”), can only
be determined in a portable way by combining disjoint measurements that is not
practical at runtime. Fortunately, the inter-process performance properties are
generally specialised refinements of the process-local ones available from runtime
summarisation.

Doing the local analysis at runtime during measurement, and in parallel,
reduces the need for large files and time-consuming post-processing and results
in a timely initial overview of the execution performance.

Runtime measurement processing and summarisation also offers opportunities
to decide how to deal with each event most effectively as it is generated. Fre-
quently encountered events may be candidates to be simply ignored, due to the
overhead of processing measurements for them. Other events may have a very
variable cost which is typically small enough to be negligible but occasionally
significant enough to warrant an explicit detailed record of their occurrence.

Alternatively, a profile summary from which it is possible to determine how
frequently each function is executed, and thereby assess their importance with
respect to the cost of measurement, can be used as a basis for selective instru-
mentation which avoids disruptive functions. Subsequent measurements can then
benefit from reduced perturbation for more accurate profiling or become suitable
for complete event tracing.

Runtime measurement summarisation therefore complements event tracing,
providing an overview of parallel execution performance which can direct instru-
mentation, measurement and analysis for more comprehensive investigation.

3 Integration of Summarisation and Tracing

An integrated infrastructure for event measurement summarisation and trac-
ing offers maximum convenience, flexibility and efficiency. Applications instru-
mented and linked with the measurement runtime library can be configured to
summarise or trace events when measurement commences, and subsequent mea-
surements made without rebuilding the application. It also becomes possible to
simultaneously combine both approaches, with a general overview profile sum-
mary refined with analysis of selective event traces where they offer particular
insight.

Along with the practical benefit of maintaining a single platform-specific
measurement acquisition infrastructure, sharing measurements of times, hard-
ware counters and other metrics avoids duplicating overheads and potential ac-
cess/control conflicts. It also facilitates exact comparison of aggregate values
obtained from both approaches.

Some form of runtime summarisation is probably always valuable, perhaps
as a preview or compact overview. Metrics calculated from hardware counter
measurements are generally most effectively captured in such summaries. Ex-
tended summaries with additional statistics calculated may be an option. Only
in the rare case where the runtime overhead should be reduced to an absolute
minimum is it expected that summarisation might be completely disabled.
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Unless it can be readily ascertained that the application’s execution charac-
teristics are suitable for some form of event tracing, the default should be for
tracing to initially be inactive. When activated, simply logging all events would
provide the most complete execution trace where this was desired (and from
which a summary profile could be calculated during postprocessing analysis).
Alternatively, selective tracing may be based on event characteristics (such as
the event type or a measurement duration longer than a specified threshold), or
based on analysis from a prior execution (e.g., to filter uninteresting or overly
voluminous and obtrusive measurements).

Furthermore, the availability of measurements for the entry of each new
function/region frame on the current callstack, allows for late determination
of whether to include them in an event trace. For example, it may be valuable to
have a trace of all communication and synchronisation events, with only func-
tion/region entry and exits relevant to their callpaths (and all others discarded
at runtime). The callstack and its entry measurements can be tracked without
being logged until an event of interest is identified (e.g., by its type or duration),
at which point the (as yet unlogged) frame entry measurements from the current
callstack can be used to retroactively log its context (and mark the associated
frames such that their exits will also be logged), while new frames subsequently
encountered remain unlogged (unless later similarly identified for logging).

To have the most compact event traces, only message transfers need to be
logged with their callpath identifier. Non-local performance properties subse-
quently calculated from post-mortem analysis of the traced message transfer
events can then be associated with the local performance properties for the
same callpaths already generated by runtime summarisation.

If desired, separate dedicated libraries for summarisation and tracing could
also be provided and selected during application instrumentation preparation.

4 Implementation of Revised Measurement System

kojak’s measurement runtime system formerly was based on an integrated event
interfacing, processing and logging library known as epilog [11]. Files containing
definitions and event records were produced in epilog format, and manipulated
with associated utilities. Execution traces can have performance properties au-
tomatically analysed, or can be converted to other trace formats for visualisation
with third-party tools.

The epilog name, file format and utilities are retained in the revised design
of the measurement system, but only for the logging/tracing-specific compo-
nent of a larger integrated summarisation and tracing library, epik, as shown in
Figure 1. Event adapters for user-specified annotations, compiler-generated func-
tion instrumentation, openmp instrumentation, and the mpi library instrumen-
tation are now generic, rather than epilog/tracing specific. Similarly, platform-
specific timers and metric acquisition, along with runtime configuration and
experiment archive management, are common epik utility modules. A new
component, epitome, is dedicated to producing and manipulating totalised
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Fig. 1. EPIK runtime library architecture

measurement summaries. Both epilog and epitome share a common runtime
management system, episode, which manages measurement acquisition for pro-
cesses and threads, attributes them to events, and determines which summarisa-
tion and/or logging subsystems they should be directed to (based on the runtime
measurement configuration). Additional auxilliary event processing and output
can also be incorporated as epik back-end event handler modules.

In addition to restructuring the measurement system, various usability and
scalability improvements have been incorporated, to be able to manage measure-
ments collected from thousands of processes.

4.1 Usability Improvements

To facilitate diverse measurement collections and analyses, and avoid the clutter
of multiple (and perhaps thousands of) files appearing in the program’s working
directory, a new experiment archive directory structure has been introduced. A
unique directory is created for each measurement execution to store all of the raw
and processed files associated with that measurement and its analysis. Instead of
applying each kojak tool to files of the appropriate type, the tools can now also
accept the name of the experiment archive directory, from which the appropriate
files are transparently located and into which new files are deposited. This new
structure makes it easier for the tools to robustly determine and maintain the
integrity of the experiment measurement/analyses, and should also be easier for
users to manage (e.g., when they wish to move an experiment to a different
system for storage or analysis).

On-the-fly file compression and decompression [12] reduces the size of experi-
ment archives, with an additional bonus in the form of reduced file reading and
writing times (despite additional processing overheads).

In addition to a library which can be used by external tools to read and write
epilog traces, utilities are provided to convert traces to and from the formats
used by other tools, such as vampir and Paraver. Furthermore, as an alternative
to post-mortem trace conversion, experimental support has been incorporated
within epik to directly generate traces in otf format [15].

4.2 Scalability Improvements

epilog traces were previously written from each thread’s collection buffer into
temporary files, which were merged according to event timestamp order into



Selective Event Tracing for Scalable Parallel Diagnosis 465

process rank traces and finally a global trace file at measurement finalisation.
Re-reading and re-writing these large trace files was required to produce a se-
quential trace that the sequential analysis tool could handle. Furthermore, ad-
ditional scans through each trace were required to locate the definition records
interspersed within the files so that they could be globalised and written as a
header in the merged file. Although this merging was often initiated automati-
cally, and the thread stage was partially parallelised, it was a notable bottleneck
in the combined measurement and analysis process which was extremely sensi-
tive to filesystem performance. Fortunately, parallel trace analysis has no need
for merged trace files, since the analysis processes read only the trace files that
they require [9].

The traces written by each thread can therefore be written directly into the
experiment archive, from where the subsequent analysis processes can access
them. These event traces are written using process-local identifiers for regions,
communicators, threads, etc., which will later need to be converted to a globally
consistent set of identifiers for a unified analysis. Definitions which were previ-
ously interspersed with event records in the traces are now handled separately.

As an interim solution, these local definitions have been written to files to be
unified into a global definitions file and associated local–global mapping files via
postprocessing. These files are much smaller than the corresponding event traces,
and can be unified quite efficiently by the separate unifier, however, creating large
numbers of (small) intermediate files has been found to be inefficient.

Generation of the global definitions and associated local–global identifier map-
pings is required for unified analysis, and although it is a predominantly sequen-
tial operation, it is advantageous for it to be done on conclusion of the parallel
measurement. Instead of each process rank writing local definitions to file(s),
the buffers can be sent to rank 0 to produce a global set and associated identi-
fier mappings. Post-mortem trace analysis requires this information to be filed
along with the traces in the experiment archive, however, the runtime measure-
ment summarisation can immediately exploit the returned identifier mappings
to directly produce a unified measurement summary.

Although all of the definitions are required for the complete analysis report,
identifiers do not require to be globalised when they are common to all processes
or can be implied, such as the measurement metrics (time and hardware coun-
ters) and machine/node & process/thread identifiers. The remaining analysis
is for callpaths, consisting of lists of region identifiers; unified analysis requires
globalisation of these callpath identifiers.

Callpaths can be specified as node-region-id and parent-callpath-id records,
so that only tail-segments need to be defined and callpaths are reconstructed by
combining segments from each tail node via its parents’ nodes to the root (which
has a null parent-callpath-id). These can be added to the existing local definitions
in the buffers to be unified by rank 0, or specified and unified separately.

Tracking the current callpath is part of the episode functionality, whereas
epitome maintains the set of local callpaths according to which measurements
are summarised, therefore it is straightforward to provide a complete set of
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(local) callpaths on measurement conclusion. Provision of the global callpath set
and local–global callpath identifier mappings also allows these to be used in the
post-mortem trace analysis, avoiding a scan through the trace to determine the
local callpaths and their subsequent unification. Even in the case where epitome

measurement summarisation is not performed, there are still advantages from
maintaining callpaths and associated visit counts.

The primary use is likely to be the use of callpath visit counts to threshold
the number of times paths (events) are traced. In conjunction with the callstack
of (region-entry) measurements, region enter/exit events can be tracked until an
event of interest (such as a message transfer) indicates that the current buffer of
events should be logged, such that uninteresting callpaths are effectively pruned
from the trace. Alternatively, message transfers may be tagged with (local) call-
path identifiers, allowing them to be efficiently traced in isolation from the region
enter/exit events that otherwise determine callpath context. These approaches
reduce the overhead of tracing frequently-executed, intrusive and/or uninterest-
ing callpaths, making tracing and subsequent trace analysis more effective.

5 Results

To evaluate the effectiveness of some of the changes to the kojak measurement
system, a number of tracing experiments have been performed at a range of
scales with the current prototype implementation and the prior version.

Measurements were taken on the Jülicher BlueGene/L system (JUBL), which
consists of 8,192 dual-core 700 MHz PowerPC 440 compute nodes (each with
512 MBytes of memory), 288 I/O nodes, and IBM p720 service and login nodes
each with eight 1.6 GHz Power5 processors [16]. The parallel measurements were
made on a dedicated compute partition, whereas the sequential post-processing
steps ran on the lightly loaded login node.

asc benchmark smg2000 [17] is a parallel semi-coarsening multigrid solver,
and the mpi version performs many non-nearest-neighbor point-to-point commu-
nication operations (and only a negligible number of collective communication
operations). In an investigation of weak scaling behaviour, a fixed 64×64×32
problem size per process with five solver iterations was configured, resulting in
a nearly constant application run-time as additional cpus were used: uninstru-
mented execution times are shown with open diamonds in Figure 2, along with
a breakout of the wall time spent in the parallel solver as open triangles.

Instrumented versions of smg2000 were prepared with the prior and current
development versions of the kojak measurement system, and the times for run-
ning these are also shown in Figure 2: the lighter solid diamonds are the older
version and the darker solid diamonds the latest version, which is more than an
order of magnitude faster at the larger scales.

In each case, measurement was done using 100MByte trace buffers on each
process to avoid intermediate buffer flushes to file which would otherwise seri-
ously impact performance during measurement. The time taken by the parallel
solver is the same for both versions when instrumented and measured (shown
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with solid right triangles) and found to be dilated less than 15% compared to
the uninstrumented version (open left triangles), which is generally considered
acceptable. Similarly, the number of events traced for each process is also identi-
cal in both versions, and slowly increases with the total number of processes: the
crosses in Figure 2 are the mean number of events per process (in thousands),
with the vertical extents corresponding to the range (which grows to more than
±50% of the mean). The aggregate number of events traced therefore increases
somewhat faster than linearly, to over 40,000 million events in the 16,384-process
configuration, and this manifests in the total sizes of the measurements when
archived on disk. In its new compressed form, the corresponding experiment
archive totals almost 230 GBytes, whereas the former uncompressed trace files
are around 2.5 times larger. On-the-fly compression is a factor in the improved
performance, however, the most significant gain is from avoiding trace re-writing
and merging (which also makes trace writing times rather more deterministic).

The benefits of the new approach are especially evident when post-processing
the traces. The prior version of the kojak measurement system performs a semi-
parallel thread trace merging when experiments are archived, which is followed
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by a separate sequential process trace unification and merge: the light circles in
Figure 2 show how this quickly becomes impractical for larger scales. By writing
local definitions and thread event traces directly into the experiment archive,
followed by a separate sequential unification of just the definition records and
creation of local–global identifier mappings (the darker circles), the new version
scales much more favourably.

These improvements combined demonstrate trace measurement now scaling
to 16,384 processes, considerably beyond the prior practical limits. (The corre-
spondingly more scalable analysis of the new traces is further motivation [18].)

6 Further and Future Work

Definition unification has subsequently been incorporated within the measure-
ment finalisation, where gathering and unifying the local definitions both avoids
the need to create definitions files for each process and the separate (sequen-
tial) unification step, thereby further improving measurement performance. Only
when traces are produced for post-mortem analysis, is it necessary for the unified
global definitions and identifier mappings to be written for each rank.

Runtime callpath summary data similarly needs to be gathered by the master
process, so that it can be written as a unified report. The local callpath identi-
fiers used by each process to store its measurements must therefore be mapped
to those of the global call-tree, using the mappings returned to each process rank
by the master process for this purpose. Finally, serial report writing functionality
has already been refactored from the cube library, allowing callpath measure-
ment data to be streamed to file as it is gathered, measurement by measurement,
without it needing to be previously stored in memory in its entirety.

The runtime analysis summary reports are being formatted for presentation
and investigation with the same cube analysis browser used for the reports pro-
duced by the former sequential and new parallel automatic event trace analysers.
Direct comparison will thereby be possible using the cube algebra utilities [10],
and will facilitate determination of instrumented functions which are problem-
atic, due to their frequency of execution or measurement overheads. Selective
instrumentation or measurement configuration can then be employed to cir-
cumvent those functions (or callpaths) in subsequent performance measurement
executions, to obtain the highest quality analysis in a reliable, scalable manner.

The effectiveness of the new measurement and analysis capabilities are being
evaluated on a range of hpc systems and applications, particularly at large scale,
where they are also being compared with other tracing and profiling tools. Even
simple operations, such as creating a separate file for each process in the same
directory, can become prohibitively expensive at the largest scales, suggesting
a need for exploiting the system-specific hierarchy in the structure of the mea-
surement archive. Similarly, coordination of file writing may benefit from being
adapted to the capabilities of the underlying I/O and file system.
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(eds.) Euro-Par 1996. LNCS, vol. 1124, pp. 665–674. Springer, Heidelberg (1996)

6. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.J.N.: Large Event Traces
in Parallel Performance Analysis. In: Proc. 19th Int’l Conf. on Architecture of
Computing Systems, Frankfurt am Main, Germany. Lecture Notes in Informatics,
p. 81. Gesellschaft für Informatik, pp. 264–273 (2006)

7. Shende, S.S., Malony, A.D.: The TAU Parallel Performance System. Int’l J. High
Performance Computing Applications 20(2), 287–331 (2006)

8. Cain, H.W., Miller, B.P., Wylie, B.J.N.: A Callgraph-based Search Strategy for
Automated Performance Diagnosis. Concurrency and Computation: Practice and
Experience 14(3), 203–217 (2002)
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Grids for Scientific Computing:
Minisymposium Abstract

Oxana Smirnova

Lund University, Sweden

Grid technologies are still evolving, with standards yet to be defined and reliable
production-level solutions yet to be found. Nevertheless, Grid already stepped
out of the cradle and slowly but steadily finds its way to the world of the modern
information technologies. Early testers and adopters of this innovative technol-
ogy are researchers in various fields of science, primarily those that traditionally
require massive computational resources. Destined by the virtue of their occu-
pation to investigate new phenomena, they provide most valuable feedback to
the Grid technology developers, helping to shape the designs and define the
roadmaps. Historically, researchers in High Energy Physics were the first to ap-
preciate the Grid idea, not just as the consumers, but also as the key developers
of many current solutions.

This minisymposium brings together several cases of using Grids for scientific
computing. The presentations will cover the full range of scientific Grid com-
puting activities, starting with development of core Grid software components,
continuing to Grid-enabling of scientific applications, and on to providing com-
puting infrastructure and resources. All these efforts contribute to addressing
the Grand Challenges of Scientific Computing.
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Abstract. The Advanced Resource Connector (ARC) or the NorduGrid
middleware is an open source software solution enabling production qual-
ity computational and data Grids, with special emphasis on scalability,
stability, reliability and performance. Since its first release in May 2002,
the middleware is deployed and being used in production environments.
This paper aims to present the future development directions and plans
of the ARC middleware in terms of outlining the software development
roadmap.

Keywords: Grid, Globus, middleware, distributed computing, cluster,
Linux, scheduling, data management.

1 Introduction

Advanced Resource Connector (ARC) [1] is a general purpose Grid middleware
that provides a very reliable implementation of the fundamental Grid services,
such as information services, resource discovery and monitoring, job submission
and management, brokering and low-level data and resource management.

A growing number of research Grid infrastructure projects (Swegrid [2], Swiss
ATLAS Grid [3], M-Grid of Finland [4], Nordic Data Grid Facility (NDGF) [5]
etc.) are choosing ARC as their middleware. These resources effectively consti-
tute one of the largest production Grids in the world, united by the common
middleware base while having different operational modes and policies.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 471–479, 2007.
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The development of the open source ARC middleware has been coordinated
by the NorduGrid Collaboration [6]. This Collaboration has successfully initi-
ated and takes an active part in several international Grid development and
infrastructure projects, such as the EU KnowARC [7] and the Nordic Data Grid
Facility. All such projects contribute to the ARC software. Due to these new
initiatives and to the active community that has formed around the middleware,
substantial development is planned and expected in coming years. This paper
presents a common view on the future of the Advanced Resource Connector, in-
corporating the input from the major contributing projects and the community.

The roadmap contains development plans beyond the stable release version 0.6
of ARC. Relation to other middlewares, emerging standards and interoperability
issues are out of scope of this paper.

2 ARC Overview

ARC middleware was created as a result of a research process started in 2001 by
the Nordic High Energy Physics Community. The initial motivation was to inves-
tigate possibilities to set up a regional computational Grid infrastructure using
the then existing solutions, primarily the EDG [9] prototype and the Globus
Toolkit R© [10]. Studies and tests conducted by NorduGrid showed that such so-
lutions were not ready at that time to be used in a heterogeneous production
environment, characteristic for the scientific and academic computing in the
Nordic countries. Nordic scientific computing has a specific feature in a way
that it is carried out by a large number of small and medium size facilities of a
different kind and ownership, not by big supercomputing centers.

ARC was designed in 2002, having user requirements and experience with
other Grid solutions in mind. An important requirement from the very start
of ARC development has been to keep the middleware portable, compact and
manageable both on the server and the client side.

In the stable ARC release version 0.6, the client package occupies only 14
Megabytes, it is available for most current Linux distributions and can be in-
stalled at any available location by a non-privileged user. For a computing ser-
vice, only three main processes are needed: the specialized GridFTP service, the
Grid Manager and the Local Information Service.

The ARC architecture is carefully planned and designed to satisfy the needs
of end-users and resource providers. To ensure that the resulting Grid system
stable by design, it was decided to avoid centralized services as much as possible
and to identify only three mandatory components (see Figure 1):

1. The Computing Service, implemented as a GridFTP-Grid Manager pair of
core services. The Grid Manager (GM) is instantiated at each computing
resource’s (typically a cluster of computers) front-end as a new service. It
serves as a gateway to the computing resource through a GridFTP channel.
GM provides an interface to the local resource management system, facili-
tates job manipulation, data management, allows for accounting and other
essential functions.
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Fig. 1. Components of the ARC architecture. Arrows point from components that
initiate communications towards queried servers.

2. The Information System is the basis for the Grid-like infrastructure. It is re-
alized as a hierarchical distributed database: the information is produced and
stored locally for each service (computing, storage), while the hierarchically
connected Index Services maintain the list of known resources.

3. The Brokering Client is deployed as a client part in as many instances as
users need. It is enabled with resource discovery and brokering capabilities,
being able to distribute the workload across the Grid. It also provides client
functionality for all the Grid services, and yet is required to be lightweight
and installable by any user in an arbitrary location in a matter of few min-
utes.

In this scheme, the Grid is defined as a set of resources registering to the
common information system. Grid users are those who are authorized to use at
least one of the Grid resources by the means of Grid tools. Services and users
must be properly certified by trusted agencies. Users interact with the Grid via
their personal clients, which interpret the tasks, query the Information System
whenever necessary, discover suitable resources, and forward task requests to the
appropriate ones, along with the user’s proxy and other necessary data. If the
task consists of job execution, it is submitted to a computing resource, where
the Grid Manager interprets the job description, prepares the requested envi-
ronment, stages in the necessary data, and submits the job to the local resource
management system. Grid jobs within the ARC system possess a dedicated area
on the computing resource, called the session directory, which effectively imple-
ments limited sandboxing for each job. Location of each session directory is a
valid URL and serves as the unique Job Identifier. In most configurations this
guarantees that the entire contents of the session directory is available to the
authorized persons during the lifetime of the Grid job. Job states are reported
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in the Information System. Users can monitor the job status and manipulate
the jobs with the help of the client tools, that fetch the data from the Informa-
tion System and forward the necessary instructions to the Grid Manager. The
Grid Manager takes care of staging out and registering the data (if requested),
submitting logging and accounting information, and eventually cleaning up the
space used by the job. Client tools can also be used to retrieve job outputs at
any time.

Figure 1 shows several optional components, which are not required for an
initial Grid setup, but are essential for providing proper Grid services. Most
important are the Storage Services and the Data Indexing Services. As long as
the users’ jobs do not manipulate very large amounts of data, these are not
necessary. However, when Terabytes of data are being processed, they have to
be reliably stored and properly indexed, allowing further usage. Data are stored
at Storage Elements and can be indexed in a variety of third-party indexing
databases. Other non-critical components are the Grid Monitor that provides
an easy Web interface to the Information System, the Logging Service that stores
historical system data, and a set of third-party User Databases that serve various
Virtual Organisations.

3 The Roadmap

The described above solution has been in production use for many years, and
in order to keep up with the growing users needs and with the Grid technology
development, substantial changes have to be introduced, keeping the original
fundamental design principles intact. ARC middleware development is driven in
equal parts by the global Grid technology requirements and by customers’ needs.
Independently of the nature of the customer – an end-user or a resource owner
– the guiding principles for the design are the following:

1. A Grid system, based on ARC, should have no single point of failure, no
bottlenecks.

2. The system should be self-organizing with no need for centralized manage-
ment.

3. The system should be robust and fault-tolerant, capable of providing stable
round-the-clock services for years.

4. Grid tools and utilities should be non-intrusive, have small footprint, should
not require special underlying system configuration and be easily portable.

5. No extra manpower should be needed to maintain and utilize the Grid layer.
6. Tools and utilities respect local resource owner policies, in particular, security-

related ones.
7. Middleware development and upgrades must proceed in incremental steps,

ensuring compatibility and reasonable co-existence of old and new clients
and services during the extended transitional periods.

The long-term goal of the development is to make ARC to be able to support
easy creation of dynamic Grid systems and to seamlessly integrate with tools
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used by different end-user communities. The main task taken care of by ARC
will still be execution of computational jobs and data management, and the goal
is to ease access to these services for potential users while retaining the relatively
non-intrusive nature of the current ARC.

The architectural vision for future ARC development is quite traditional: it
involves a limited number of core components, with computational and data
management services on top. The core should be flexible enough to add general
kinds of services, ranging from conventional ones for scientific computations, to
more generic, like e.g. shared calendars. The resulting product should be, as
before, a complete solution, ready to be used out of the box, simple to deploy,
use and operate.

The post-0.6 major releases of ARC are expected to appear on yearly basis,
with the version 1.0 scheduled for May 2007. Between the major releases, fre-
quent incremental releases are planned, such that the newly introduced features
and components could become available for early testers as soon as possible. Ver-
sion 1.0 will introduce new interfaces for the current core ARC services and will
also provide core libraries and a container for developing and hosting additional
services. Version 2.0 will add numerous higher level components, such as the
self-healing storage system and support for dynamic runtime environments via
virtualization. Finally, with version 3.0 ARC will get extended with a scalable
accounting service, enhanced brokering and job supervising service, and many
other higher level functionalities.

Most new components will be developed anew, especially those constituting
core services. Some existing services will be re-used or seamlessly interfaced, such
as e.g. the conventional GridFTP server, VOMS or job flow control tools like
Taverna [11].

While ARC versions 1.0 and above will see a complete protocol change, back-
wards compatibility to pre-0.6 versions will be provided for as long as reasonably
needed by keeping old interfaces at the client side, and whenever necessary – at
the server side as well.

3.1 ARC Version 1.0

ARC version 1.0 will capitalize on the existing in version 0.6 services and tools,
and will mark preparation for transition to new core components. The following
steps are foreseen, leading to ARC 1.0:

– Standards Document : this document will include an extended plan about
how the ARC will implement essential OGF [12], OASIS [13], W3C [14],
IETF [15] and other standards recommendations.

– Architecture document : will describe the extended new main components and
services of ARC, with functionality including distributed storage, informa-
tion system, virtual organization support, core libraries and the container.
This architecture will mainly focus on the transformation of ARC middle-
ware to the Web services based framework and will describe the implemented
services in such a new system.
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– Web service core framework and container : first of all, the main functions
core libraries and the container will be implemented as described in the
architecture document. The core framework will include such functions and
methods as a common protocol (HTTP(S), SOAP, etc.) multiplexer, internal
service communication channels, some part of authentication, operating sys-
tem level resource management, common configuration system, logging and
saving mechanism of internal states of services, etc. Meanwhile, the main
service container will contain all the on-site manageable services.

– Specifications for the Runtime Environment (RTE) Description Service and
for the RTE Repository Service: the current static and rather basic RTE
support can be extended in many ways. The goal of this step is to identify
the possibilities of such extensions and to define components and interfaces
for the new components. The enhanced RTE system with dynamic and vir-
tualized RTE support will be implemented in two steps.

– Modular building and packaging framework : current building and packaging
procedures will be improved and optimized by introducing means for mod-
ular builds. Other improvements in the framework are foreseen, including
transition to new version control and build systems.

– Extended back-ends : the reliability and robustness of the ARC middleware
is the result of its very robust core back-end components. These back-ends
form the layer between the Grid and the resources and have on many occa-
sions proved superior to other resource managers in terms of performance,
manageability and stability. This work item aims at further improving the
performance, manageability and scalability of the ARC back-ends, adding
support for additional batch systems, improving and standardising the batch
system interfaces and offering better manageability and control of a Grid re-
source for the resource owner.

– Initial Web service basic job management : since job management is one of
the most widely used components of current ARC, the first step to the Web
service based system is to transform this component using current ARC
capabilities to a Web service.

– Web service clients: to accommodate for transition of the job management
to a Web service, relevant changes will be made in end-user clients and tools.

– Enhanced treatment of RTEs via the Runtime Environment Description Ser-
vice and RTE Repository: after this step, the current static RTE system will
be extended with a full semantic description of RTEs and with services that
could help to collect and organise RTE packages and their descriptions. Si-
multaneously, a general framework for dynamic RTEs will become available
as well.

– Web service based elementary information index framework : as a first step
to reach one of the main goals, support for dynamic Grid creation (note also
a P2P information system later), ARC will provide a Web service front-end
to the current information indexing system.
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3.2 ARC Version 2.0

ARC version 2.0 will see creation of new high-level components on top of the
developing core services. The main foreseen steps towards this release are:

– Taverna integration: Taverna [11] is a workflow management system used
strongly by the bioinformatics community. This step will see ARC and Tav-
erna working together seamlessly.

– flowGuide integration providing proof of industrial quality: flowGuide [16]
is a workflow management solution used in automotive industry. It will be
adapted to be used in a Grid environment provided by ARC.

– ARC – gLite gateway : interoperability between ARC and gLite [17] is a top
priority for a large group of traditional ARC customers. This step will enable
a gateway-based solution for inter-Grid job submission.

– Self-healing Storage: base components : the new storage components of ARC
will improve reliability and performance by incorporating automatic replica-
tion of data and indices with automatic fail-over, better integration between
replica catalogues and storage elements and handling of collections of data.

– On-site low level RTE management via RTE controller service based on vir-
tualization: will provide a flexible management system to automatize the
RTE management on the computing resources.

– Policy Enforcement and delegation engine implemented as a part of the con-
tainer : this step will extend the ARC security framework with even more
fine grained security schemes. An enhanced access rights management frame-
work will be developed, relying on the concept of delegation. A delegation
language parser and policy engine will be selected and integrated into the
ARC middleware.

– MS Windows clients for main components : since vast majority of end-users
prefer to use Microsoft Windows for the client operating system, this step
is necessary to bring Grid closer to customers, minimizing the acceptance
threshold.

– P2P-based information service: the goal of this task is to investigate and
propose novel, flexible Grid formation mechanisms which utilise the power of
overlay network construction technologies of P2P networks. This work item
aims to create next generation Grid information indices that fully support
dynamic Grid formation. The new information backbones will be able to cope
with the highly dynamical nature of Grids due to nodes unpredictably joining
or leaving, the heavy load fluctuations and the inevitable node failures.

– Improved resource control on the front-end : quotas for data, jobs and VOs
will be implemented within the container and core services.

– Support for Extended JSDL: ARC will be capable of dealing with complex
I/O specification, dynamic RTE and authorisation policies etc.

– Self-healing storage system with clients: the core-level data management ser-
vices will be extended to significantly reduce the manual user effort by pro-
viding a high-level, self-healing data storage service allowing the maintenance
of user data (metadata) in a fault tolerant, flexible way. Based on this ser-
vice the meta-data maintenance, replica management, and synchronisation
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would be assisted by a Grid storage manager providing a single and uniform
interface to the user.

– Client-side developer library (next generation arclib): the existing arclib
client-side developer library will be extended to take into account changes
in the core services and addition of new higher level services.

3.3 ARC Version 3.0

ARC version 3.0 will introduce new services and extend the existing ones, using
the new possibilities that will become available in course of development. It is
too early to discuss the details, but one can already list some important tools
and services:

– Job migration service: a set of services and techniques supporting migration
of both queueing and running jobs.

– Web service based monitoring : system monitoring tools and utilities making
use of Web service technologies.

– Job supervising service: a higher-level service capable of monitoring and
eventually re-submitting jobs.

– New brokering algorithms and services : new brokering models will be imple-
mented for dynamic Virtual Organisations, supporting e.g. benchmark-based
brokering, push and pull models.

– Accounting service relying on Service Level Agreements : will implement a
multi-level accounting system in a platform-independent way, based on Web
service interfaces.

– Wide range of portability of the server-side components: will add support for
operating systems currently not engaged in Grid structures, such as Solaris
or Mac-OS.

4 Conclusion and Outlook

ARC middleware will see very dynamic development in coming years due to
its open source approach and the ever growing developers community, that en-
joys steady support from various funding agencies. The NorduGrid collaboration,
that created ARC with the help of the Nordunet2 programme funding, will coor-
dinate this development, assisted by several national and international projects.

The EU KnowARC project will be one of the major contributors, improving
and extending the ARC middleware to become a next-generation Grid middle-
ware conforming to community-based standard interfaces. It will also address in-
teroperability with existing widely deployed middlewares. KnowARC also aims
to get ARC included in several standard Linux distributions, contributing to
Grid technology, and enabling all kinds of users, from industry to education and
research, to easily set up and use this standards-based resource-sharing platform.

The Nordic Data Grid Facility (NDGF) project will be another major contrib-
utor to ARC development. It aims to create a seamless computing infrastructure
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for all Nordic researchers, leveraging existing, national computational resources
and Grid infrastructures, and to achieve this, it employs a team of middleware
developers, ensuring that user requirements will be met in the ARC middleware.

Other projects, such as the Nordunet3 programme, national Grid initiatives,
smaller scale cooperation activities and even student projects, are also expected
to provide contributions to future ARC development. With this in sight, and
guided by a detailed roadmap, ARC has a perfect opportunity to grow into a
popular, widely respected and used Grid solution.
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Abstract. The world’s largest machine, the Large Hadron Collider, will
have four detectors whose output is expected to answer fundamental
questions about the universe. The ATLAS detector is expected to pro-
duce 3.2 PB of data per year which will be distributed to storage el-
ements all over the world. In 2008 the resource need is estimated to
be 16.9 PB of tape, 25.4 PB of disk, and 50 MSI2k of CPU. Grids are
used to simulate, access, and process the data. Sites in several European
and non-European countries are connected with the Advanced Resource
Connector (ARC) middleware of NorduGrid. In the first half of 2006
about 105 simulation jobs with 27 TB of distributed output organized
in some 105 files and 740 datasets were performed on this grid. ARC’s
data management capabilities, the Globus Replica Location Service, and
ATLAS software were combined to achieve a comprehensive distributed
data management system.

1 Introduction

At the end of 2007 the Large Hadron Collider (LHC) in Geneva, often referred
to as the world’s largest machine, will start to operate [1]. Its four detectors aim
to collect data which is expected to give some answers to fundamental questions
about the universe, e.g. what is the origin of mass.

The data acquisition system of one of these detectors, the ATLAS detector,
will write the recorded information of the proton-proton collision events at a
rate of 200 events per second [2]. Each event’s information will require 1.6 MB
storage space [3]. Taking the operating time of the machine into account this
will yield 3.2 PB of recorded data per year. The simulated and reprocessed data
comes in addition. The estimated computing resource needs for 2008 are 16.9
PB tape storage, 25.4 PB disk storage and 50.6 MSI2k CPU.

The ATLAS experiment uses three grids to store, replicate, simulate, and
process the data all over the planet : The LHC Computing Grid (LCG), the
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Fig. 1. Geographical snapshot of sites connected with ARC middleware (as of Dec.
2005). Many sites are also organized into national and or organizational grids, e.g.
Swegrid and Swiss ATLAS Grid.

Open Science Grid (OSG), and the NorduGrid [4] [5] [6]. Here we report on the
recent experience with the present distributed simulation and data management
system used by the ATLAS experiment on NorduGrid. A geographical map of the
sites connected by NorduGrid’s middleware The Advanced Resource Connector
(ARC) is shown in Figure 1. The network of sites which also have the necessary
ATLAS software installed and thus are capable of running ATLAS computing
tasks will in the following be called the ATLAS ARC Grid.

First, a description of the distributed simulation and data management system
follows. Second, a report on the system performance in the period from Novem-
ber 2005 to June 2006 is presented. Then future usage, limitations, and needed
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improvements are commented. Finally, we recapitulate the performance of the
ATLAS ARC Grid in this period and draw some conclusions.

2 The Simulation and Data Management System

The distributed simulation and data management system on the ATLAS ARC
Grid can be divided into three main parts. First, there is the production database
which is used for definition and tracking of the simulation tasks [7]. Second,
there is the Supervisor-Executor instance which pulls tasks from the production
database and submits them to the ATLAS ARC Grid. And finally, there are
the ATLAS data management databases which collect the logical file names
into datasets [8]. The Supervisor is common for all three grids. The Executor
is unique for each grid and contains code to submit, monitor, postprocess and
clean the grid jobs. In the case of the ATLAS ARC Grid, this simple structure
relies on the full ARC grid infrastructure, in particular also a Globus Replica
Location Service (RLS) which maps logical to physical file names [9].

The production database is an Oracle instance where job definitions, job input
locations and job output names are kept. Further jobs’ estimated resource needs,
status, etc are stored.

The Supervisor-Executor is a Python application which is run by a user whose
grid certificate is accepted at all ATLAS ARC sites. The Supervisor communi-
cates with the production database and passes simulation jobs to the Executor
in XML format. The Executor then translates the job descriptions into ARC’s
extended resource specification language (XRSL). Job-brokering is performed
with attributes specified in the XRSL job-description and information gathered
from the computing clusters with the ARC information system. In particular,
clusters have to have the required ATLAS run time environment installed. This
is an experiment-specific software package of about 5 GB which is frequently
released. When a suitable cluster is found, the job is submitted. The ARC grid-
manager on the front-end of the cluster downloads the input files, submits jobs
to the local batch system and monitors them to their completion, and uploads
the output of successful jobs. In this process the RLS is used to index both input
and output files. The physical storage element (SE) for an output file is provided
automatically by a storage service which obtains a list of potential SE’s indexed
by RLS. Thus neither the grid job executing on the batch node nor the Executor
do any data movement and do not need to know explicitly where the physical
inputs come from or where the physical outputs are stored.

When the Executor finds a job finished, it registers the metadata, e.g. a glob-
ally unique identifier and creation date, of the joboutput files in the RLS. It sets
the desired grid access control list (gacl) on the files and reports back to the
Supervisor and the production database.

Finally, the production database is periodically queried for finished tasks.
For these the logical file names and their dataset affiliation are retrieved in
order to register available datasets, their file content, state and locations in the
ATLAS dataset databases. Hence, datasets can subsequentially be looked up
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for replication and analysis. The dataset catalogs provide the logical file names
and the indexing service (from among the more than 20 index servers for the
three grids of which the ATLAS computing grid is comprised) for the dataset
to which the logical file is attached. The indexing service, i.e. the RLS on the
ATLAS ARC Grid, provides the physical file location.

In short, the production on ATLAS ARC Grid is by design a fully automatic
and light weight system which takes advantage of the inherent job-brokering
and data management capabilities of the ARC middleware (RLS for indexing
logical to physical filenames and storing metadata about files) and the ATLAS
distributed data management system (a set of catalogs allowing replication and
analysis on a dataset basis). See Reference [10] and [11] for detailed descriptions
of the ATLAS and ARC data management systems.

3 Recent System Performance on the ATLAS ARC Grid

The preparation for the ATLAS experiment relies on detailed simulations of
the physics processes, from the proton-proton collision, via the particle propa-
gation through the detector material, to the full reconstruction of the particles’
tracks. To a large extent this has been achieved in carefully planned time periods
of operation, so-called Data Challenges. Many ARC sites have been providing

Table 1. ARC clusters which contributed to the ATLAS simulations in the period
from November 2005 to June 2006. The number of jobs per site and the percentage of
successful jobs are shown.

Cluster Number of jobs Efficiency

1 ingrid.hpc2n.umu.se 6596 0.94
2 benedict.grid.aau.dk 5838 0.88
3 hive.unicc.chalmers.se 14211 0.84
4 pikolit.ijs.si 34106 0.83
5 bluesmoke.nsc.liu.se 9141 0.83
6 hagrid.it.uu.se 6654 0.81
7 grid00.unige.ch 624 0.79
8 morpheus.dcgc.dk 1329 0.76
9 grid.uio.no 2878 0.75
10 lheppc10.unibe.ch 3978 0.73
11 hypatia.uio.no 1542 0.70
12 sigrid.lunarc.lu.se 12038 0.70
13 alice.grid.upjs.sk 3 0.67
14 norgrid.ntnu.no 31 0.48
15 grid01.unige.ch 284 0.35
16 norgrid.bccs.no 286 0.35
17 grid.tsl.uu.se 6 0.00
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Table 2. ARC Storage Elements and their contributions to the ATLAS Computing Sys-
tem Commissioning. Number of files stored by the ATLAS production in the period are
shown in the third column. The fourth lists the total space occupied by these files. The
numbers were extracted from the Replica Location Service rls://atlasrls.nordugrid.org
on 2006-06-13.

Storage Element Location Files TB

ingrid.hpc2n.umu.se Umeaa 1217 0.2
se1.hpc2n.umu.se Umeaa 14078 1.3
ss2.hpc2n.umu.se Umeaa 70656 5.6
ss1.hpc2n.umu.se Umeaa 74483 6.2
hive-se2.unicc.chalmers.se Goteborg 10412 0.8
harry.hagrid.it.uu.se Uppsala 38226 2.9
hagrid.it.uu.se Uppsala 12620 1.6
storage2.bluesmoke.nsc.liu.se Linkoping 6254 0.6
sigrid.lunarc.lu.se Lund 14425 1.9
swelanka1.it.uu.se Sri Lanka 1 < 0.1
grid.uio.no Oslo 856 < 0.1
grid.ift.uib.no Bergen 1 < 0.1
morpheus.dcgc.dk Aalborg 252 < 0.1
benedict.grid.aau.dk Aalborg 9426 1.3
pikolit.ijs.si:2811 Slovenia 25094 2.0
pikolit.ijs.si Slovenia 21239 2.7

299240 27.1

resources for these large scale production operations [12]. At the present time
the third Data Challenge, or the Computing System Commissioning (CSC), is
entering a phase of more or less constant production. As part of this constant
production about 100 000 simulation jobs were run on ATLAS enabled ARC
sites in the period from mid November 2005 to mid June 2006 where the end
date just reflects the time of this report. Up to 17 clusters comprising about
1000 CPU’s were used as a single resource for these jobs.

In Table 1 the clusters and their executed job shares are listed. Depending
on their size, access policy, and competition with local users the number of jobs
varies. In this period six countries provided resources. The Slovenian cluster,
pikolit.ijs.si, was the largest contributor followed by the Swedish resources. The
best clusters have efficiencies close to 90% (total ATLAS and grid middleware
efficiency). This number reflects what can be expected in a heterogenious grid
environment where not only different jobs and evolving software are used, but
also the operational efficiency of the numerous computing clusters and storage
services is a significant factor.

In Table 2 the number of output files and their integrated sizes are listed
according to storage elements and locations. About 300 000 files with a total of
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Fig. 2. TB per country. The graph visualizes the numbers in Table 2. In the period from
November 2005 to June 2006 Sweden and Slovenia were the largest storage contributers
to the ATLAS Computing System Commissioning. Only ARC storage is considered.

27 TB were produced and stored on disks at 11 sites in five different countries.
This gives an average file size of 90 MB. The integrated storage contribution per
country is shown in Figure 2. 1

In the ATLAS production of simulated data (future data analysis will produce
a different and more chaotic pattern) simulation is done in three steps. For each
step input and output sizes vary. In the first step the physics in the proton-proton
collisions is simulated, so-called event generation. These jobs have practically no
input and output about 0.1 GB per job. In the second step the detector response
to the particle interactions is simulated. These jobs use the output from the first
step as input. They produce about 1 GB output per job. This output is again
used as input for the last step where the reconstruction of the detector response
is performed. A reconstruction job takes about 10 GB input in 10 files and
produces an output of typically 1 GB. In order to minimize the number of files,
it is foreseen to increase the file sizes (from 1 to 10 GB) as network capacity,
disk sizes and tape systems evolve.

The outputs are normally replicated to at least one other storage element in
one of the other grids and in the case of reconstruction outputs (the starting
point of most physics analyses) to all the other large computing sites spread
throughout the ATLAS grid. The output remains on the storage elements till a
central ATLAS decision is made about deletion, most probably several years.

1 This distribution is not representative for the previous data challenges.
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Table 3. ATLAS Datasets on ARC Storage Elements as of 2006-06-13

Category ARC Total ARC/Total Description

All 739 3171 0.23 CSC + CTB + MC
CSC 489 2179 0.22 Computing System Commisioning
CTB 7 86 0.08 Combined Test Beam Production
MC 242 906 0.27 MC Production

Finally, the output files were logically collected into datasets, objects of analy-
sis and replication. The 300 000 ATLAS files produced in this period and stored
on ARC storage elements belong to 739 datasets in the period. The average
number of files was then roughly 400, the actual numbers ranging from 50
to 10000. Table 3 shows the categories of datasets and their respective parts
of the total numbers. The numbers in the ARC column were collected with
the ATLAS DQ2 client, the numbers in the Total column with the PANDA
monitor (http://gridui02.usatlas.bnl.gov:25880/server/pandamon/query). Since
in the considered period the ATLAS ARC Grid’s contribution to the total AT-
LAS Grid production is estimated to have been about 11 to 13%, the numbers
indicate that rather shorter than average and long jobs were processed. 2

4 Perspective, Limitations and Improvements

The limitations of the system must be considered in the context of its desired
capabilities. At the moment the system manages some 103 jobs per day where
each job typically needs less than a day to finish. The number of output files
are about three times larger. In order to provide the ATLAS experiment with a
significant production grid, the ATLAS ARC Grid should aim to cope with num-
bers of jobs another order of magnitude larger. In this perspective the ATLAS
ARC Grid has no fundamental scaling limitations.

However, in order to meet the ambition several improvements are needed.
First, the available amount of resources must increase. The present operation al-
most exhausts the existing. And since the resources are shared and with growing
attraction to users, fair-sharing of the resources between local and grid and be-
tween different grid-users needs to be implemented. At the moment local users
always have implicit first priority. And the grid-users are often mapped to a
single local account so that they are effectively treated first-come first-serve.

Second, the crucial Replica Location Service provides the desired functionality
with mapping from logical to physical file names, certificate authentication and
bulk operations and is expected to be able to handle the planned scaling-up

2 The Nordic share of the ATLAS computing resources is 7.5%, according to a mem-
orandum of understanding.
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of the system. However, the lack of perfect stability is an important problem
which remains to be solved. Meanwhile, the persons running the Supervisor-
Executor instances should probably have some administration privileges, e.g.
the possibility to restart the service.

Third, further development should aim at some hours database independency.
Both the production database and the data management databases now and then
have some hours down time. This should cause problems other than delays in
database registrations.

Continuous improvements in the ARC middleware ease the operation. How-
ever, in the ATLAS ARC Grid there are many independent clusters in production
mode and not dedicated to ATLAS. Thus it is impractical to negotiate frequent
middleware upgrades on all of them. Hence, the future system should rely as
much as possible on the present features.

5 Conclusions

As part of the preparations for the ATLAS experiment at the Large Hadron
Collider, large amounts of data are simulated on grids. The ATLAS ARC Grid,
sites connected with NorduGrid’s Advanced Resource Connector and having
ATLAS software installed and configured for use by grid-jobs, now continuously
contributes to this global effort.

In the period from November 2005 to June 2006 about 300 000 output files
were produced on the ATLAS ARC Grid. Up to 17 sites in five different coun-
tries were used as a single batch facility to run about 100 000 jobs. Compared to
previous usage, another layer of organization was introduced in the data man-
agement system. This enabled the concept of datasets, i.e. conglomerations of
files, which are used as objects for data analysis and replication. The 27 TB
output was collected into 740 datasets with the physical output distributed over
eight significant sites in four countries.

Present experience shows that the system design can be expected to cope with
the future load. Provided enough available resources, one person should be able
to supervise about 104 jobs per day with a few GB of input and output data.

The present implementation of the ATLAS ARC Grid is lacking the ability
to replicate ATLAS datasets to and from other grids via the ATLAS distributed
data management tools [8] and there is no support for tape-based storage ele-
ments. These shortcomings will be addressed in the near future.

Acknowledgments. The indispensable work of the contributing resources’ sys-
tem administrators is highly appreciated.
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Abstract. In the first part, we present the concept and implementation
of the National Cluster of Linux System (CLUSTERIX) – a truly dis-
tributed national computing infrastructure with 12 sites (64-bit Linux
PC-clusters) located accross Poland. The second part presents our ex-
perience in adaptation of selected scientific applications to the cross-site
execution as meta-applications, using the MPICH-G2 environment. The
performance results of experiments confirm that CLUSTERIX can be an
efficient platform for running meta-applications. However, harnessing its
computing power needs to take into account the hierarchical architecture
of the infrastructure.

1 Introduction

The National Cluster of Linux Systems, or shortly CLUSTERIX, is a truly
distributed national computing infrastructure with 12 sites (local Linux PC-
clusters) located accross Poland [1], [18]. These sites are connected by the Polish
Optical Network PIONIER providing the dedicated 1 Gb/s bandwidth. Although
the CLUSTERIX grid offers potentially large performance, the key questions fac-
ing computational scientists is how to effectively adapt their applications to such
a complex and heterogeneous architecture.

Efficiently harnessing computing power of grids requires the ability to match
requirements of applications with grid resources. Challenges in developing grid-
enabling applications lie primarily [6] in the high degree of system heterogenity
and dynamic behavior of grids. For example, communication between computers
of the same site, connected by a high bandwidth and low latency local network,
is much faster than communication between nodes of different sites provided by
a wide area network characterized by a much high latency.

It makes programming HPC applications on grids a challenging problem [2],
[14]. An important step in this direction is emergence of scientific-application-
oriented grid middleware, such as MPICH-G2 [10] that implement the well-
established MPI standard on top of grid infrastructure based on the Globus
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Toolkit [4]. The MPICH-G2 environment significantly spares computational sci-
entists from low-level details about communication handling, network topology,
and resource management. However, in spite of these achievements, the devel-
opment of efficient algorithms for large-scale computational problems that can
exploit grids efficiently still remains an exceptionally challenging issue.

This paper presents our experience in adaptation of existing scientific ap-
plications to the CLUSTERIX grid environment. The proposed solution allows
for running tasks accross several local clusters as meta-applications, using the
MPICH-G2 middleware.

The paper is organized as follows. In Section 2, we shortly describe the archi-
tecture of the CLUSTERIX grid. How appplications are executed in the CLUS-
TERIX environment, it is presented in Section 3, while Section 4 is devoted to
running meta-applications in CLUSTERIX using the MPICH-G2 tool. Section
5 presents two pilot meta-applications, as well as corresponding performance
results. Conclusions are given in Section 6.

2 CLUSTERIX Grid Project

The main objective of the CLUSTERIX project [1], [18] is to develop mechanisms
and tools that allow for deployment of a production grid. The CLUSTERIX in-
frastructure is a distributed PC-cluster (or meta-cluster) with 12 dedicated, local
Linux clusters with 64-bit machines, connected via dedicated 1 Gb/s channels.
The infrastructure has been tested on a set of pilot applications developed as a
part of the project. The project has been implemented by 12 Polish partners,
with Czestochowa University of Technology as a coordinator.

At this moment, the CLUSTERIX backbone includes 196 Intel Itanium2 pro-
cessors (1.4 GHz, 3 MB cache) in 98 computational nodes. Each node (two-way
SMP) is equipped with 4 GB or 8 GB RAM. The communication VLAN, us-
ing Gigabit Ethernet or InifiniBand, supports the message exchange between
nodes, while connection of nodes to the NFS server is provided through the
second VLAN based on Gigabit Ethernet. While users’ jobs are allowed to be
executed only on computational nodes, each local cluster is equipped with an ac-
cess node (32-bit machine), where the local queuing system (currently OpenPBS)
and components of CLUSTERIX middleware are running. All machines inside
a local cluster are protected by a firewall, which is also used as a router for
attachement of so-called dynamic clusters [7].

The grid middleware for CLUSTERIX has been developed as Open Source,
and is based on the Globus Toolkit 2.4 and Web Services, with Globus 2.4 avail-
able in the Globus 3.2 distribution [4]. From the point of view of running appli-
cations in CLUSTERIX, the key components of the middleware are (Fig.1): (i)
Grid Resource Management System (GRMS), which is CLUSTERIX metasched-
uler [12]; (ii) CLUSTERIX monitoring system JIMS [16]; (iii) CLUSTERIX Data
Management System (CDMS) [11]; (iv) Virtual User System (VUS)[8].

Jobs are submitted to local batch systems, through the Globus facilities, using
GRMS developed in the GridLab project [5]. The additional functionality of
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GRMS developed for CLUSTERIX include: (i) prediction module, (ii) support
for MPICH-G2, (iii) cooperation with JIMS and CDMS.

An important element of the CLUSTERIX backbone is the data storage sys-
tem managed by CDMS, which has been developed in the project based on
the analysis of users’ requirements. When designing CDMS, a special attention
has been paid to making the system high productive, secure, and user-friendly
[11]. Before execution of an application, input data are fetched from storage
elements and transferred to access nodes; after the execution output data are
returned from access nodes to storage elements. Currently each storage element
is equipped with 2 TB HDD.

CLUSTERIX is expecting to be a highly dynamic grid with many virtual
organisations (VOs) and hundreds of users. The standard Globus authorisation
mechanism requires configuring access for each grid user on each local cluster.
This solution is neither scalable and nor sufficient. There is a need for autho-
risation based on the VO membership, so the administration burden is divided
between resource administrator and VO manager. For that purpose, VUS mid-
dleware was developed. The main part of VUS is an authorisation subsystem,
that replaces the standard Globus authorisation and it is located on each clus-
ter access node. The basic authorisation is done by querying VO services (one
service per VO) for their members [9]. VUS comprises of set of ”virtual”-generic
accounts (Linux accounts on cluster nodes), that are assigned to grid users for
the time of their tasks. It is assured that only one user is logged on a account at
the time, then the account may be assigned to another user, but the history of
assignments is stored, e.g., in order to collect accounting or trace users actions.

3 Running Applications in CLUSTERIX Environment

The key role in running applications in CLUSTERIX plays the Grid Resource
Management System − GRMS [12]. That is why, to avoid a single point of failure
several instances of GRMS have to be launched. The main responsibility of this
system is management of the whole process of remote submitting computational
jobs to different batch systems in local clusters. The main functionality of GRMS
include:

– ability to choose the best resource for the job execution, according to the
job description;

– job suspending, resuming and migrating;
– providing access to the job status, and other information about jobs, e.g.,

name of host where the job is/was running;
– transferring input and output files.

The standard way of executing applications in the CLUSTERIX environment
is shown in Fig.1. The user describes a job to be executed using the Internet
portal. It generates and sends to GRMS a special file containing the job descrip-
tion as an XML document in the GRMS Job Description (GJD) format. GRMS
chooses resources for the job execution (in one or more local clusters) which
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Fig. 1. Execution of applications in CLUSTERIX

satisfy the user’s requirements. The job is then submitted to queuing systems in
the local clusters, using the Globus facilities.

To be executed, the job needs to have access to Linux accounts on cluster
nodes. In CLUSTERIX, VUS middleware is responsible for assignment of these
accounts to the user only during the job execution. After transferring input data
from CDMS, the job is executed on computational nodes of chosen local clusters.
CDMS is also responsible for copying output files created as as result of the job
execution. There is possibility to notify the user about success or failure of the
job execution, using e.g. e-mail or sms.

The job description in the GJD format (Fig.2) is utilized by the user to express
all the information necessary to handle the job, such as: resource requirements,
location of executables and input/output files, etc. Each GRMS Job Description
begins with <grmsjob> tag, containing ”appid” attribute. This attribute serves
as an application identifier, and is arbitrarily chosen by the user. There are two
main elements in the job description: specification of the application executables,
and description of resource requirements.

The <simplejob> element describes the main job to be executed by GRMS.
This description specifies the application executables together with a set of pa-
rameters (given by <executable> element), as well as resource requirements
(given by <resource> element). The <executable> element possesses an ad-
ditional, ”type” attribute which determines whether a single instance of the
application (type=”single”) or multiple instances of the applications (type=
”multiple”) should be executed. When ”type” is set to ”mpi”, it means that an
MPI application will be executed; in this case an additional, ”count” attribute
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<grmsjob appid="psolidify">

<simplejob>

<resource>

<localrmname>pbs</localrmname>

<hostname>access.pcss.clusterix.pl</hostname>

</resource>

<executable type="mpi" count="8">

<file name="exec" type="in">

<url>gsiftp://access.wcss.clusterix.pl/~/myapp/psolidify</url>

</file>

<arguments>

<value>250000.prl</value>

<file name="250000.prl" type="in">

<url>gsiftp://access.wcss.clusterix.pl/~/data/250000.prl</url>

</file>

</arguments>

<stdout>

<url>gsiftp://access.wcss.clusterix.pl/~/app1.out</url>

</stdout>

</executable>

</simplejob>

</grmsjob >

Fig. 2. An example of MPI job description in the GJD format: the application is exe-
cuted on 8 processors from the local cluster in Poznan, while input data and executable
are transferred from the local cluster in Wroclaw, using GridFTP

specifies the required number of processors. The description of executables can
also includes: locations of executables and input/output files (using <file> el-
ements), input arguments (<arguments>), redirection of standard and error
ouputs (<stdout> and <stderr> respectively), etc.

The <resource> element gives us possibility to determine resource require-
ments of the application. Among them are: name of machine on which the job
should be executed (<hostname>), operating system (<ostype>, <osname>),
type of requred batch system (<localrmname>), minimal memory (<memory>),
minimal speed of processors (<cpuspeed>), network parameters (<bandwidth>,
<latency>, ...), etc.

4 Meta-applications in CLUSTERIX

4.1 Using MPICH-G2

In the CLUSTERIX project, the MPICH-G2 middleware [10] is used as a grid-
enabled implementation of the MPI standard. It allows for running multilevel
parallel applications across many sites (local clusters) [6], [14]. MPICH-G2 ex-
tends the MPICH software to use Globus-family services. To improve perfor-
mance, we use MPICH-based vendor implementations of MPI in local clusters.
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CLUSTERIX has a hierachical architecture, with respect to both the memory
access and communication. Inside SMP nodes, data are exchanged between pro-
cessors through shared memory. SMP nodes are grouped into local clusters, and
communications inside them are implemented using such network protocols as
Gigabit Ethernet, Myrinet or InfiniBand. They are characterized by high band-
widths and small latencies (especially Myrinet and InfiniBand). Finally, local
clusters connected by WAN are building blocks for the entire meta-cluster.

Taking into account the hierarchical architecture of CLUSTERIX, it is not a
trivial task to adapt the existing applications for effective use in the meta-cluster.
It requires parallelization on several levels corresponding to the meta-cluster ar-
chitecture, taking into account the high level of heterogeneity in network perfor-
mance between various subsystems of the meta-cluster (Table 1). In particular,
there is a quite complex problem of minimizing the influence of less efficient
networking between local clusters on the efficiency of calculations.

Table 1. Hierarchical architecture of CLUSTERIX

latency bandwidth # processors
single node (MPICH-G2) 5.4 Gb/s 2
local cluster (vendor MPI) 104 μs 752 Mb/s 6 – 32
local cluster (MPICH-G2) 124 μs 745 Mb/s 6 – 32
meta-cluster (MPICH-G2) 10 ms 33 Mb/s up to 196

4.2 Running Meta-applications in CLUSTERIX

To execute an MPICH-G2 application in CLUSTERIX, an adequate job descrip-
tion in the GJD format (Fig.3) is issued directly or using the portal. By setting
type=”mpichg2” in <executable> element, the application is recognized as an
MPICH-G2 job. The subsequent, ”count” attribute specifies the total number
of processors required for the job execution.

In general, GRMS will find the best available clusters, which meet application
requirements and whose total number of free computational nodes is not less
the number of nodes requested in job description. Then the MPICH-G2 job
will be submitted to those clusters by means of the Globus GRAM protocol
and Globus DUROC. GRMS will split the job into subsets of MPI processes
and submits every subset to the Globus gatekeeper on separate cluster. The
gatekeepers passes the job’s processes to the underlying cluster’s queuing system,
which will decide on which internal nodes they would be executed. So, GRMS
has no influence on process-to-node mapping. It can only control the number of
processes submitted to the chosen cluster.

GRMS acts in order to ensure the best jobs to cluster mapping, i.e. it aims
to provide reliable jobs execution and resources usage leveling. To achieve that,
GRMS needs valid and detailed information about the current state of the whole
computational environment: the resources load levels, clusters (and queues in lo-
cal queuing systems) with free nodes, etc. This is why GRMS has to cooperate
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<grmsjob appid="psolidify-mpichg2" persistent="true">
<simplejob>

<resource>
<hostname tileSize="4">access.pcss.clusterix.pl</hostname>
<localrmname>pbs</localrmname>

</resource>
<resource>
<hostname tileSize="8">access.pb.clusterix.pl</hostname>
<localrmname>pbs</localrmname>

</resource>
<executable type="mpichg" count="2">
<file name="clxintel" type="in">

<url>cdms:///myapp/psolidify</url>
</file>
<arguments>

<value>250000.prl</value>
<file name="250000.prl" type="in">
<url>cdms:///data/250000.prl</url>
</file>

</arguments>
<stdout>

<url>cdms:///app1.out</url>
</stdout>

</executable>
</simplejob>

</grmsjob >

Fig. 3. An example of MPICH-G2 job description: (i) the application is executed on 4
processors from cluster in Czestochowa, and 8 processors from cluster in Poznan; (ii)
CDMS is used to transfer files, instead of GridFTP

closely with infrastructure monitoring service, and why GRMS resource man-
agement quality depends on quality of information delivered by that service.

Other possibility that GRMS offers to its user is to specify directly in job
description how many MPI processes shall be submitted to the given clusters.
But in such case GRMS can not guarantee the proper job execution, e.g., some
processes may be queued in local systems for too long and the application may
fail due to timeouts.

The load partitioning among separate local cluster is carried out by multiple
placement of <resource> element in the job description. How many processors
should be utlized for the job execution on each cluster, it is specified by ”tileSize”
attribute of <resource> element. The sum of all the ”tailSize” attributes nust
be equal to the value of ”count” attribute in <executable> element.

If user does not specify <resource> elements, then GRMS will pick the best
resources basing on its internal algorithms. Similarly, if there are <resource>
elements defined, but they do not define ”tileSize” attributes, then GRMS will
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submit the job only to specified clusters, but it will decide about process distri-
bution based on its algorithms and the available knowledge about the computa-
tional environment.

5 Testing Meta-applications

5.1 FEM Modelling of Castings Solidification

NuscaS is an object-oriented package for the FEM modeling, designed [17] at
Czestochowa University of Technology to investigate thermomechanical pheno-
mena. Its functionality includes also implementation on clusters. NuscaS is one
of pilot applications adapted for execution in the CLUSTERIX environment.

In our tests, the problem geometry was meshed with 40613, 80401, 159613,
249925, 501001, and 750313 nodes. It should be noted that both in the sequential
and parallel cases, the average from ten runs was used to estimate the sequential
T1 and parallel Tp execution times, where p is the number of processors. For each
run, the time necessary to solve a system of linear equations using the conjugate
gradient algorithm (CG) was measured.

Fig.4 presents the performance results achieved for a single site in Poznan,
as well as two distant local clusters located evenly in Czestochowa and Poznan.
In the single-site case, in spite of using only the Gigabit Ethernet the results of
experiments are very good since the speedup is almost ideal. For the cross-site
execution, the results could be considered as rather promising. For example, the
speedup for the mesh with 750313 nodes is Sp = 15.05, for p = 18 processors (9
from Poznan, and 9 from Czestochowa). However, for small meshes the cross-site
communication overheads becomes more significant, and decreases the speedup.

When adapting NuscaS to the hierarchical architecture of CLUSTERIX, the
key points are: (i) to choose a modified version of the CG algorithm with only
one synchronization point [13], which allows for reduction in the number of
cross-site messages; (ii) to take advantage of overlapping of computation and
communication when implementing the sparse matrix-vector multiplication in
parallel [17].

For large meshes, the obtained values of speedup/efficiency are satisfactory
for practical needs. At the same time, the execution of relatively small problems
(e.g., with 40613 nodes) as meta-aplications is not reasonable because of too large
cross-site communication overheads. For such problems, the use of resources of
a single local cluster is sufficient in practice.

The comparison of the cross-site and single-site performance is shown in Fig.5.
This comparison shows a loss in speedup when more than one local cluster is
used. This negative effect is decreasing with the growth of the mesh size.

5.2 Prediction of Protein Structures

Proteins are macromolecules which are absolutely necessary for functioning of
all known living organisms. Each protein has a unique 3D structure which de-
termines its functions. The theoretical prediction of 3D structures of proteins
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Fig. 5. Comparison of single-site and cross-site performance for two meshes with
249925 and 501001 nodes

solely from its sequence is a grand challenge of computational structural biology
and theoretical chemistry.

Successful application of protein structure prediction methods based on ener-
getic criteria depends on both an adequate approximation of the energy function,
and an effective computational approach to global optimization of the confor-
mational energy [15]. It is practically unfeasible to search conformational space
with an all-atom potential function. In the UNRES force field, each amino-acid
residue is represented by two interaction sites, namely the united peptide group
and the united side chain. The UNRES force field is based on a cumulant ex-
pansion of the restricted free energy function of a polypeptide chain. One of
the most effective procedures for the global optimization of protein structures
is conformational space annealing (CSA), a hybrid global optimization method
which combines genetic algorithm and a local gradient-based minimization.
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Prediction of 3D structures of proteins, using CSA as a global optimization
method and the UNRES force field, requires large computational resources. The
CSA algorithm is applicable to large-scale parallel computing, and in this work
it has been extended to the CLUSTERIX grid architecture using the MPICH-
G2 tool. Parallelization of the CSA method by a master/worker approach has
been enhanced by removing most of the synchronization steps, which makes
it perform well also on hierarchical architectures such as in CLUSTERIX, and
greatly enhances scalability. On hierarchical architectures slower communication
between some workers and the master only slightly reduces efficiency of the code.

The results of benchmark simulations are shown in Table 2. It contains ex-
ecution times for different number p of processors, taken from either a single
local cluster in the Computing Center TASK (Gdansk), or different number of
distant clusters located in TASK, Czestochowa (PCz), Wroclaw (WCSS) and
Bialystok (PB). Comparison of data from single local cluster and two distant
clusters shows only slight increase of execution times caused by slow cross-site
communications. In case of three distant clusters there is a significant differ-
ence between execution times for 4+4+4 and 6+3+3+0, which can be explained
in terms of a load-balancing problem for unequal distribution of work between
different clusters.

Table 2. Performance results for single-site and cross-site execution of prediction of
protein structures

TASK PB+PCz TASK+PB+PCz
p time[s] p time[s] p time[s]
2 5394 1+1 5483
4 1752 2+2 1837 2+1+1 2083
8 767 4+4 777 4+2+2 1013
12 476 6+6 500 6+3+3 616
16 351 8+4+4 456
32 174 20+6+6 199

TASK+PB+PCz+WCSS
p time[s]

0+6+6+0 495
6+6+0+0 496
6+0+6+0 491
6+0+0+6 503
0+6+0+6 496
0+0+6+6 497
4+4+4+0 500
0+4+4+4 505
4+0+4+4 512

6 Conclusions and Further Works

This paper presents our experience in adaptation of selected scientific applica-
tions to their cross-site execution as meta-applications on the CLUSTERIX grid,
using the MPICH-G2 environment. The performance results of numerical exper-
iments with FEM modeling of castings solidification and prediction of protein
structures confirm that CLUSTERIX can be an efficient platform for running
numerical meta-aplications. However, harnessing its computing power is not a
trivial task, and first of all needs to take into account the hierachical architecture
of the infrastructure.
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The performance results presented in this paper leave considerable room for
further improvements in meta-applications scalability, especially in case when
more than two CLUSTERIX local clusters are engaged in computations. In par-
ticular, a novel method for mapping FEM calculations onto meta-cluster ar-
chitecture is under development in NuscaS. This method is based on using a
two-level scheme of partitioning of FEM calculations, that gives way to match
local clusters engaged in computations. Such an approach allows for further re-
duction in the number of cross-site messages.
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Computer simulations of materials, or computer experiments, are strongly on
the way to become an alternative to experiments in the strive to understand
material properties. A basic ingredient in dealing with materials properties is
their electronic structure. The methods to calculate the electronic structures
from first principles (density functional methods) become more efficient and
accurate, and are reaching a predict power with a large pace. With these accurate
electronic structures one can calculate parameters, for example, molecular and
spin dynamics.

This minisymposium presents work on developments of methods as well as
applications of materials simulations.
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Abstract. The iron porphyrin molecule is one of the most important
biomolecules. In spite of its importance to life science, on a microscopic
scale its electronic properties are not yet well-understood. In order to
achieve such understanding we have performed an ab initio computational
study of various molecular models for the iron porphyrin molecule. Our
ab initio electronic structure calculations are based on the density func-
tional theory (DFT) and have been conducted using both the Generalised
Gradient Approximation (GGA) and the GGA+U approach, in which an
additional Hubbard-U term is added for the treatment of on-site electron-
electron correlations. In our investigations we have, first, optimised the
molecular structures by computing the minimal-energy atomic distances,
and second, benchmarked our computational approach by comparison to
existing calculated results obtained by quantum-chemical methods. We
have considered several models of ligated porphyrin (Cl and NH3 ligated),
as well as charged and non-charged molecules. In this way, the changes in
the electronic, structural, and magnetic properties of the iron atom have
been investigated as a function of the oxidation state and local environ-
ment of the iron atom. Our results for some of the model molecules re-
produce the earlier quantum-chemical calculations done by Johansson and
Sundholm [J. Chem. Phys.120 (2003) 3229]. Wefind that the GGA+U ap-
proach provides a better description of the molecular electronic properties,
which indicates that electron correlation effects on the iron are important
and play an essential role, particularly for the spin moment on the iron
atom. Also, we proceed beyond the relatively small molecular models to a
larger, more realistic porphyrin molecule, for which we also find that the
GGA+U results are in better agreement with experiments.

1 Introduction

Porphyrin rings are essential building blocks of many biological systems. In par-
ticular blood contains the common iron porphyrin form called the haem group,
which is responsible for transporting oxygen to the body cells from the lungs.
Each porphyrin ring is made up of four pyrolenine rings interconnected with a
carbon bridge. In turn, each pyrolenine ring consists of a nitrogen atom and four
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carbon atoms [1]. The macrocyclic system is unsaturated with alternating single
and double bonds all through the ring, which gives the molecule an overall lower
total energy. This feature makes porphyrin systems chemically very stable [1]. A
large class of porphyrin molecular rings exist and its number is continually grow-
ing [2]. This is mainly the result of the ring geometry, which has many positions
where different functional groups can be substituted, which in turn influence
and introduce many novel, useful properties. Some of these properties include,
e.g., catalytic capabilities, interaction with specific molecules, the occurrence of
magnetism, all of which correlate with the oxidation and reduction properties of
the metal complex [3]. Synthetic porphyrin molecules have been used as cancer
treatment agents and analytical reagents, too. Another important functionality
of porphyrin rings is that they can be used effectively as diagnostic tools for
malignant diseases such as malaria and cancer. Also, other investigations which
deserve to be mentioned, concentrate on the use of porphyrin in molecular scale
computing devices and switches. Clearly there is a great need to understand, on
a quantum-chemical level, how and why these rings portray such a vast range of
properties and hence be able to control these properties and employ them [4].

Experimental information concerning the electronic structure of porphyrin-
type biomolecules has in recent years been derived from spectroscopic investi-
gations (see, e.g., [5]). The two most popular spectroscopic methods for study-
ing paramagnetic biomolecules are Electron Spin Resonance (ESR) and Nuclear
Magnetic Resonance (NMR). For haem the g-tensors obtained from ESR mea-
surements provide mainly the orbital occupation of the iron atom. The isotropic
and anisotropic hyperfine-interaction constants can be used to estimate the spin
densities. Spin distributions and electronic configurations can be derived from
NMR spectroscopy [6,7,8].

A controversy between the ESR g-tensors requiring a whole unpaired dπ
electron at the iron atom and NMR measurements suggesting up to 0.2 un-
paired electrons dispersed in the porphyrin [9,10] has led to an increased inter-
est in doing quantum chemical calculations on these systems. Several groups
[11,12,13,14,15,18,19] have recently addressed these issues quantitatively us-
ing density functional theory-based approaches. A variety of hybrid functionals
with split valence and exchange correlation and triple valence basis sets aug-
mented with added polarisation functions have been used. Johansson and Sund-
holm [15] in particular, performed detailed calculations on small, porphyrin-type
molecules, focusing thereby on two properties, the molecular spin-polarisation
effect of oxidised iron porphyrins and the charge delocalisation effect upon re-
duction. They used DFT based method with the Becke’s 1988 exchange func-
tional [16] and the Lee, Yang, Parr correlation functional [17] (BLYP). Recent
computational investigations [11,12,13,14,15] have revealed that calculated prop-
erties of Fe-porphyrin groups depend rather sensitively on seemingly small vari-
ations, such as peripheral molecular groups. Also, it has become clear that the
computed electronic properties depend considerably on the type of quantum-
chemical method used. Both findings signal that in order to be able to pre-
dict functional properties of porphyrin-type molecules highly-accurate, ab initio
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calculations have to be performed. However, at present it is not yet unambigu-
ously clear which quantum chemical method can provide the best results.

Here we report a benchmarking computational study on Fe-porphyrin-type
molecules. In the present investigation we first study four and five coordinated
iron porphyrins, similar to those investigated by Johansson and Sundholm [15],
which allows us to compare our results with those obtained previously with dif-
ferent computational schemes. The adopted porphyrin models are quite small
(13-17 atoms) compared to the haem ring structure (37 atoms). In the calcula-
tions of Johansson and Sundholm the ring structure representing the porphyrin
plane is more symmetry constrained than in the real system in both four and
five coordinated cases. In our calculations we have, in contrast, allowed for a full
structural relaxation of the molecules. Also, in all previous calculations quantum
chemistry codes are used, whereas here we approach similar systems with the
implementation of periodic boundary conditions. The use of the present code is
advantageous as our future aim is to study porphyrin molecules supported on
substrates and to understand the chemical and magnetic interactions between
the substrate and the molecule as well as molecule-molecule interactions on the
same substrate. The implementation of periodic boundary conditions is therefore
vital to simulate a realistic surface extended over a considerable area.

2 Computational Details

Our calculations have been performed by an ab initio full-potential plane wave
code (VASP) [21] using the Projector Augmented Wave (PAW) [22] method.
This method has proven to work well for magnetic systems containing transi-
tion metals. A kinetic energy cut-off of 400 eV was used for the plane waves
included in the basis set. The Perdew-Wang GGA (generalised gradient ap-
proximation) was used for the exchange-correlation [23] potential. We have also
used the GGA+U approach, to include strong on-site electron-electron correla-
tions explicitly through an additional Hubbard-U term, where U is the on-site
Coulomb interaction parameter. As the value of U is not calculated ab initio, it
is varied here in the range of 2 and 4 eV for iron. The exchange parameter was
fixed to be 1 eV. Structural relaxations of the molecules were done by optimising
the Hellmann-Feynman forces with a tolerance of 0.02 eV/Å. Local properties
such as local density of states and local magnetic moments were calculated by
projecting the wave functions onto spherical harmonics as described in Ref. [24].
For this work, the parallel version of the VASP code was implemented.

3 Results and Discussion

In the present investigation, several structural models were used to represent
the ligated porphyrins both in the anionic and cationic states. Similar structural
models were also adopted in the study of Johansson and Sundholm [15]. To
represent the histidine bridge connecting the haem to the protein we used an
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Fig. 1. Plots of the molecular models adopted for the ligated and unligated haem
structures; (a) neutral haem model (FeR2), (b) chlorinated haem model (FeR2Cl), (c)
amino-ligated haem model (FeR2(NH3)), (d) larger haem molecule, and (e) side-view
of the larger haem molecule. The abbreviation R denotes here NHCHNH.

amino ligand NH3 and for the oxidated state of the haemoglobin, a chloride
ligand was used [2].

Figure 1 shows the different models used in this study, with four sets of
molecules. Structures (a), (b) and (c) have been investigated in both neutral
and charged forms. For the charged molecule, we used a compensating jellium
background. We optimised the geometries of the molecules (a) and (b) starting
from the structures proposed by Johansson and Sundholm [15], by minimising
the Hellmann-Feynman forces. Structure (c) is similar to the proposed structure
of Johansson and Sundholm, but ligated with a chlorine atom, while (d) is the
experimental structure obtained from X-ray diffraction [25]. Our calculated op-
timised bond-lengths are given in Table 1. From the listed values in Table 1 it is
clear that the GGA+U approach yields larger bond-lengths as compared to the
GGA approach. This can be understood from the stronger iron-ligand bonding
occurring for the more delocalised d states within the GGA calculations. We
note, however, that the GGA+U values for the Fe–N bond-lengths are in very
good agreement with the experimental numbers [25], which lends support to the
GGA+U electronic structures.

In Table 2 we present the computed spin moments per iron atom, as well as
the Fe 3d spin moments and 3d occupation numbers. Where available, the com-
puted spin moments from Johansson and Sundholm are also given. Overall, there
exists a reasonable agreement between the present results and those of Ref. [15].
These results are graphically displayed in Fig. 2. The same trends in the effect
of the ionic state on the moments and Fe-3d occupation numbers are observed.
There are also some interesting differences between the calculated values. For
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Table 1. Calculated bond distances (in Å) between the iron atom and the porphyrin
nitrogen atoms (denoted as Fe-NP ) and the bond distance to the ligand nitrogen atom
in the case of the amino-ligated porphyrin (denoted Fe-L) and, respectively, distances
between the iron atom and chlorine atom for the chlorine ligated porphyrin (Fe-L).
The calculated distances are listed for the GGA and the GGA+U approach, for U = 4
eV. Δz is the calculated vertical displacement of the iron atom out of the porphyrin
plane due to the axial ligand (NH3 or Cl).

Molecule Fe–NP Fe–L Δz
GGA GGA+U GGA GGA+U GGA GGA+U

Fe(R2) 1.94 1.98
Fe(R2)+ 1.91 1.92
Fe(R2)NH3 2.12 2.15 2.2 2.2 0.77 0.77
Fe(R2)NH+

3 1.94 2.06 2.14 2.11 0.73 0.78
Fe(R2)Cl 1.98 1.98 2.38 2.2 0.72 0.76
Fe(R2)Cl− 2.17 2.17 2.26 2.27 1.01 0.72
Haem 1.98 2.00
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Fig. 2. Calculated spin magnetic moments on Fe of the various molecules versus the
used computational method. The dashed horizontal lines represent results of Johansson
and Sundholm, Ref. [15], where identical colours are used to denote computed moments
for the same molecules.

some molecules, the GGA and GGA+U results are comparable, while for other
molecules (Fe(R2)+, Fe(R2)NH3, Fe(R2)NH3

+) there are larger differences. For
most molecules, the GGA+U results are closer to those of Ref. [15], particu-
larly for higher values of U, as explicitly shown in Fig. 2. It can be understood
from the calculated DOS why sometimes the effect of the additional Hubbard-U
on the moments appears relatively small. Even though the Hubbard-U modi-
fies the positions of the energy levels, the number of spin majority minus spin
minority electrons does not change much. For the cationic amino-ligated por-
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Table 2. Computed spin magnetic moment of iron (in μB), the 3d magnetic moment
of the iron atom, and total d occupancy number of the iron atom. Results of three
different computational approaches are compared, those of Johansson and Sundholm
[15] and our calculations using the GGA and GGA+U (with U = 4 eV), respectively.

Molecule Fe spin moment Fe d spin moment Fe d-occ. nr.
JS [15] GGA GGA+U JS [15] GGA GGA+U JS [15] GGA GGA+U

Fe(R2) 2.07 1.94 1.96 1.93 1.92 1.94 6.43 6.22 6.23
Fe(R2)+ 2.89 2.53 2.70 2.57 2.47 2.65 6.19 5.99 5.96
Fe(R2)NH3 3.80 3.50 3.64 3.54 3.45 3.60 6.21 6.00 5.99
Fe(R2)NH+

3 4.21 2.53 4.08 3.91 2.47 4.01 5.92 5.94 5.74
Fe(R2)Cl 2.47 4.06 2.41 3.99 6.05 5.75
Fe(R2)Cl− 3.49 3.63 3.44 3.58 6.00 5.96
Haem 1.97 1.95 1.92 1.92 6.11 6.13

phyrin molecule our calculations differ from those of Johansson and Sundholm
at lower values of U. Our calculations for the charged amino-ligated system and
the non-charged chlorine-ligated system predict large magnetic moments where
the high spin state (S=5/2) solution is expected according to Hund’s rule. The
total calculated spin moment per molecule is indeed 5 μB . For lower U values
an intermediate spin state with S=3/2 is obtained.

The d-density of states (DOS) for these molecules are shown in Figure 3. The
DOS of these two structures are presented showing both the spin up and spin
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Fig. 3. Computed Fe d-DOS of a charged amino-ligated iron porphyrin molecule (left)
and the non-charged chlorine-ligated porphyrin (right). The top panels give the GGA-
calculated DOS, whereas the other panels show the DOS obtained from GGA+U cal-
culations with the U as specified in the panel.
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Fig. 4. Calculated Fe d-density of states (DOS) of the two neutral models (structures
(a) and (d) in Fig. 1) of the iron porphyrin ring

down channels. The high minority spin DOS peak just below the Fermi energy
for the GGA and GGA+U (U=2 eV) calculations is shifted downwards for U=3
and 4 eV and thereby completely removed from the Fermi level.

Figure 4 compares the neutral cases (structures (a) and (d)) for both the
GGA and GGA+U (where U=4 eV) calculations. The presence of the pyrrole
rings in the larger structure (d) does have an effect on the DOS of the iron atom.
The addition of the Coulombic interaction parameter U, leads to a significant
change in the spin down channel, especially for the larger model (d), however
this is not reflected in the predicted magnetic moments shown in Table 2. We
note, while there are some similarities in the DOS’s of the two molecules for the
GGA+U calculations, the GGA calculated DOS’s show more pronounced differ-
ences. Thus, as far as the magnetic moments are concerned, the small molecule
(a) gives a good representation of the haem molecule (d), yet some discrepancies
remain.

4 Conclusions

We have studied various structural models of the Fe-porphyrin molecule using
an ab initio computational scheme based on the density functional theory. A
particular aim of our study is to benchmark electronic structure calculations for
porphyrin molecules. Our present calculations, employing a full-potential code
in combination with the GGA and GGA+U approaches, lead to spin moments
and d-electron occupancies, which compare reasonably well with earlier results
of Johansson and Sundholm [15]. Comparing the results from the GGA and
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GGA+U calculations, we find that the GGA+U with U=3-4 eV provides a better
description of the structural and electronic properties of these systems. The
smaller adopted model structures reproduce several of the properties of the larger
haem molecule. Having reproduced the earlier quantum-chemical results, our
present investigation paves the ground for future, large scale studies of porphyrin
systems on substrates.
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Abstract. Today, a direct determination of the mechanical properties
of complex alloys from first-principles theory is not feasible. On the other
hand, well established phenomenological models exist, which are suitable
for an accurate description of materials behavior under various mechan-
ical loads. These models involve a large set of atomic-level physical pa-
rameters. Unfortunately, in many cases the available parameters have
unacceptably large experimental error bars. Here we demonstrate that
computational modeling based on modern first-principles alloy theory
can yield fundamental physical parameters with high accuracy. We il-
lustrate this in the case of aluminum and transition metal alloys and
austenitic stainless steels by computing the size and elastic misfit pa-
rameters, and the surface and stacking fault energies as functions of
chemical composition.

1 Introduction

The mechanical properties represent the behavior of materials under applied
forces. They are of vital importance in fabrication processes and use. Materials
behavior are usually described in terms of stress or force per unit area and strain
or displacement per unit distance. On the basis of stress and strain relations, one
can distinguish elastic and plastic regimes. At small stress, the displacement and
applied force obey Hook’s law and the specimen returns to its original shape on
uploading. Beyond the so called elastic limit, upon strain release the material is
left with a permanent shape. Several models of elastic and plastic phenomena in
solids have been established. For a detailed discussion of these models we refer
to [1,2,3,4,5].

Within the elastic regime, the single crystal elastic constants and polycrys-
talline elastic moduli play the principal role in describing the stress-strain rela-
tion. Within the plastic regime, the importance of lattice defects in influencing
the mechanical behavior of crystalline solids was recognized long time ago. Plas-
tic deformations are primarily facilitated by dislocation motion and can occur
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at stress levels far below those required for dislocation-free crystals. Disloca-
tion theory is a widely studied field within material science. Most recently, the
mechanism of dislocation motion was also confirmed in complex materials [6].

The mechanical hardness represents the resistance of material to plastic de-
formation. It may be related to the yield stress separating the elastic and plastic
regions, above which a substantial dislocation activity develops. In an ideal crys-
tal dislocations can move easily because they experience only the weak periodic
lattice potential. In real crystals, however, the motion of dislocations is impeded
by obstacles, leading to an elevation of the yield strength. According to this
scenario, the yield stress is decomposed into the Peierls stress, needed to move
a dislocation in the crystal potential, and the solid-solution strengthening con-
tribution, due to dislocation pinning by the randomly distributed solute atoms.
The Peierls stress of pure metals is found to be approximately proportional to
the shear modulus [5]. Dislocation pinning by random obstacles has been stud-
ied by classical theories [2,3,4] and it was found to be mostly determined by the
size misfit and elastic misfit parameters. The concentration (c) dependence of
the Peierls term is governed by that of the elastic constants, whereas the solid-
solution strengthening contribution depends on concentration as c2/3 [2,3,4].

Besides the above described bulk parameters, the formation energies of two-
dimensional defects are also important in describing the mechanical character-
istics of solids. The surface energy, defined as the excess free energy of a free
surface, is a key parameter in brittle fracture. According to Griffith theory [5],
the fracture stress is proportional to the square root of the surface energy, that
is, the larger the surface energy is, the larger the load could be before the solid
starts to break apart. Another important planar defect is the stacking fault in
close-packed lattices, such as the face-centered cubic (fcc) or hexagonal close-
packed (hcp) lattice. In these structures, the dislocations may split into energet-
ically more favorable partial dislocations having Burgers vectors smaller than
a unit lattice translation [1]. The partial dislocations are bound together and
move as a unit across the slip plane. In the ribbon connecting the partials the
original ideal stacking of close-packed lattice is faulted. The energy associated
with this miss-packing is the stacking-fault energy (SFE). The balance between
the SFE and the energy gain by splitting the dislocation determines the size of
the stacking fault ribbon. The width of the stacking fault ribbon is of impor-
tance in many aspects of plasticity, as in the case of dislocation intersection or
cross-slip. In both cases, the two partial dislocations have to be brought together
to form an unextended dislocation before intersection or cross-slip can occur. By
changing the SFE or the dislocation strain energy, wider or narrower disloca-
tions can be produced and the mechanical properties can be altered accordingly.
For instance, materials with high SFE permit dislocations to cross slip easily. In
materials with low SFE, cross slip is difficult and dislocations are constrained
to move in a more planar fashion. In this case, the constriction process becomes
more difficult and hindered plastic deformation ensues. Designing for low SFE,
in order to restrict dislocation movement and enhance hardness was adopted,
e.g., in transition metal carbides [7].
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The principal problem related to modeling the mechanical properties of com-
plex solid solutions is the lack of reliable experimental data of the alloying effects
on the fundamental bulk and surface parameters. While the volume misfit pa-
rameters are available for almost all the solid solutions, experimental values of
the elastic misfit parameters are scarce. There are experimental techniques to es-
tablish the polar dependence of the surface energy, but a direct measurement of
its magnitude is not yet feasible [8]. In contrast to the surface energy, the stack-
ing fault energy can be determined from experiments. For instance, one can
find a large number of measurements on the stacking fault energy of austenitic
stainless steels [9,10]. However, different sets of experimental data published on
similar steel compositions differ significantly, indicating large error bars in these
measurements.

On the theoretical side, the number of accurate calculations on solid solutions
is also very limited. In fact, the complexity of the problem connected with the
presence of disorder impeded any former attempts to calculate the above param-
eters from ab initio methods. Our ability to determine the physical parameters of
solid solutions from first-principles has become possible with the Exact Muffin-
Tin Orbitals (EMTO) method [11,12] based on the density functional theory
[13] and efficient alloy theories [14]. Within this approach, we could reach a level
of accuracy where many fundamental physical quantities of random alloys could
be determined with an accuracy equal to or in many cases even better than
experiments. The EMTO method has proved an accurate tool in the theoretical
description of the simple and transition metal alloys [14,15,16,17,18,19] and, in
particular, Fe-based random alloys [20,21,22,23,24]. In this work, we illustrate
the possible impact of such calculations on modeling the mechanical properties
of simple and transition metal binary alloys and austenitic stainless steels.

2 Theory

In this section, we briefly review the theory of the elastic constants, surface
energy and stacking fault energy and give the most important numerical details
used in the ab initio determination of these physical parameters.

2.1 Physical Parameters

Volume and elastic misfit parameters: The equilibrium volume V (c) of a
pseudo-binary alloy A1−cBc is obtained from a Morse [25] or a Murnaghan [26]
type of function fitted to the free energies F (V ) calculated for different volumes.

The elastic constants are the second order derivatives of the free energy with
respect to the strain tensor ekl (k, l = 1, 2, 3), viz.

cijkl =
1
V

∂F

∂eij∂ekl
, (1)

where the derivatives are calculated at the equilibrium volume and at constant
e’s other than eij and ekl. In a cubic system there are 3 independent elastic
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constants. Employing the Voigt notations, these are c11, c12 and c44. In a hexag-
onal crystal, there are 5 different elastic constants: c11, c12, c13, c33 and c44.

On a large scale, a polycrystalline material can be considered to be isotropic
in a statistical sense. Such system is completely described by the bulk modulus B
and the shear modulus G1. The only way to establish the ab initio polycrystalline
B and G is to average the single crystal elastic constants cij by suitable methods
based on statistical mechanics. A large variety of averaging methods has been
proposed. According to Hershey’s averaging method [27], for a cubic system the
average shear modulus G is a solution of equation

G3 + αG2 + βG + γ = 0, (2)

where α = (5c11 + 4c12)/8, β = −c44(7c11 − 4c12)/8, γ = −c44(c11 − c12)(c11 +
2c12)/8. This approach turned out to give the most accurate relation between
cubic single-crystal and polycrystalline data in the case of Fe-Cr-Ni alloys [28].
For cubic crystals, the polycrystalline bulk modulus coincides with the single-
crystal B = (c11 + 2c12)/3.

The size (εb) and elastic (εG) misfit parameters are calculated from the concen-
tration dependent Burgers vector b(c) or lattice parameter, and shear modulus
G(c) as

εb =
1

b(c)
∂b(c)
∂c

, and εG =
1

G(c)
∂G(c)

∂c
. (3)

According to Labusch-Nabarro model [3,4], solid solution hardening is propor-

tional to c2/3εL
4/3, where εL ≡

√
ε′G

2 + (αεb)2 is the Fleischer parameter,
ε′G ≡ εG/(1 + 0.5|εG|) and α = 9 − 16.

Surface energy: The surface free energy (γS) represent the excess free energy
per unit area associated with an infinitely large surface. For a random alloy, this
can be calculated from the free energy of the surface region F S({cα}) as

γS =
ES

A2D
=

FS({cα}) − FB(c̃)
A2D

, (4)

where {cα} denotes the equilibrium surface concentration profile, α = 1, 2, ...
is the layer index, FB(c̃) is the bulk free energy referring to the same number
of atoms as FS({cα}), and c̃ is set to be equal with the average concentration
from the surface region. A2D is the area of the surface. The surface concentration
profile is determined for each bulk concentration c by minimizing the free energy
of the surface and bulk subsystems as described, e.g., in [19].

Stacking fault energy: A perfect fcc crystal has the ideal ABCABCAB...
stacking sequence, where the letters denote adjacent (111) atomic layers. The
intrinsic stacking fault is the most commonly found fault in experiments on
fcc metals. This fault is produced by a shearing operation described by the
1 The Young modulus E and Poisson ratio ν are connected to B and G by the relations

E = 9BG/(3B + G) and ν = (3B − 2G)/(6B + 2G).
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transformation ABC → BCA to the right-hand side of an (111) atomic layer,
and it corresponds to the ABCAĊȦḂĊ stacking sequence, where the translated
layers are marked by dot. The formation energy of an extended stacking fault is
defined as the excess free energy per unit area, i.e.

γSF =
FSF − FB

A2D
, (5)

where FSF and FB are the free energies of the system with and without the
stacking fault, respectively. Since the intrinsic stacking fault creates a negligible
stress near the fault core, the faulted lattice approximately preserves the close
packing of the atoms, and can be modeled by an ideal close-packed lattice.
Within the third order axial interaction model [29], for the excess free energy
we find FSF − FB ≈ Fhcp + 2Fdhcp − 3Ffcc, where Ffcc, Fhcp and Fdhcp are the
energies of fcc, hcp and double-hcp (dhcp) structures, respectively.

2.2 The ab initio Calculations

In the present application, the elastic constants have been derived by calculating
the total energy2 as a function of small strains δ applied on the parent lattice.
For a cubic lattice, the two cubic shear constants, c′ = (c11−c12)/2 and c44, have
been obtained from volume-conserving orthorhombic and monoclinic distortions,
respectively. Details about these distortions can be found in [15,16]. The bulk
modulus B has been determined from the equation of state fitted to the total
energies of undistorted cubic structure (δ = 0). For a hexagonal lattice, at each
volume V , the theoretical hexagonal axial ratio (c/a)0 has been determined by
minimizing the total energy E(V, c/a) calculated for different c/a ratios close to
the energy minimum. The hexagonal bulk modulus has been obtained from the
equation of state fitted to the energy minima E(V, (c/a)0). The five hexagonal
elastic constants have been obtained from the bulk modulus, the logarithmic
volume derivative of (c/a)0(V ), and three isochoric strains, as described in [30].

In the EMTO total energy calculations, the one-electron equations were solved
within the scalar-relativistic and frozen-core approximations. To obtain the ac-
curacy needed for the calculation of the elastic constants, we used about ∼ 105

uniformly distributed k−points in the irreducible wedge of the Brillouin zone
of the ideal and distorted lattices. In surface calculations, the close-packed fcc
(111) surface was modeled by 8 atomic layers separated by 4 layers of empty
sites simulating the vacuum region. The 2D Brillouin zone was sampled by ∼ 102

uniformly distributed k−points in the irreducible wedge. The EMTO basis set
included sp and d orbitals in the case of simple metal alloys, and spd and f
orbitals for Ag-Zn, Pd-Ag and Fe-based alloys. The exchange-correlation was
treated within the generalized gradient approximation (GGA) [31].

2 For the temperature dependence of the elastic constants of random alloys the reader
is referred to [18].
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Table 1. Theoretical (present results) and experimental [32] equilibrium volume V
(units of Bohr3), hexagonal axial ratio (c/a)0, and elastic constants (units of GPa) of
the hcp Ag0.3Zn0.7 random alloy

Ag0.3Zn0.7 V (c/a)0 c11 c12 c13 c33 c44

theory 110.8 1.579 110 56 63 129 27
experiment 104.3 1.582 130 65 64 158 41
percent error 6 0.2 15 14 2 18 34

3 Results

3.1 Misfit Parameters

Hexagonal Ag-Zn: We illustrate the accuracy of the present ab initio approach
by comparing in Table 1 the theoretical results obtained for the Ag0.3Zn0.7 ran-
dom alloy with experimental data [32]. The deviation between the theoretical and
experimental equilibrium volume and equilibrium hexagonal axial ratio (c/a)0
are 6 % and 0.2 %, respectively. The calculated elastic constants are somewhat
small when compared with the measured values, but the relative magnitudes are
well reproduced by the theory. Actually, the difference between the two sets of
data is typical for what has been obtained for simple and transition metals in
connection with the GGA for the exchange-correlation functional [31]. There-
fore, the overall agreement between theory and experiment can be considered to
be very satisfactory.

Aluminium alloys: On the left panel of Figure 1, the theoretical single-crystal
elastic constants for Al-Mg are compared to the available experimental data [33].
We observe that the experimental value is slightly overestimated for c44 and c12
and underestimated for c11. Such deviations are typically obtained for elemental
metals. Nevertheless, for all three elastic constants we find that the variations
of the theoretical values with concentration are in perfect agreement with the
experimental data. In particular, we point out that both the experimental and
theoretical c11 and c12 decrease whereas c44 slightly increases with Mg addition.

The calculated size misfit parameters (εb) for five Al-based solid solutions
are compared to the experimental values on the right panel of Figure 1. An
excellent agreement between the computed and experimental values is observed.
This figure also shows the calculated elastic misfit parameter (εG) as a function
of theoretical εb. According to these data, we can see that the elastic misfit
for Mn, Cu and Mg contributes by ∼ 25% to ε

4/3
L , i.e. to the solid solution

hardening, whereas this effect is below 3% in the case of Si and Zn.

Austenitic stainless steels: Thevolumeand shearmodulus ofFe100−c−nCrcNin
alloys have been determined as functions of chemical composition for 13.5 < c <
25.5 and 8 < n < 24. The calculated composition-shear modulus map is presented
in Figure 2 (left panel). Alloys with large shear modulus correspond to low and in-
termediateCr (< 20%)and lowNi (< 15%)concentrations.Within this groupof al-
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Fig. 1. Left panel: Composition dependence of the theoretical (present results) and
experimental [33] single-crystal elastic constants of Al-Mg random alloys. Right panel:
Misfit parameters for selected Al-based alloys (alloying elements shown at the bottom
of the figure). Left axis: theoretical εb versus experimental εb (Ref. [34]: circles, Ref.
[35]: squares); right axis: theoretical εG versus theoretical εb.
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Fig. 2. Left panel: Calculated shear modulus of FeCrNi alloys as a function of the
chemical composition. Right panel: Theoretical misfit parameters for Fe58Cr18Ni24 alloy
comprising a few percentage of Al, Si, V, Cu, Nb, Mo, Re, Os or Ir. Note that the size
misfit parameters have been multiplied by a factor of 10.

loys G decreases monotonically with both Cr and Ni from a pronounced maximum
of 81 GPa (near Fe78Cr14Ni8) to approximately 77 GPa. The high Cr content al-
loys define the second family of austenites possessing the lowest shearmoduli (< 75
GPa) with a minimum around Fe55Cr25Ni20. The third family of austenites, with
intermediate G values, is located at moderate Cr (< 20%) and high Ni (> 15%)
concentrations, where G shows no significant chemical composition dependence.
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The effect of alloying additions on the volume and shear modulus of alloy with
composition Fe58Cr18Ni24 is demonstrated on the right panel of Figure 2. It is
found that Nb and Mo give the largest elastic misfit parameters (|εG| = 3.9 and
2.4, respectively). The size misfit is negligible for Al, Si, V and Cu, but it has a
sizable value (between 0.21 and 0.33) for the 4d and 5d dopants. The Fleischer
parameter is 5.4 for Nb, 4.1 for Mo, and ∼ 3.5 for the 5d elements. All the
other dopants give εL < 1.5. Hence, assuming that the Labusch-Nabarro model
is valid in the case of Fe-Cr-Ni alloys encompassing a few percent of additional
elements, Nb and Mo are expected to yield the largest solid solution hardening.
However, one should also take into account that the 4d metals, in contrast to the
5d metals, significantly decrease G and thus the Peierls stress [20]. Therefore,
the overall hardening effect might be different from the one expressed merely via
the Fleischer parameter.

3.2 Surface Energy of Pd-Ag Alloys

The surface energy and the top layer Ag concentration (c1) of the fcc (111)
surface of the Ag-Pd random alloy3, calculated as a function of temperature
and bulk Ag concentration, are plotted on the left panel of Figure 3. At 0 K,
the surface energy is mainly determined by the pure Ag surface layer, which is
reflected by an almost flat ES(0K, c) ≈ ES,Ag line for c � 0.1. With increas-
ing temperature, ES(T, c) converges towards the value estimated using a linear
interpolation between end members. Note that the temperature dependence of
ES is very similar to that of c1. Although, at intermediate bulk concentrations,
the subsurface Ag concentration (c2) shows strong temperature dependence [19],
this effect is imperceptible in the surface energy. Therefore, the variation of the
surface energy for a close-packed facet with temperature and bulk composition
is, to a large extent, governed by the surface layer, and the subsurface layers
play only a secondary role.

3.3 Stacking Fault Energy of Austenitic Stainless Steels

The calculated room-temperature SFE of Fe-Cr-Ni alloys is shown on the right
panel of Figure 3 as a function of chemical composition. We can observe a
strongly nonlinear composition dependence. This behavior is a consequence of
the persisting local moments in austenitic steels, which are the take-off for many
basic properties that the austenitic stainless steels exhibit [23]. The local mag-
netic moments disappear near the stacking faults, except in the high-Ni–low-Cr
alloys, where they are comparable to those from the bulk. This gives a significant
reduction of the magnetic fluctuation contribution to the SFE in the high-Ni–
low-Cr alloys, but for the rest of the alloys, it is found that the magnetic part
of γSF has the same order of magnitude as the total SFE . We have found that
the most common austenitic steels, i.e. those with low-Ni and intermediate and

3 For the effect of structural relaxation on the surface energy and equilibrium concen-
tration profile the reader is referred to [36].
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Fig. 3. Left panel: Surface energy (ES) and top layer Ag concentration (c1) for the
fcc (111) surface of the Ag-Pd random alloy as functions of temperature and bulk Ag
concentration. Lines are added to guide to the eye. Right panel: Stacking fault energy
of Fe-Cr-Ni random alloys. The calculated SFE is shown for T = 300 K as a function
of Cr and Ni content.

high-Cr content are in fact stabilized by the magnetic entropy. They possess
γSF � 0, and have enhanced hardness. The high-Ni–low-Cr alloys are more duc-
tile compared to the rest of the compositions, since they have the largest γSF.

The role of the additional alloying elements has been investigated in Fe-Cr-
Ni-M alloys encompassing a few percent of Nb or Mn. While the effect of Mn is
found to be similar to that of Cr [9], the relative effect of Nb can be as large as
∼ 30% [24]. However, the absolute effect of Nb on the SFE depends strongly on
the initial composition. For instance, in alloys close to the hcp magnetic transi-
tion, Nb decreases the SFE [24]. Therefore, in a steel design process, both the
alloying element and the composition of the host material are key parameters for
predicting the role of alloying. This finding is in contrast to the widely employed
models for compositional dependence of SFE, and it clearly demonstrates that
no universal composition equations for the SFE can be established.

4 Summary

We have demonstrated that computational methods based on modern ab initio
alloy theory can yield essential physical parameters for random alloys with an
accuracy comparable to the experiment. These parameters can be used in phe-
nomenological models to trace the variation of the mechanical properties with
alloying additions.
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Recently, recursion was introduced into the area of Dense Linear Algebra with
the intent of producing new algorithms as well as improving its existing al-
gorithms. Recursion, via the divide-and-conquer paradigm, introduced variable
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data structures for dense linear algebra became an active research area. This
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Abstract. Algorithms are called cache oblivious, if they are designed to
benefit from any kind of cache hierarchy—regardless of its size or number
of cache levels. In linear algebra computations, block recursive techniques
are a common approach that, by construction, lead to inherently local
data access patterns, and thus to an overall good cache performance [3].

We present block recursive algorithms that use an element order-
ing based on a Peano space filling curve to store the matrix elements.
We present algorithms for matrix multiplication and LU decomposition,
which are able to minimize the number of cache misses on any cache
level.

1 Cache Oblivious Algorithms in Linear Algebra

Due to the performance gap between the typical speed of main memory and the
execution speed of (arithmetic) operations within modern CPUs, the efficient
use of cache memory is nowadays essential for obtaining satisfying computa-
tional performance in all kinds of algorithms. There are, in principle, two main
approaches to cache efficient programming: cache aware approaches will take
a given algorithm, and modify data structures and program code such that it
works better on a given hardware, where the number, size, and structure of
caches are all known to the programmer. In contrast, cache oblivious approaches
strive to design algorithms that will benefit from any presence of cache memory.
Such algorithms usually require excellent locality properties of the data access
pattern, which makes them inherently cache efficient.

An overview of cache aware and hybrid approaches in linear algebra, as well
as of cache oblivious approaches in this field, has been given by Gustavson[4]
or Elmroth et. al.[3]. For matrix computations, cache oblivious algorithms often
focus on block recursive approaches, where matrices are recursively subdivided
into smaller matrix blocks. The recursive cascade of block sizes makes sure that
all cache sizes in a cache hierarchy will be efficiently used.

In [1], we presented a block recursive algorithm for matrix multiplication that
combines block recursion with a space filling curve approach. We showed that
storing matrix elements in an order given by a Peano space filling curve leads to
an algorithm with excellent locality features. We also demonstrated that these
locality features are a direct result of the properties of the Peano curve, and can
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not be obtained by similar approaches based on Morton order or Hilbert curves,
for example.

In this paper we will present a block recursive algorithm for LU -decomposition
that works on the same element ordering, and benefits from the same locality
properties. In sections 2 to 4, we will recapitulate briefly the main ideas of
the block recursive scheme for matrix multiplication on the Peano ordering. In
section 5, we will introduce the block recursive scheme for the LU -decomposition.
We will finish with first performance results and a summary in sections 6 and 7.

2 A Block Recursive Scheme for Matrix Multiplication

Consider the multiplication of two 3 × 3-matrices, such as given in equation (1),
where the indices of the matrix elements indicate the order in which the elements
are stored in memory.⎛

⎝
a0 a5 a6
a1 a4 a7
a2 a3 a8

⎞
⎠

︸ ︷︷ ︸
=: A

⎛
⎝

b0 b5 b6
b1 b4 b7
b2 b3 b8

⎞
⎠

︸ ︷︷ ︸
=: B

=

⎛
⎝

c0 c5 c6
c1 c4 c7
c2 c3 c8

⎞
⎠ .

︸ ︷︷ ︸
=: C

(1)

The scheme is similar to a column-major ordering, however, the order of the
even-numbered columns has been inverted, which leads to a meandering scheme,
which is also equivalent to the basic pattern of a Peano space filling curve. Now,
if we examine the operations to compute the elements cr of the result matrix, we
notice that the operations can be executed in a very convenient order—from each
operation to the next, an element is either reused or one of its direct neighbours
in memory is accessed:

c0 += a0b0 c0 += a6b2 −→ c5 += a5b4 c6 += a0b6 −→ c6 += a6b8
↓ ↑ ↓ ↑ ↓

c1 += a1b0 c1 += a7b2 c4 += a4b4 c7 += a1b6 c7 += a7b8
↓ ↑ ↓ ↑ ↓

c2 += a2b0 c2 += a8b2 c3 += a3b4 c8 += a2b6 c8 += a8b8
↓ ↑ ↓ ↑

c2 += a3b1 c3 += a8b3 c3 += a2b5 c8 += a3b7
↓ ↑ ↓ ↑

c1 += a4b1 c4 += a7b3 c4 += a1b5 c7 += a4b7
↓ ↑ ↓ ↑

c0 += a5b1 −→ c5 += a6b3 c5 += a0b5 −→ c6 += a5b7

(2)

An algorithmic scheme with this spatial locality property can be obtained for
any matrices of odd dimensions, as long as we adopt a meandering numbering
scheme. However, cache efficiency requires temporal locality, as well, in the sense
that matrix elements are reused within short time intervals, and will therefore
not be removed from the cache by other data. To achieve temporal locality, we
combine the scheme with a block recursive approach. Consequently, the element
numbering is then also defined by a block recursive meandering scheme—which
directly leads to a Peano space filling curve.
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3 An Element Numbering Based on a Peano Space
Filling Curve

Figure 1 illustrates the recursive scheme used to linearise the matrix elements
in memory. It is based on a so-called iteration of a Peano curve. Four different
block numbering patterns marked as P , Q, R, and S are combined in a way
to ensure a contiguous numbering of the matrix elements—direct neighbours in
memory will always be direct neighbours in the matrix as well.

P

P

P

P

Q Q

R

S

R

P

Fig. 1. Recursive construction of the Peano numbering scheme based on four block
numbering patterns denoted by P , Q, R, and S

In its pure form, the numbering scheme only works for square matrices with
dimensions that are a power of 3. To work with matrices of arbitrary size, we can
for example use zero-padding to embed the given matrix into a quadratic 3p×3p-
matrix. When implementing the respective matrix algorithms, we need to make
sure that no superfluous operations are performed on the padded zero-blocks.

An alternative approach is to stop recursion on larger matrix blocks with odd
numbers of rows and columns. As any odd number can be written as a sum
of three odd numbers of nearly the same size, this leads to a Peano number-
ing scheme that works for any odd-numbered dimensions. For even dimension,
padding with only a single row and/or column of zeros is then sufficient[2].

4 A Block Recursive Scheme for Matrix Multiplication

Equation (3) shows the blockwise multiplication of matrices stored according to
the proposed numbering scheme. Each matrix block is named with respect to
its numbering scheme and indexed with the name of the global matrix and the
position within the storage scheme:

⎛
⎝

PA0 RA5 PA6
QA1 SA4 QA7
PA2 RA3 PA8

⎞
⎠

︸ ︷︷ ︸
=: A

⎛
⎝

PB0 RB5 PB6
QB1 SB4 QB7
PB2 RB3 PB8

⎞
⎠

︸ ︷︷ ︸
=: B

=

⎛
⎝

PC0 RC5 PC6
QC1 SC4 QC7
PC2 RC3 PC8

⎞
⎠ .

︸ ︷︷ ︸
=: C

(3)

Analogous to the 3 × 3 multiplication in equation (1), we obtain an execution
order for the individual block operations. The first operations are

PC0 +=PA0PB0 → QC1 +=QA1PB0 → PC2 +=PA2PB0 → . . .
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If we only consider the ordering scheme of the matrix blocks, we obtain eight
different types of block multiplications:

P +=PP Q +=QP R +=PR S +=QR
P +=RQ Q +=SQ R +=RS S +=SS .

(4)

All eight types of block multiplication lead to multiplication schemes similar
to that given in equation (2), and generate inherently local execution orders.
Thus, we obtain a closed system of eight block multiplication schemes which
can be implemented by a respective system of nested recursive procedures.
The resulting algorithm has several interesting properties concerning cache effi-
ciency:

1. the number of cache misses on an ideal cache can be shown to be asymptot-
ically minimal;

2. on any level of recursion, after a matrix block has been used, either this
block will be directly reused, or one of its direct neighbours in space will be
accessed next; an interesting consequence of this property is that

3. precise knowledge for prefetching is available.

An extensive discussion of the resulting block-recursive multiplication algorithm
and its properties can be found in [1]. There, we also demonstrate that a block-
recursive scheme with such strict locality properties can only be obtained by
using the Peano curve.

5 A Block Recursive Scheme for LU Decomposition

Based on the presented numbering scheme, we can also try to set up a block
recursive algorithm for LU decomposition. Hence, consider the following decom-
position of block matrices:

⎛
⎜⎝

PL0 0 0

QL1 SL4 0

PL2 RL3 PL8

⎞
⎟⎠

︸ ︷︷ ︸
=: L

⎛
⎜⎝

PU0 RU5 PU6

0 SU4 QU7

0 0 PU8

⎞
⎟⎠

︸ ︷︷ ︸
=: U

=

⎛
⎜⎝

PA0 RA5 PA6

QA1 SA4 QA7

PA2 RA3 PA8

⎞
⎟⎠

︸ ︷︷ ︸
=: A

. (5)

In this notation, A denotes a lower triangular matrix block A, while B denotes
an upper triangular matrix block B. Again, we need to derive a set of block
operations, which we try to put into an execution order that preserves locality.
However, in contrast to matrix multiplication, we now have to obey certain
precedence rules. Unfortunately, these precedence rules deny us a scheme that is
strictly memory local. However, we can still try to minimise the non-localities,
which may lead us to the following scheme (for P -numbered matrix blocks):
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1) PL0 PU0 = PA0 – LU decomp.

2) QL1 PU0 = QA1 – solve for QL1

3) PL2 PU0 = PA2 – solve for PL2

4) PL0 PU6 = PA6 – solve for PU6

5) PL0 RU5 = RA5 – solve for RU5

6) RA3 –= PL2RU5 – matr. mult.

7) SA4 –= QL1RU5 – matr. mult.

8) SL4 SU4 = SA4 – LU decomp.

9) QA7 –= QL1PU6 – matr. mult.

10) PA8 –=PL2PU6 – matr. mult.

11) RL3 SU4 = RA3 – solve for RL3

12) SL4 QU7 = QA7 – solve for QU7

13) PA8 –=RL3QU7 – matr. mult.

14) PL8 PU8 = PA8 – LU decomp.

Note that an additional LU -decomposition scheme has to be derived for S-
numbered blocks: SL4 SU4 = SA4. In addition, there are two further types of
schemes to be derived:

1. Solve a matrix equation such as QL P = QA for the matrix QL, where P
is an already computed upper triangular matrix; in the same manner solve
PL P = PA, RL S = RA, and SL S = SA for PL, RL, and SL, respectively.

2. Solve a matrix equation such as P PU = PA for the matrix PU , where P
is an already computed lower triangular matrix; in the same manner solve
P RU = RA, S QU = QA, and S SU = SA, for RU , QU , and SU , respectively.

For both types of schemes, we again determine block recursive schemes based
on the Peano ordering. In the usual manner, we try to reuse matrix blocks in
the next block operation or use a matrix block that is a direct neighbour in
memory. Again, the precedence relations do not allow an ideal scheme, such as
for the matrix multiplication. The resulting schemes for PPP numbering are
given in tables 1 and 2. All remaining block recursion schemes, including those
for LU -decomposition, are listed in [6].

Finally, we obtain a system of nested block recursive schemes for the LU -
decomposition, where the recursive schemes for matrix multiplication, and for the
two schemes with the given triangular matrices are nested with the two schemes

Table 1. Block operations for solving the equation PLPU = PA for matrix PU where
the lower triangular matrix PL is given

1) PL0 PU0 = PA0 – solve for PU0

2) QA1 –= QL1PU0 – matr. mult.

3) PA2 –= PL2PU0 – matr. mult.

4) SL4 QU1 = QA1 – solve for QU1

5) PA2 –= RL3QU1 – matr. mult.

6) PL8 PU2 = PA2 – solve for PU2

7) PL0 RU5 = RA5 – solve for RU5

8) RA3 –= PL2RU5 – matr. mult.

9) SA4 –= QL1RU5 – matr. mult.

10) SL4 SU4 = SA4 – solve for SU4

11) RA3 –= RL3SU4 – matr. mult.

12) PL8 RU3 = RA3 – solve for RU3

13) PL0 PU6 = PA6 – solve for PU6

14) QA7 –= QL1PU6 – matr. mult.

15) PA8 –= PL2PU6 – matr. mult.

16) SL4 QU7 = QA7 – solve for QU7

17) PA8 –= RL3QU7 – matr. mult.

18) PL8 PU8 = PA8 – solve for PU8
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Table 2. Block operations for solving the equation PLPU = PA for matrix PL where
the upper triangular matrix PU is given

1) PL0 PU0 = PA0 – solve for PL0

2) QL1 PU0 = QA1 – solve for QL1

3) PL2 PU0 = PA2 – solve for PL2

4) RA3 –= PL2RU5 – matr. mult.

5) SA4 –= QL1RU5 – matr. mult.

6) RA5 –= PL0RU5 – matr. mult.

7) PA6 –= PL0PU6 – matr. mult.

8) QA7 –= QL1PU6 – matr. mult.

9) PA8 –= PL2PU6 – matr. mult.

10) RL3 SU4 = RA3 – solve for RL3

11) SL4 SU4 = SA4 – solve for SL4

12) RL5 SU4 = RA5 – solve for RL5

13) PA8 –= RL3QU7 – matr. mult.

14) QA7 –= SL4QU7 – matr. mult.

15) PA6 –= RL5QU7 – matr. mult.

16) PL6 PU8 = PA6 – solve for PL6

17) QL7 PU8 = QA7 – solve for QL7

18) PL8 PU8 = PA8 – solve for PL8

for the LU -decomposition. With respect to locality properties, the scheme is not
quite as nice as that for matrix multiplication. However, it still profits from the
locality properties of the Peano curve, and leads to a cache oblivious algorithm
that ensures a very low number of cache misses.

Usually, LU -decomposition should be accompanied by (partial) pivoting. This
is not addressed at the moment, because exchanging columns or rows in the
Peano-ordered matrix-layout is a tedious task. We will give some hints on how
to achieve pivoting in the conclusion, though (see section 7).

6 Performance

In this section, we compare the performance of TifaMMy[6], an implementation
of the presented Peano algorithms, with that of Intel’s Math Kernel Library[5].
Our implementation of TifaMMy, up to now, offers only very limited support for
processors offering SIMD extensions, such as SSE operations on the Pentium ar-
chitectures, for example. SIMD extensions can lead to a substantial performance
gain, if algorithms can, for example, be vectorised. However, block recursion in-
hibits vectorisation, if it is performed until very small matrix block sizes, such as
the present 3 × 3 blocks, are reached. The resulting lack of SSE support rather
limits the achievable MFLOPS rates at the moment, and will thus be our focus
of research in the imminent future (see the discussion in section 7). To level the
currently existing SSE handicap to some extent, we measured the performance
for different basic data structures: in addition to matrices of float or double pre-
cision floats, we also checked the running times for matrices of complex numbers,
and even for using blocks of 4 × 4 floats as matrix elements.

Table 3 lists the cache hit rates for both the matrix multiplication and the
LU -decomposition algorithm. These performance measurements were done on
an Itanium 2 processor. The numbers indicate that the Peano-codes indeed cause
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Table 3. Comparison of the cache hit rates of an implementation of the Peano-order
algorithms, and of Intel’s Math Kernel Library 7.2.1. (on an Itanium 2 processor,
1.3 GHz, with 256 Kbyte L2-cache and 3 Mbyte L3-cache).

multiplication double complex double
dim.: 2048 × 2048 TifaMMy MKL TifaMMy MKL
Level 2 references 1.45 · 1010 2.47 · 109 2.86 · 1010 4.99 · 109

Level 2 misses 4.72 · 106 1.38 · 108 2.04 · 107 2, 85 · 108

Level 2 hit rate 99.97 % 94.39 % 99.93 % 94.29 %
Level 3 references 9.35 · 106 1.60 · 108 3.57 · 107 5.54 · 108

Level 3 misses 1.29 · 106 1.13 · 108 3.09 · 106 1.52 · 107

Level 3 hit rate 86.16 % 29.26 % 91.35 % 97.26 %
LU-decomposition double complex double
dim.: 2187 × 2187 TifaMMy MKL TifaMMy MKL
Level 2 references 5.81 · 109 1.45 · 109 1.14 · 1010 1.11 · 108

Level 2 misses 9.32 · 106 2.89 · 107 3.29 · 107 1.11 · 108

Level 2 hit rate 99.84 % 98.01 % 99.71 % 95.90 %
Level 3 references 1.29 · 107 3.44 · 107 4.30 · 107 1.98 · 108

Level 3 misses 2.30 · 106 3.38 · 106 6.02 · 106 8.62 · 106

Level 3 hit rate 82.12 % 90.18 % 85.99 % 95.65 %

very few cache misses. Both, on the level-2 and on the level-3 cache, the number
of cache misses is lower than that of Intel’s MKL. TifaMMy’s level 3 hit rate (i.e.
the percentage of cache hits) is actually worse than that of MKL, but this is only
a consequence of the lower number of references—the absolute number of cache
misses is lower by more than a factor of 2. It is not yet fully understood why
the absolute number of references to the level-2 cache is higher for TifaMMy. It
might result from a slight advantage of MKL’s cache-aware approach for small
matrix blocks.

Figure 2 shows the MFLOPS rates for matrix multiplication as measured on
a Pentium 4 (3.4 GHz) and on the Itanium 2 (1.3GHz) processor. As we can see
from figure 4, the performance gap is to the most part explained by the lack of
SSE optimisation. In that experiment, MKL was forced to use its default kernels,
which do not use SSE in order to make them work on any Pentium processor.
TifaMMy, which was also compiled without allowing SSE instructions, clearly
outperforms the generic MKL code. Also, it can be seen from a comparison of
figures 2 and 4 that TifaMMy takes only a minimal performance gain, when
using SSE operations.

The effect of the suboptimal SSE optimisation can also be seen in figure 3.
There, we used 4 × 4 matrix blocks of single-precision float as matrix ele-
ments, and implemented an SSE-optimised multiplication for these blocks. The
MFLOPS rates are almost a factor of 2 higher than for data types double and
complex double.
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Fig. 2. Comparison of the MFLOPS rates of the matrix multiplication on a Pentium
4 and on an Itanium 2 processor
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Fig. 3. Comparison of the MFLOPS rates of the matrix multiplication with 4×4-blocks
of single-precision float on a Pentium 4 processor. The multiplication of the 4×4-blocks
was implemented using hand-crafted SSE.
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Fig. 4. Comparison of the non-SSE-MFLOPS rates of the matrix multiplication on a
Pentium 4 and on an Itanium 2 processor. Here, MKL was forced to use its default
kernel, which do not use SSE, and thus work on any Pentium processor. TifaMMy was
compiled without allowing SSE operations.
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Fig. 5. Comparison of the MFLOPS rates of the LU -decomposition of 3p ×3p-matrices
on a Pentium 4 and on an Itanium 2 processor

7 Conclusion and Current Research

The performance results indicate that our block recursive approach is indeed
successful to minimise the cache misses for all cache levels during matrix multi-
plication, and also LU -decomposition. However, with respect to the use of SSE
extensions, floating point registers, and even up to the first-level cache, they
also indicate that switching to highly optimised implementations for operations
on small matrix blocks – often called kernels – is necessary to get close to the
processor’s peak performance. This is quite in accordance with observations by
other block recursive approaches [7].
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Hence, our current research focus is to implement such a hybrid approach by
integrating suitable hardware-aware multiplication and LU -decomposition ker-
nels. This can, for example, be achieved by replacing the matrix elements in our
scheme by matrix blocks in regular row- or column-major ordering, where the
block size is tuned to fit the first level cache. Hardware-optimized kernel pro-
cedures are then called for the respective block matrix operations. First results
indicate not only an even improved cache performance, but also a MFLOPS
performance that at least rivals that of MKL. A further experience has been
that the effort for hardware-aware implementation of these well-defined opera-
tions is comparably low. Thus, a large part of the implementation can stay cache
oblivious, and only the inner kernels need to be cache/hardware aware.

The larger matrix blocks on the finest recursion level will also simplify the
integration of partial pivoting. If suitable pivot elements can be found within
the kernel blocks, then a block-oriented pivoting could be integrated into the
cache-oblivious approach. This will, of course, not always guarantee numerical
stability, but it would stay cache-friendly and make pivoting closer to partial
pivoting.
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Abstract. Recently, recursive blocked algorithms for solving triangu-
lar one-sided and two-sided Sylvester-type equations were introduced by
Jonsson and K̊agström. This elegant yet simple technique enables an au-
tomatic variable blocking that has the potential of matching the memory
hierarchies of today’s HPC systems. The main parts of the computations
are performed as level 3 general matrix multiply and add (GEMM) oper-
ations. We extend and apply the recursive blocking technique to solving
periodic Sylvester-type matrix equations. Successive recursive splittings
are performed on 3-dimensional arrays, where the third dimension rep-
resents the periodicity of a matrix equation.

Keywords: Sylvester-type matrix equations, periodic matrix equations,
recursion, blocking, level 3 BLAS, superscalar.

1 Introduction

The standard Sylvester equation AX − XB = C has a periodic counter-part

AkXk − Xk+1Bk = Ck+1, k = 1, . . . , p − 1,

ApXp − X1Bp = C1,

where p is the periodicity of the matrix sequences, such that Ak+p = Ak, Bk+p =
Bk and Ck+p = Ck [16,19]. In this contribution, we focus on recursive blocked
algorithms for solving triangular periodic matrix equations, i.e., the matrix se-
quences Ak and Bk for k = 1, . . . , p are assumed to be in periodic real Schur
form (PRSF) [4,10]. This means that p − 1 of the matrices in each sequence are
upper triangular and one matrix in each sequence, say Ar and Bs, 1 ≤ r, s ≤ p,
is quasi-triangular. The products of conforming diagonal blocks of the matrix se-
quences Ak and Bk contain the eigenvalues of the matrix products A1A2 · · · Ap

and B1B2 · · · Bp, respectively, where the 1 × 1 and 2 × 2 blocks on the main
block diagonal of Ar and Bs correspond to real and complex conjugate pairs of
eigenvalues of the corresponding matrix products.

Triangular matrix equations appear naturally in estimating the condition num-
bers of matrix equations and different eigenspace computations (e.g., see [14,15]

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 531–539, 2007.
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and [2,17]), including decoupling and stability analysis. Periodic Sylvester-type
matrix equations also appear in the context of eigenvalue reordering for compu-
tation and condition estimation of periodic invariant (deflating) subspaces of a
matrix (pair) sequence [7,8,9]. To solve a triangular matrix equation is also a ma-
jor step in the classical Bartels-Stewart method [1], which is our base-point for
solving general non-reduced periodic matrix equations.

2 Recursive Algorithms for Periodic Triangular Matrix
Equations

Our work includes novel recursive blocked algorithms for solving the most com-
mon one-sided and two-sided triangular periodic Sylvester-type matrix equa-
tions. In Table 1, a summary of the periodic matrix equations considered is
displayed.

The classification in one-sided and two-sided matrix equations was introduced
in [11,12] and is implicit in the definition of a matrix equation. A periodic matrix
equation is one-sided if it only includes terms where the solution is involved in
matrix products of two matrices, e.g., op(Ak)Xk or Xkop(Ak), where op(Ak)
can be Ak or AT

k . Similarly, a periodic matrix equation is two-sided if it includes
matrix products of three matrices, e.g., AkXkBT

k , where Xk is the solution se-
quence. This distinction relates to how blocks (subarrays) of matrices of the
solution sequence (e.g., Xk in PSYCT) are used in updates of the right hand
side matrices (Ck in PSYCT) in the recursive blocked algorithms. For exam-
ple, our algorithms for two-sided matrix equations require more space and flops,
compared to similar algorithms for one-sided equations.

For the two-sided equations, we only display one periodic transpose variant.
The other variants can be derived by moving the transpose to the left multiplying
matrices and replacing the periodic dependence k + 1 by k and vice versa. For
example, a second variant of PSYDT is

Ak
T Xk+1Bk − Xk = Ck, k = 1, . . . , p − 1,

Ap
T X1Bp − Xp = Cp.

For the generalized equations in Table 1 we assume that the involved periodic
matrix pairs, namely (Ak, Dk) and (Bk, Ek) in PGCSY, (Ak, Ck) and (Bk, Dk)
in PGSYL, and (Ak, Ek) in PGLYCT and PGLYDT, are in generalized periodic
real Schur form (GPRSF) (see, e.g., [4,10] for details).

By using and reusing recursive templates, we can solve all matrix equations
listed in Table 1 utilizing only a small set of subroutines. By this, we mean
that, e.g., the PLYCT problem can be largely solved by the PSYCT routine.
Therefore, the efforts of optimizing the implementation can be concentrated on
a few core routines.

In the following, we discuss only a few of the periodic matrix equations of
Table 1 in some more detail.

The periodic matrix sequences are stored as 3-dimensional arrays, where the
third dimension is the periodicity p of the matrix equation. The successive recur-
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Table 1. Considered one-sided (top) and two-sided (bottom) periodic Sylvester-type
matrix equations. Here, p is the periodicity of each equation and 1 ≤ k < p − 1.

Name Mnemonic Matrix equation

Periodic continuous-time
standard Sylvester PSYCT

{
AkXk − Xk+1Bk = Ck

ApXp − X1Bp = Cp

Periodic continuous-time
standard Lyapunov PLYCT

{
AkXk + Xk+1Ak

T = Ck

ApXp + X1Ap
T = Cp

Periodic generalized
coupled Sylvester PGCSY

⎧⎪⎪⎨
⎪⎪⎩

AkXk − YkBk = Ck

DkXk+1 − YkEk = Fk

ApXp − YpBp = Cp

DpX1 − YpEp = Fp

Periodic discrete-time
standard Sylvester PSYDT

{
AkXkBk

T − Xk+1 = Ck

ApXpBp
T − X1 = Cp

Periodic discrete-time
standard Lyapunov

PLYDT
{

AkXkAk
T − Xk+1 = Ck

ApXpAp
T − X1 = Cp

Periodic generalized Sylvester PGSYL
{

AkXkBk
T − CkXk+1Dk

T = Ek

ApXpBp
T − CpX1Dp

T = Ep

Periodic continuous-time
generalized Lyapunov PGLYCT

{
AkXkEk

T + EkXk+1Ak
T = Ck

ApXpEp
T + EpX1Ap

T = Cp

Periodic discrete-time
generalized Lyapunov PGLYDT

{
AkXkAk

T − EkXk+1Ek
T = Ck

ApXpAp
T − EpX1Ep

T = Cp

sive splittings are performed on the 3-dimensional arrays explicitly, leading to
new types of data locality issues, compared to our previous work with RECSY
[11,12,13].

2.1 Periodic Recursive Sylvester Solvers

Consider the real periodic continuous-time Sylvester (PSYCT) matrix equation

AkXk − Xk+1Bk = Ck+1, k = 1, . . . , p − 1,

ApXp − X1Bp = C1,

where the sequences Ak of size M × M and Bk of size N × N for k = 1, . . . , p
are in PRSF form. The right hand sides Ck and the solution matrices Xk are of
side M × N . Depending on the dimensions M and N , we consider three ways of
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recursive splitting. First, we consider splitting of Ak by rows and columns and
Ck by rows only. The second alternative is to split Bk by rows and columns
and Ck by columns only. The third alternative is to split all three matrices by
rows and columns. No matter which alternative is chosen, the number of flops
is the same. Performance may differ greatly, though. Our algorithm picks the
alternative that keeps matrices as “squarish” as possible, i.e., 1/2 < M/N < 2,
which guarantees a good ratio between the number of flops and the number of
elements referenced.

Next, we consider the periodic generalized continuous-time Lyapunov (PG-
LYCT) equation

AkXkEk
T + EkXk+1Ak

T = Ck, k = 1, . . . , p − 1,

ApXpEp
T + EpX1Ap

T = Cp,

where the periodic matrix pair sequence (Ak, Ek) is in generalized periodic real
Schur form (GPRSF), and Ck and Xk (overwrites Ck) are symmetric M × M .
Because of symmetry, there is only one way to split the equation, resulting in
two triangular PGLYCT equations and one generalized periodic Sylvester (PG-
SYL) equation, all of which can be solved recursively using the following tem-
plate:

A
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T
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22 .

Assuming that we have algorithms for solving PGLYCT and PGSYL (kernel
solvers are discussed in Section 2.2), we start by solving for the sequence X

(k)
22 ,

k = 1, . . . , p from the third (last) equation. After updating C
(k)
12 in the PGSYL

equation (second above) with respect to X
(k)
22 , k = 1, . . . , p, we can solve for the

sequence X
(k)
12 . Finally, after updating C

(k)
11 in the first PGLYCT equation with

respect to X
(k)
12 and X

(k)
22 for k = 1, . . . , p, we solve for the sequence X

(k)
11 .

The recursive template is now applied repeatedly to the three periodic matrix
equations above (divide phase) until the subproblems are small enough, when
kernel solvers are used for solving the node-leaf problems of the recursive tree.
In the conquer phase, the tree is traversed level by level, finally producing the
complete matrices Xk, k = 1, . . . , p, i.e., the solution of PGLYCT.

2.2 Kernel Solvers for Leaf Problems

In each step of the recursive blocking, the original periodic matrix equation is
reduced to several subproblems involving smaller and smaller matrices, and a
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great part of the computation emerges as standard matrix-matrix operations,
such as general matrix multiply and add (GEMM) or triangular matrix mul-
tiply (TRMM) operations. At the end of the recursion tree, small instances of
periodic matrix equations have to be solved. Each such matrix equation can be
represented as a linear system Zx = c, where Z is a Kronecker product repre-
sentation of the associated periodic Sylvester-type operator, and it belongs to
the class of bordered almost block diagonal (BABD) matrices [6]. For example,
the PSYCT matrix equation can be expressed as Zx = c, where the matrix Z
of size mnp × mnp is

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

BT
p ⊗ Im In ⊗ Ap

In ⊗ A1 BT
1 ⊗ Im

. . . . . .

In ⊗ Ap−1 BT
p−1 ⊗ Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

x = [vec(X1), vec(X2), · · · , vec(Xp)]
T

, c = [vec(C1), vec(C2), · · · , vec(Cp)]
T

.

In the algorithm, recursion proceeds down to problem sizes of 1 × 1 to 2 × 2.
For these problems, a compact form of the matrix Z which utilizes the sparsity
structure of the problem is computed and the problem is solved using Gaussian
elimination with partial pivoting (GEPP). These solvers are based on the super-
scalar kernels that were developed for the RECSY library [13]. Moreover, the
block diagonal of the matrix Z sometimes (see, e.g., PGCSY in [8]) has a certain
structure that can be exploited by the GEPP procedure. The memory usage for
Z is O(m2n2p), and the number of operations required to solve the problem is
O(m3n3p). In case of an ill-conditioned matrix Z, the Gaussian elimination is
aborted when bad pivot elements are detected, an error condition is signaled,
and the solution process is restarted with a new problem from a higher level of
the recursion tree. This larger problem is then solved using LU with complete
pivoting (GECP) on a non-compact form of Z, which in turn results in a p times
larger memory requirement, namely O(m2n2p2) storage. However, since m and
n are small, typically 1 or 2, this is an effective procedure for typical sizes of
the periodicity p. The extra workspace can either be provided by the user or
dynamically allocated.

2.3 Storage Layout of Matrices

For storage of regular dense matrices, there are two major linear variants: row-
major (“C-style”) and column-major (“Fortran-style”). In addition, several re-
cursive blocked storage schemas have proven to give substantial performance
improvements, see [5] and further references therein.

For the periodic matrix sequences, there are six (3!) different linear variants.
One advantage of having the periodic dimension as the minor (innermost) di-
mension is better locality of the Z matrix in the kernel solver. However, this
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efficiently disables all use of standard level 3 BLAS. Therefore, we have the pe-
riodicity p as the outermost dimension. Column-major storage layout is used for
each coefficient matrix (Ak, Bk, Ck etc.) in the periodic matrix sequences.

3 Sample Performance Results

The recursive blocked algorithms for the periodic Sylvester-type equations have
been implemented in Fortran 90, using the facilities for recursive calls of sub-
programs, dynamic memory allocation and threads. In this section, we present
sample performance results of implementations of solvers for one-sided and two-
sided equations executing on an AMD Opteron processor-based system. The
system has a dual AMD Opteron 2.2 GHz processor, with a 64 kB level 1 cache,
a 1024 kB level 2 cache and 8 GB memory per node. Theoretical peak per-
formance is 4.4 Gflops/s per processor. The peak performance of DGEMM and
other level 3 BLAS routines used vary between 3.0–3.5 Gflops/s. All performance
numbers presented are based on uniprocessor computations.
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Fig. 1. Performance results for the one-sided PSYCT equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.
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3.1 Performance of the Recursive Blocked PSYCT Solver

In Figure 1, performance graphs for the implementation of the recursive blocked
PSYCT algorithm are displayed. The problem size (M = N) ranges from 100
to 2000, and the periodicity p = 3, 10, and 20. For large enough problems the
performance approaches 70% of the DGEMM performance, which is on a level
with the recursive blocked SYCT solver in RECSY [11,13]. For an increasing
periodicity p the performance decreases only marginally.

3.2 Performance of the Recursive Blocked PGSYL Solver

In Figure 2, we show performance graphs for our implementation of the recursive
blocked algorithm for the two-sided PGSYL equation. The performance results
are somewhat inferior to the PSYCT performance, but still on a level with the
recursive blocked GSYL solver in RECSY [12,13]. We also see that the relative
decrease in performance with respect to an increasing periodiciy p is larger than
for the PSYCT solver. Reasons for this degradation include that the PGSYL
kernel solver is more complex and somewhat less efficient, and the two-sided
updates in the recursive blocked algorithm result in extra operations compared
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Fig. 2. Performance results for the two-sided PGSYL equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.
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to a true level 1 or level 2 algorithm. Such overhead never appear in the one-
sided equations, but increases with p for two-sided equations. However, the use of
efficient level 3 operations compensates for some of this computational overhead.

4 Conclusions and Future Work

We have presented novel recursive blocked algorithms for solving various periodic
triangular matrix equations. Such equations stem from different applications
with a periodic or seasonal behaviour, e.g., the study of periodic control systems
[3], and discrete-time periodic (descriptor) systems [19] in particular.

Our recursive blocked algorithms are based on RECSY, an HPC library for the
most common non-periodic matrix equations (see [11,12,13]). The performance
results are on the level of RECSY, which confirm that the recursive blocking ap-
proach is an efficient way of solving periodic triangular Sylvester-type equations.
The reason is three-fold: (i) recursion allows for good temporal locality; (ii) re-
cursion enables the periodic matrix equations to be rewritten mainly as level 3
operations; (iii) novel superscalar kernel solvers deliver good performance for the
small leaf-node problems. Our goal is to provide a complete periodic counter-
part of the RECSY library. This study will also include alternative blocking
techniques.
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Abstract. The full format data structures of Dense Linear Algebra hurt
the performance of its factorization algorithms. Full format rectangular
matrices are the input and output of level the 3 BLAS. It follows that
the LAPACK and Level 3 BLAS approach has a basic performance flaw.
We describe a new result that shows that representing a matrix A as a
collection of square blocks will reduce the amount of data reformating
required by dense linear algebra factorization algorithms from O(n3) to
O(n2). On an IBM Power3 processor our implementation of Cholesky
factorization achieves 92% of peak performance whereas conventional
full format LAPACK DPOTRF achieves 77% of peak performance. All pro-
gramming for our new data structures may be accomplished in standard
Fortran, through the use of higher dimensional full format arrays. Thus,
new compiler support may not be necessary. We also discuss the role of
concatenating submatrices to facilitate hardware streaming. Finally, we
discuss a new concept which we call the L1 / L0 cache interface.

1 Introduction

The current most commonly used Dense Linear Algebra (DLA) algorithms for
serial and SMP processors have a performance inefficiency and hence they give
sub-optimal performance. We indicate that Fortran and C two dimensional ar-
rays are the main reason for the inefficiency. We show how to correct these
performance inefficiencies by using New Data Structures (NDS) along with so-
called kernel routines. These NDS generalize the current storage layouts for both
the Fortran and C programming languages. One of these formats is packed for-
mat and we do not discuss it as a new result [18, 13, 19] about Rectangular Full
Packed (RFP) format shows that packed format can be represented by RFP
format. RFP format is full format and it and packed both use exactly the same
amount of storage. However, SBP (Square Block Packed) format also replaces
packed format and it is a main subject of this paper. Like RFP format it is a full
format data structure and it uses only slightly more storage than RFP format.

The BLAS [22, 9, 10] (Basic Linear Algebra Subroutines) were introduced to
make the algorithms of DLA performance-portable. Starting with LINPACK, [7]
and progressing to LAPACK [4] the Level 1, 2, 3 BLAS were introduced. The
suffix i in Level i refers to the number of nested “do loops” required to do the
computation of a given BLAS. Almost all of the floating-point operations of
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DLA algorithms are performed through the use of BLAS calls. If performance
were directly proportional to operation count then performance would be truly
portable. However, with today’s deep memory hierarchies and other new ar-
chitecural features, this is no longer the case. To understand the performance
inefficiency of LAPACK algorithms, it suffices to discuss the Level 3 BLAS,
DGEMM (Double precision GEneral Matrix Matrix). A relationship exists between
the Level 3 BLAS and their usage in most of level 3 factorization routines. This
relationship introduces a performance inefficiency in block based factorization
algorithms and we will now discuss the Level 3 BLAS, DGEMM (Double precision
GEneral Matrix Matrix) to illustrate this fact.

In [1, 5, 25, 14] design principles for producing a high performance Level 3
DGEMM BLAS are given. A key design principle for DGEMM is to partition its matrix
operands into submatrices and then call a DGEMM L1 kernel routine multiple times
on its submatrix operands. Another key design principle is to change the data
format of the submatrix operands so that each call to the L1 kernel can operate
at or near the peak Million FLoating point OPerations per Second (MFlops)
rate. This format change and subsequent change back to standard data format
is a cause of a performance inefficiency in DGEMM. The DGEMM API requires that
its matrix operands be stored as standard Fortran or C two-dimensional arrays.

Any DLA Factorization Algorithm (DLAFA) of a matrix A calls DGEMM mul-
tiple times with all its operands being submatrices of A. For each call data copy
will be done; therefore this unit cost gets multiplied by this number of calls.
However, this overall cost can be eliminated by using the NDS to create a sub-
stitute for DGEMM; e.g. its analogous L1 kernel routine, which does not require the
aforementioned data copy. So, as in [15, 17], for triangular matrices, we suggest
that SBP format be used in concert with kernel routines.

This paper also describes a new concept which we call the L1 cache / L0 cache
interface. We define a L0 cache as the register file of its floating point unit. Today,
many architectures possess special hardware to support the streaming of data
into the L1 cache from higher levels of memory [24, 21]. In fact with a large
enough floating point register file it may be possible to do, say, a L2 or L3 cache
blocking for a DGEMM kernel; ie, completely bypass the L1 cache. This is the case
in [6] where a 6 by 6 register block for the C matrix can be used as this processor
has 64 (32 dual SIMD) floating point registers. To do L0 register blocking we
can concatenate tiny submatrices to faciltate streaming by reducing the number
of streams. In effect, at the L0 level we have a concatenation of tiny submatrices
behaving like a single long stride one vector that passes through L1 and into L0
in an optimal way. Sections 2, 2.1 and 2.2 give details about this technique. Using
this extra level of blocking does not negate the benefits of using Square Blocks
(SB). It is still essential that NB2 elements of a SB be contiguous. However, the
SBs are now no longer two dimensional Fortran or C arrays. We define a SB as
simple when it is a two dimensional Fortran or C array. Using non-simple SBs as
described here and in Section 2 allows us to claim that data copy for DLAFAs
using SBs can be O(N2) instead of O(N3) which occurs when using Fortran or
C two dimensional arrays.
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Section 3 describes SB format for symmetric and triangular arrays. In this case
one gets SBP format. Section 3.1 explains that SBP format is just as easy to
use and to code for as is using standard full format for the same two purposes.
Section 3.2 demonstrates a typical performance improvement one gets using
simple SBP format over using standard full format. Similar performance results
are attainable for non-simple SB, see [6]. Section 4 contains our main result about
the reduction from O(N3) to O(N2) of data copy that is possible by using NDS;
ie, either SB or SBP data format. The background material for this result is
developed in Sections 2 and 3.

2 The Need to Reorder a Contiguous Square Block

NDS represent a matrix A as a collection of SB’s of order NB. Each SB is con-
tiguous in memory. In [23] it is shown that a contiguous block of memory maps
best into L1 cache as it minimizes L1 and L2 cache misses as well as TLB misses
for matrix multipy and other common row and column matrix operations. When
using standard full format on a DLAFA one does an O((N/NB)2) amount of
data copy in calling DGEMM in an outer do loop: j=0,N-1,NB. Over the entire
DLAFA this becomes O((N/NB)3).

On some processors there are floating point multiple load and store instruc-
tions associated with the multiple floating point operations; see [1,6]. A multiple
load / store operation requires that its multiple operands be contiguous in mem-
ory. The multiple floating point operations require their register operands to be
contiguous; eg, see [6]. So, data that enters L1 may also have to be properly
ordered to be able to enter L0 in an optimal way. Unfortunately, layout of a SB
in standard row / column major order may no longer lead to an optimal way. In
some cases it is sufficient to reorder a SB into submatrices which we call register
blocks. Doing this produces a new data layout that will still be contiguous in
L1 but can also be loaded into L0 from L1 in an optimal manner. Of course,
the order and size in which the submatrices (register blocks) are chosen will be
platform dependent.

2.1 A DGEMM Kernel Based on Square Block Format Partitioned into
Register Blocks

In this contribution register blocks can be shown to be submatrices of a SB.
This fact is important as it means that one can address these blocks in Fortran
and C. To see this let A, B and C be three SB’s and suppose we want to apply
DGEMM to A, B and C. We partition A, B and C into conformable submatrices
that are also register blocks. Let the sizes of the register blocks (submatrices)
be kb× mb, kb× nb and mb× nb. Thus AT , B and C are partitioned matrices of
sizes k1 × m1, k1 × n1 and m1 × n1 respectively.

The DGEMM kernel we want to compute is C = C−AT B where matrix multiply
is stride one across the rows and columns of A and B respectively. (AT will be
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Fig. 1. Fundamental GEMM Kernel Building Block

stride one along rows as A is stride one along its columns.) Next, consider a
fundamental building block of this DGEMM kernel; see Figure 1 It consists of
multiplying k1 register blocks of AT by k1 register blocks of B and summing
them to form the update of a register block of C. The entire kernel will consist
of executing m1 ×n1 fundamental building blocks in succession to obtain a near
optimal kernel for DGEMM.

2.2 A Fundamental DGEMM Kernel Building Block and Hardware
Streaming

If we use simple SB format we would need mb rows of AT and nb columns of B
and C to execute any fundamental building block. This would require mb+ 2nb
stride one streams of matrix data to be present and working during the execution
of a single building block. Many architectures do not possess special hardware to
support this number of streams. Now the minimum number of streams is three;
one each for matrix operands A, B and C. Is three possible? An answer emerges
if one is willing to change the data structure away from simple SB order.
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In Figure 1 we describe a data layout of a fundamental register block compu-
tation 1. Initially, a register block of C is placed in mb×nb floating point registers
T(0 : mb−1, 0 : nb−1). An inner do loop on l=0:K-1,kb consists of performing
K/kb sets of mb × nb independent dot products on T. For a given single value
of l, vectors u, v of lengths mb, nb from A and B respectively are used to update
T = T− uvT . This update is a DAXPY outer product update consisting of mb×nb
independent Floating Multiply-Adds (FMAs). However, and this is important,
since the T’s are in registers there are no loads and stores of the T’s. The entire
update is T = T− AT(0 : K−1, i : i+mb−1) × B(0 : K−1, j : j+nb−1). If A and
B were simple SB’s we would need to access vectors u, v with stride NB and also
there would be mb+nb streams. Luckily, if we transpose K×mb AT and K×nb B
we will simultaneously access u, v stride one, just get two streams, and still be
able to address A, B in the standard way. These two transpositions accomplish
a matrix data rearrangement that allows for an excellent L1 / L0 interface of
matrix data for the DGEMM kernel fundamental building block computation. We
have just demonstrated that two streams are possible for A, B. By storing C as
m1 × n1 register blocks (submatrices) contiguously in a contiguous SB in the
order they are accessed by the DGEMM kernel we will get a single stream for C.

3 SB Packed Formats Generalize Standard Full and
Packed Formats

Square Block Packed (SBP) formats are a generalization of packed format for
triangular arrays. They are also a generalization of full format for triangular
arrays. A major benefit of the SBP formats is that they allow for level 3 per-
formance while using about half the storage of the full array cases. For simple
SBP formats of a triangular matrix A there are two parameters TRANS and NB,
where usually n ≥ NB. For these formats, we first choose a block size, NB, and
then we lay out the matrix elements in submatrices of order NB. Each SB can be
in column-major order (TRANS = ‘N’) or row-major order (TRANS = ‘T’). These
formats support both uplo = ‘L’ or ‘U’; we only cover the case uplo = ‘L’. For
uplo = ‘L’, the first vertical stripe is n by NB and it consists of n1 SBs where
n1 = �n/NB�. It holds the first trapezoidal n by NB part of L. Here we rename
matrix A matrix L to remind the reader that our format is lower triangular.
The next stripe has n1 − 1 SBs and it holds the next trapezoidal n - NB by NB
part of L, and so on, until the last stripe consisting of the last leftover triangle
is reached. The total number of SBs, nt1, is n1(n1 + 1)/2 and the total storage
of SBP format is nt1 ∗ NB2. In [3] we introduced Lower Hybrid SBP format
in which the diagonal blocks were stored in packed format. Thus, no additional
storage was required. We also provided a fast means to transform to this format
using a buffer of size n*NB. Now we turn to full format storage. To get SBP for-
mat one simply sets NB = n; ie, SBP format gives a single block triangle which
happens to be full format.
1 Compilers require that scalars be used to designate register usage. Also, we are using

origin 1 in Fig. 1 and origin 0 in the text of Section 2.2.
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3.1 Benefits of SB and SB Packed Formats

We believe a main use of SB formats is for symmetric and triangular arrays.
We call these formats SB Packed (SBP). An innovation here is that one can
translate, verbatim, standard packed or full factorization algorithms into a cor-
responding SBP format algorithm by replacing each reference to an i, j element
of A by a reference to its corresponding SB submatrix. Because of this storage
layout, the beginning of each SB is easily located. Another key feature of using
SB’s is that SBP format supports Level 3 BLAS. Hence, old, packed and full
codes are easily converted into SBP format level 3 code. Therefore, one keeps
“standard packed or full” addressing so the library writer/user can handle his
own addressing in a Fortran/C environment. Figure 2 describes a RLA for block
Cholesky factorization and illustrates what we have just said. For clarity, we
assume that n is a multiple of nb. Lines 2, 4, 7 and 9 of Figure 2 are calls to
kernel routines.

do j = 0, n-nb, nb
factor a(j:j+nb-1,j:j+nb-1) ! kernel routine for potrf
do i = j + nb, n-nb, nb

a(i:i+nb-1,j:j+nb-1) =
a(i:i+nb-1,j:j+nb-1)*aT(j:j+nb-1,j:j+nb-1) ! kernel trsm

end do
do i = j +nb, n-nb, nb ! THE UPDATE PHASE

a(i:i+nb-1,i:i+nb-1) = a(i:i+nb-1,i:i+nb-1) -
a(i:i+nb-1,j:j+nb-1)*aT(i:i+nb-1,j:j+nb-1) ! kernel syrk

do k = i + nb, n-nb, nb ! The Schur Complement update phase
a(k:k+nb-1,i:i+nb-1) = a(k:k+nb-1,i:i+nb-1) -

a(k:k+nb-1,j:j+nb-1)*aT(i:i+nb-1,j:j+nb-1) ! kernel gemm
end do

end do
end do

Fig. 2. Block Version of Right Looking Algorithm for Cholesky Factorization

3.2 Performance for SBP Cholesky

Performance results of SBP format for Cholesky factorization were taken from
[17]. We only include one of the two graphical plots. To be fair we show the
curves for Block Hybrid Cholesky which includes the cost of doing a data trans-
formation from packed format to SBP format. For small N this cost is large,
so we reduced this cost to zero by writing a Cholesky factor kernel for packed
format; to distinguish this fact we call the resulting code with change over to
SBP format BHC code. In Figure 3 the graphs plot MFlops versus matrix order
N . Note that the x-axis is log scale; we let N range from 10 to 2000. In the
comparison for BHC versus LAPACK we give four graphs: BHC, BHC + data
transformation, DPOTRF and DPPTRF; we name these curves 1, 2, 3, 4. Data for the
graphs were obtained on a 200 MHz IBM Power 3 with a peak performance of
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800 MFlops. The performance of the BHC Cholesky algorithm of Figure 3 shows
the data transformation does cost something. The actual crossover between the
packed kernel and SBP format plus data transformation occurred at N = 230.
For N ≤ 230 curves 1 and 2 are identical. For N ≥ 230 it pays to do the data
transformation and the curves 1 and 2 separate. Curve 2 is faster than curve 3
for small N (up to four times faster) and more than 10 % faster for large N .
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4 DLAFA’s Using SB Format Require O(n2) Data Copy

We show this result by demonstrating it for a symmetric factorization as our fo-
cus is on Cholesky factorization and what we say about these factorizations ap-
plies to many other DLAFA’s [8,15,12,11]. There are many Cholesky DLAFA’s.
We only mention left and right looking as well as hybrid and recursive [7, 4, 15,
16, 2, 3] ones. A (left, right) looking algorithm does the (least, most) amount of
computation in the outer do loop of stage j, respectively; see Figure 2 where
we use a right looking algorithm. A recursive algorithm uses the divide-and-
conquer paradigm. A hybrid algorithm is a combination of left and right looking
algorithms. The current version of LAPACK [4] uses a hybrid algorithm. The
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paper [3] examines some of these algorithm types using a variant of SBP format,
packed recursive and standard full and packed formats. Performance studies on
six platforms, Alpha, IBM P4, Intel x86, Itanium, SGI and SUN were made.
Overall, the hybrid algorithm, using a variant of SB format, was best. However,
it was not a clear winner. In [3], we did not call BLAS kernel routines. Instead,
we either called the vendor or Atlas BLAS [25]. So, these BLAS probably did
O(N3) data copy during Cholesky factorization.

4.1 Data Copy of a DLAFA Can Be O(N2)

The result we now give holds generally for Right Looking Algorithms (RLAs) for
DLAFAs. And similar results hold for Left Looking Algorithms (LLAs). Here we
shall be content with demonstrating that the Cholesky RLA on SBP format can
be done by only using O(N2) data copies. The O(N3) part of the block Cholesky
RLA has to do with the Schur Complement Update (SCU); ie, the inner DGEMM
do loop over variable k; see Figure 2. We assume each call to DGEMM will do data
copy on each of its three operands A, B and C. Now the number of C SB’s that
get SCUed over the entire RLA is n1(n1 + 1)(n1 − 1)/6 where n1 = �N/NB� and
N is the order of A. It is therefore clear that O(N3) data copies will occur.

In the case of simple SBs our result is obvious as no data copy occurs during
execution of the RLA algorithm in Figure 2 because kernel routines of the BLAS
are being called. So, there is only an initial reformating cost of full format A to
SBP format of A, which is clearly O(N2). Also, as mentioned in Section 3 and
3.2 this initial reformating is optional. Now, consider non-simple SBs. In Sections
2.1 and 2.2 we indicated that it is now usually necessary to reformat each SB
every time DGEMM is called if non-simple SB’s are used. We now demonstrate that
we can reduce this data copy cost to O(N2). What we intend to do is to store the
C operands of DGEMM in the register block format that was indicated in Sections
2.1 and 2.2. Hence, the format of these C operands is then fixed throughout
this algorithm and no additional data copy occurs for them during the entire
execution of this RLA; see Figure 2. And clearly, an initial formatting cost, if
necessary, is only O(N2). Now we examine the A and B operands of the SCU
for the outer loop variable j. SB’s A(j : n1, j) whose total is n1 − j are needed
for the SCU as they constitute all the A, B operands of the SCU at iteration j.
Summing from j=1 to j = n1 − 1 we find just n1(n1 − 1)/2 SB’s in all that need
reformatting ( data copying ) over the course of this entire RLA; see Figure 2.
And since there are both A and B operands we may have to double this amount
to n1(n1 − 1) SB’s. However, in either case this amount of data copy is clearly
O(N2).

5 Summary and Conclusions

This paper demonstrates that the standard data structures of DLA can hurt the
perfomance of its factorization algorithms. It indicates that by using NDS this
performance loss can be lessened. Specifically, it describes SB and SBP format
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as a replacement of these standard data structures. SB and SBP data structures
are shown to be easy to use and to code for. These two features are strong
features of the standard data structures of DLA. SB and SBP formats have two
desirable features that the standard data structures lack. SBP format uses near
minimal storage for symmetric and triangular matrices whereas standard full
format storage uses nearly double the minimal storage. Secondly, SB and SBP
formats give DLAFAs better performance than standard full format does. Our
main result, that DLAFAs require only O(N2) data copy, indicates partly why
this is so. The use of standard full format requires O(N3) data copy by the level
3 BLAS being used by the DLAFA. We assumed these BLAS always did data
copy on their submatrix operands. We discussed a new concept called the L1
/ L0 cache interface. The existence of this interface showed one the necessity
of introducing non-simple SBs in order to maintain high performance of DGEMM
kernels on several new platforms. These non-simple SBs were able to fully exploit
hardware streaming which is a feature of several new platforms.
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Abstract. We present three algorithms for Cholesky factorization us-
ing minimum block storage for a distributed memory (DM) environment.
One of the distributed square block packed (SBP) format algorithms per-
forms similar to ScaLAPACK PDPOTRF, and our algorithm with iteration
overlapping typically outperforms it by 15–50% for small and medium
sized matrices. By storing the blocks contiguously, we get better per-
forming BLAS operations. Our DM algorithms are not sensitive to cache
conflicts and thus give smooth and predictable performance. We also in-
vestigate the intricacies of using rectangular full packed (RFP) format
with ScaLAPACK routines and point out some advantages and draw-
backs.

1 Introduction

Dense linear algebra routines that are implemented in a distributed memory en-
vironment typically use a 2D block cyclic layout (BCL), with ScaLAPACK being
one example of a library that uses BCL for all routines [3]. A BCL can provide
effective load balance for many algorithms. The mapping of matrix elements to
processors does not prescribe how they are later stored on each processor. The
approach taken by the ScaLAPACK library is to store each elementary block as
a submatrix of a column major 2D array (standard Fortran array) [3]. Another
approach is to store each elementary block contiguously, for example as a column
major block 2D array.

Storing elementary blocks contiguously has at least three advantages. They
will map very well into L1 cache and level 3 operations involving such blocks
will therefore tend to achieve high performance and minimize memory traffic.
Another benefit is that moving a block can be done by one contiguous memory
transfer. In this contribution we use square elementary blocks (called a square
block, or SB) to store the local matrix. Furthermore, we store only the trian-
gular part of the block matrix to achieve minimum block storage for symmetric
matrices. We call this square block packed (SBP) format.

B. Kågström et al. (Eds.): PARA 2006, LNCS 4699, pp. 550–559, 2007.
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We identify an inefficiency in straightforward data parallel implementations,
e.g., the implementation of the Cholesky factorization in ScaLAPACK (routine
PDPOTRF) and develop an iteration overlapping data parallel implementation
which removes much of the idling and thus decreases execution time.

2 Near Minimal Storage in a Serial Environment

A recently proposed format for storing triangular or symmetric matrices is called
rectangular full packed (RFP) (see [8] for details). This format takes many slightly
different forms. Figure 1 illustrates a lower triangular matrix. The matrix is

BT

B

A A

RFPFull Storage

Fig. 1. Illustration of rectangular full packed format

partitioned into two submatrices A and B. The triangular matrix BT is merged
along the diagonal with A. As can be seen, this new matrix can be stored as a
standard full format rectangular array with no waste of memory.

Another format for near minimal storage is a generalization of a standard
column major format. The matrix is divided into square blocks and the format
is based on storing each such block in a contiguous memory area. The blocks can
then be stored for example in either a row or column major ordering. Figure 2

SB layout

Fig. 2. Illustration of square block packed format

illustrates the square blocks. The elements above the diagonal of the diagonal
blocks are wasted storage. By picking the block size to one, we see that we get
either the standard row or column major format. For details on this format
see [7].
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3 Minimum Block Storage in a Distributed Environment

In this section we describe how RFP and SBP can be used in a distributed
memory environment. We show how both approaches give a nearly minimum
block storage.

3.1 A Distributed SBP Algorithm for Cholesky Factorization

In this contribution we consider the blocked algorithmic variant of Cholesky
factorization described in Algorithm 1. We note that this algorithmic variant is
used in ScaLAPACK [4]. In a distributed environment with a 2D block cyclic

Algorithm 1. Standard blocked Cholesky factorization
1: for each panel left to right do

2: Partition A =
[

A11

A21 A22

]
, where A11 is NB×NB

3: Factorize A11 = LLT using unblocked algorithm
4: Update panel A21 := A21L

−T using triangular solver
5: Update trailing matrix A22 := A22 − A21A

T
21 using symmetric rank-k update

6: Continue with A = A22

7: end for

layout with block size NB×NB, block A11 resides on one processor, block A21
on one processor column, and A22 generally resides on all processors. By using
parallel triangular solve and symmetric rank-k update routines Algorithm 1 will
achieve scalable performance due to good load balance and because most of the
computation is in step 5 which is easy to parallelize. However, steps 3 and 4 do
not utilize all processors effectively. One variant of this algorithm is to start the
next iteration before the current iteration has finished step 5 (see [7] for more
details). This is possible by noting that the first updated column panel of the
new pivot from step 5 will be used as the only input for step 3 and 4 of the next
iteration.

A major problem with a straightforward parallel implementation of Algo-
rithm 1 is the idle time introduced when processors implicitly synchronize after
each iteration. This idle time is caused both by slight load imbalances and the
work in steps 3 and 4 that are not performed on all processors. By using the
iteration overlapping algorithm this idle time will be eliminated if the communi-
cation of data between steps 3 and 4 can be carried out while still doing useful
work in updates.

The data dependencies in Algorithm 1 are simple. Output from step 3 is input
for step 4 whose output in turn is input for step 5. As for the first dependency a
column broadcast is all that is needed. The second dependency requires a some-
what more complicated communication pattern and is now described briefly. All
subblocks of A21 are broadcasted along the processor rows. Once a subblock of
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A21 reaches the processor holding the diagonal block of that row it is broad-
casted along its processor column. One can show that after this, each processor
holds the blocks of A21 and AT

21 that it needs for step 5. In our implementation
these blocks are stored in two block buffer vectors W and S, where W (for West
border vector) holds blocks of A21 and S (for South border vector) holds blocks
of AT

21.
We have studied how overlapping two successive pivot steps can affect the

performance of our parallel implementation. Our implementation is described
in Algorithm 2. The overlapping in Algorithm 2 happens during the execution

Algorithm 2. Cholesky with iteration overlap
1: for each panel left to right do

2: Partition global A =
[

A11

A21 A22

]
, where A11 is NB×NB

3: if process holds A11 then
4: Factorize A11 = LLT using serial algorithm
5: Column broadcast the block L
6: end if
7: if process column holds A21 then
8: Receive the block L
9: Partition S1 =

[
SA SB

]
, where SA is NB×NB

10: Update A21 := A21 − W1SA

11: Scale A21 := A21L
−T

12: Start communication of A21 using buffers W2 and S2 (sender)
13: Update A22 := A22 − W1SB

14: else {all other process columns}
15: Start communication of A21 using buffers W2 and S2 (receiver)
16: Update A := A − W1S1

17: end if
18: Move (symbolically) W1 := W2 and S1 := S2 {there is no data movement}
19: end for

of steps 10 to 13. Taken together, steps 10 and 13 perform a complete update.
The execution order of the straightforward algorithm would put steps 10 and
13 together, and step 11 after both. Executing step 11 before 13 allows the
communication needed for the subsequent update to take place during the update
in step 13 (and while the other processors execute step 16).

In Figure 3, we illustrate by example how our local matrices are stored in
practice. The blocks are stored columnwise in a one-dimensional block vector
indexed by a column pointer (CP) array. The entries in CP are pointers to the
first block of each block column.

Figure 4 shows how the two sets of buffers are used in Algorithm 2. The light
shaded blocks are those used for the update of iteration i. The darker shaded
blocks are those computed during iteration i for use in iteration i + 1. After the
panel factorization the communication algorithm is started and it will broadcast
the panel and its transpose to all processors with this data stored in the second
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SBP Storage
Logical view

CP(0)

CP(1)

CP(2)

SBP Storage
Physical viewFull storage

Global symmetric
or triangular matrix

Globally On processor p(0, 0)

 = Wasted

Fig. 3. Illustration of how a 7×7 block global matrix is laid out on a 2×3 mesh in SBP
format and addressed with its column pointer (CP) array. The full size of the global
matrix is 7NB×7NB.

S   i+1
  i

i i+1

W

S
  i
  i+1

W

i i+1

Panel i+1

Process to the right of Panel i+1Process owning Panel i+1

Fig. 4. Data layout for the SBP with double sets of W and S border vectors

set of buffers. While this communication takes place, the first set of buffers is
used to finish the update of iteration i.

3.2 A Distributed RFP Algorithm for Cholesky Factorization

Because of the good performance achievable with RFP format in a serial envi-
ronment (see [9]) we investigated its extension to parallel environments via using
ScaLAPACK and PBLAS. Algorithm 3 gives the details of the RFP Cholesky
algorithm. The limitations of PBLAS and ScaLAPACK do not generally allow
matrices to begin inside an elementary block; each submatrix must be block
aligned. Therefore, we use the RFP format on the block level, introducing some
wasted storage and thus achieve minimum block storage while still being able to
use RFP with existing routines.

The RFP format could be used with an algorithm similar to the one we used
with SBP. Such an RFP algorithm would probably achieve similar performance
to the SBP algorithm so we did not develop any implementation of it.
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Algorithm 3. RFP Cholesky with ScaLAPACK/PBLAS routines

1: Matrix A is in RFP format: A =
[

A11\AT
22

A21

]

2: Factor A11 = LLT using ScaLAPACK routine PDPOTRF
3: Update panel A21 := A21L

−T using PBLAS routine PDTRSM
4: Update trailing matrix A22 := A22 − A21A

T
21 using PBLAS routine PDSYRK

5: Factor A22 = LLT using ScaLAPACK routine PDPOTRF

4 Related Work on DM Cholesky Factorization

We briefly discuss other packed storage schemes for DM environments.
D’Azevedo and Dongarra suggested in 1997 a storage scheme where the ele-

mentary blocks are mapped to the same processor as in the full storage case, but
only the non-redundant blocks are stored [6]. Each block column is stored as a
submatrix the same way as it would in full storage. The result is that each block
column is a regular ScaLAPACK matrix and can be used as such. Note that the
blocks will be mapped to the same processors as the SBP format, but the local
processor storage layout is different. Benefits include routine reuse via PBLAS
and ScaLAPACK routines. However, some new PBLAS routines seem to be re-
quired to handle the packed storage [6]. Furthermore, their results indicate that
the performance varies wildly with input, making performance extrapolation
difficult.

Recently, Marc Baboulin et al. presented a storage scheme which uses rela-
tively large square blocks consisting of at least LCM(p, q)1 elementary blocks [2].
This format also supports code reuse via PBLAS and ScaLAPACK. The gran-
ularity is limited to the distributed block size, which means less possibility to
save memory. For the Cholesky factorization routines, the chosen block sizes for
performance measurements were between 1024 and 10240. This resulted in a de-
parture from their minimum storage by as much as 7–13%. Using their minimum
allowed distributed block size would bring this percentage down to about 1–3%
but at the cost of longer execution times.

5 Performance Results and Comparison

In this section we give some performance related results. We compare RFP, SBP
and ScaLAPACK routines and analyze the differences that we observed.

All tests were performed on the Sarek cluster at HPC2N. It consists of 190
HP DL145 nodes, with dual AMD Opteron 248 (2.2GHz) processor and 8 GB
memory per node. The AMD Opteron 248 processor has a 64 kB instruction
and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache
(16-way associative). The cluster’s operating system is Debian GNU/Linux 3.1
and we used Goto BLAS 0.94 throughout.
1 The least common multiple of the integers a and b (written LCM(a, b)) is the smallest

integer that is a multiple of both a and b.
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Table 1. Execution times for PDPOTRF and the SBP algorithm with iteration overlap
for various square grid sizes. The block size NB is set to 100.

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/0.86 1.48/0.63 1.04/0.66 0.79/0.68 0.63/0.64 0.57/0.65
8000 14.80/0.92 8.29/0.80 5.33/0.79 3.97/0.77 3.15/0.71 2.64/0.73

12000 25.20/0.83 16.30/0.80 10.90/0.84 8.27/0.80 7.11/0.78
16000 57.30/0.84 34.50/0.85 24.00/0.85 18.30/0.80 13.90/0.85
20000 65.00/0.85 43.90/0.86 33.00/0.81 25.90/0.84
24000 53.90/0.84 42.30/0.85

Table 1 shows selected times for both PDPOTRF and the SBP algorithm with
iteration overlap. Each cell has the form X/y, where X is the time (in seconds)
of the PDPOTRF routine and y = Y/X, where Y is the time for the SBP algo-
rithm. The same block size was used for both implementations. We identify two
trends. First of all, the relative gain by overlapping increases with the number
of processors since the idle time is introduced on the entire mesh. The bigger
the mesh the more idle time we can remove by overlapping. Second, the relative
gain decreases with increasing problem sizes. This is expected because the dom-
inant operation is the trailing matrix update (with O

(
N3

)
flops) whereas the

operations causing idle time (the panel factorization) make up for only O
(
N2

)
flops.

Table 2. Execution time for PDPOTRF and the RFP algorithm using ScaLAPACK
routines for various grid sizes

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/1.26 1.48/1.16 1.04/1.18 0.79/1.44 0.63/1.42 0.58/1.34
8000 14.80/1.48 8.29/1.25 5.33/1.23 3.97/1.37 3.15/1.33 2.64/1.33

12000 25.20/1.41 16.30/1.14 10.90/1.34 8.27/1.33 7.11/1.29
16000 57.30/1.16 34.50/1.34 24.00/1.28 18.30/1.20 13.90/1.34
20000 65.00/1.13 43.90/1.40 33.00/1.22 25.90/1.25

Table 2 is similar to Table 1 but shows selected times for PDPOTRF and our
RFP algorithm which uses four calls to ScaLAPACK/PBLAS routines. Each cell
has the form X/y, where X is the time (in seconds) of the PDPOTRF routine and
y = Y/X, where Y is the time for the RFP algorithm. As can be seen from
this table the RFP algorithm has typically a 10–30% longer execution time.
By tracing the execution of the algorithm we found two substantial causes for
this overhead. The performance of the BLAS operations issued by the RFP
algorithm was less efficient than was typical for the other algorithms we tested.
Moreover, there are more synchronization points in the RFP algorithm due to
the two ScaLAPACK and two PBLAS calls on problems half the size. This
amplifies the communication overhead and load imbalance. Taken together, this
would probably explain most of the time differences we observed. One interesting
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detail to note in Table 2 is that when the local matrix dimension is 4000 the RFP
algorithm experienced a dramatic loss in performance (emphasized by italics in
Table 2). This is caused by a cache effect because the leading dimension is
actually 4100 which is close to 212 = 4096; also the L1 cache on Sarek is only
2-way set associative.

The block size mainly affects performance of the BLAS operations and the
load balance. Larger blocks tend to give good BLAS performance but less load
balance. For the SBP algorithm the block size is intimately related to BLAS
performance because then all GEMM calls are on matrices of order NB. The ScaLA-
PACK algorithm is less dependent on the block size because of the fewer and
larger PBLAS operations. Table 3 gives an idea of how the block size relates to

Table 3. Impact of block size on performance (measured in Gflops/s per processor)
for ScaLAPACK PDPOTRF and our overlapping SBP algorithm

NB PDPOTRF Overlapping
25 2.08 1.91
50 2.12 2.57
75 2.09 2.75
100 2.15 3.04
125 2.24 3.06
150 2.13 3.04

performance for both of these algorithms. The processor mesh was 2×3 and the
order of the matrix was N=6000. On Sarek we see that when we approach a block
size of 100 we get close to optimal performance, whereas the block size does not
matter much for the ScaLAPACK routine. The gap in performance between the
two routines is mainly due to less idling in the overlapping routine.

Finally, we note that our overlapping SBP algorithm could be modified so
that it updates first and factorizes the next panel afterwards. This makes the
algorithm essentially equal to the straightforward implementation but with a dif-
ferent data format. We implemented this variant too and found that as expected
it gave performance nearly identical to the ScaLAPACK algorithm.

6 Future Work

We outline some future directions of development. Our overlapping algorithm
relies on the idea that the task of trailing matrix update can be divided into two
tasks: the first panel on the column of processors holding the pivot and the rest
of the panels on all processors. This allows us to have two iterations on the same
processor, but three is not possible. A solution is to further divide the tasks.
The trailing matrix update could for example be divided into one task for each
block column. Instead of waiting for data it now becomes attractive to do smaller
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tasks instead. The order of the tasks thus becomes non-deterministic because it
would depend on processor interactions. To get a clean implementation it might
be necessary to use a style reminiscent of a work pool.

The overlapping algorithm relies heavily on the interleaving of communica-
tion and updates. One consequence of the overlapping is that more workspace is
needed. In general each ongoing iteration will require its own W and S buffer. It is
preferable to have many iterations ongoing because in that way more work is kept
at each processor and chances for idling will get reduced. The concept of looka-
head in factorization algorithms has been addressed several times (cf. [1,5,7]) and
recently in [10]. The emphasis of the latter contribution is that a dynamic looka-
head is most appropriate. A large lookahead is not feasible in a DM environment
because of the large workspace required. Setting a fixed cap (or dynamic relative
to a fixed workspace) on the number of iterations may be a feasible solution.

Our work provides an argument for the inclusion of nonblocking collective com-
munication routines in communication libraries. The de-facto industry standard
MPI has substantial support for nonblocking point-to-point communication but
collectives are all blocking. Our implementation emulates nonblocking collectives
by repeatedly testing for individual completion of nonblocking point-to-point op-
erations. This complicates the code and probably comes at a higher cost than
would have been the case if nonblocking collectives existed as part of the library.

7 Conclusion

We have implemented and compared three algorithms and data formats for min-
imum block storage in distributed memory environments using a 2D block cyclic
data layout.

In a serial environment, the RFP format is an attractive choice [9]. However,
the straightforward generalization of serial RFP algorithms has some weaknesses.

The SBP format was implemented and tested with two algorithm variants.
One resembles ScaLAPACK’s PDPOTRF but makes no use of PBLAS or ScaLA-
PACK routines, and one overlaps iterations. We have demonstrated that per-
formance at least as good as the ScaLAPACK algorithm is attainable, and for
the overlapping variant far better performance, especially for small and medium
sized matrices, was achieved.

The ideas that we explored in this work can be applied to many other algo-
rithms as well. Two examples very similar to the Cholesky factorization are the
LU and QR factorizations.

Acknowledgements. This research was conducted using the resources of the
High Performance Computing Center North (HPC2N). Financial support has
been provided by the Swedish Research Council under grant VR 621-2001-3284
and by the Swedish Foundation for Strategic Research under grant A3 02:128.



Parallel Cholesky Factorization Using Packed Block Storage 559

References

1. Agarwal, R.C., Gustavson, F.G.: A parallel implementation of matrix multipli-
cation and LU factorization on the IBM 3090. In: Wright, M. (ed.) Aspects of
Computation on Asynchronous and Parallel Processors, pp. 217–221. IFIP, North-
Holland, Amsterdam (1989)

2. Baboulin, M., Giraud, L., Gratton, S., Langou, J.: A distributed packed storage for
large parallel calculations. Technical Report TR/PA/05/30, CERFACS, Toulouse,
France (2005)

3. Blackford, L.S., et al.: ScaLAPACK user’s guide. SIAM Publications (1997)
4. Choi, J., Dongarra, J.J., Ostrouchov, S., Petitet, A.P., Walker, D.W., Whaley,

R.C.: Design and implementation of the ScaLAPACK LU, QR, and Cholesky fac-
torization routines. Scientific Programming 5(3), 173–184 (1996)

5. Dackland, K., Elmroth, E., Kågström, B.: A ring–oriented approach for block ma-
trix factorizations on shared and distributed memory architectures. In: Sincovec,
R.F., et al. (eds.) SIAM Conference on Parallel Processing for Scientific Comput-
ing, pp. 330–338. SIAM Publications (1993)

6. D’Azevedo, E., Dongarra, J.: Packed storage extension for ScaLAPACK. Technical
Report UT-CS-98-385 (1998)

7. Gustavson, F.: Algorithm compiler architecture interaction relative to dense linear
algebra. Technical Report RC 23715, IBM Thomas J. Watson Research Center
(September 2005)

8. Gustavson, F.: New generalized data structures for matrices lead to a variety of
high performance dense linear algebra algorithms. In: Dongarra, J.J., Madsen, K.,
Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 11–20. Springer, Heidelberg
(2006)

9. Gustavson, F.G., Wasniewski, J.: Rectangular Full Packed Format for LAPACK Al-
gorithms Timings on Several Computers. In: Kågström, B., Elmroth, E., Dongarra,
J., Wasniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 570–579. Springer, Hei-
delberg (2007)

10. Kurzak, J., Dongarra, J.: Implementing Linear Algebra Routines on Multi-core
Processors with Pipelining and a Look Ahead. In: Kågström, B., Elmroth, E.,
Dongarra, J., Wasniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 147–156.
Springer, Heidelberg (2007)



In-Place Transposition of Rectangular Matrices

Fred G. Gustavson1 and Tadeusz Swirszcz2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
fg2@us.ibm.com

2 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland

swirszcz@mini.pw.edu.pl

Abstract. We present a new Algorithm for In-Place Rectangular Trans-
position of an m by n matrix A that is efficient. In worst case it is
O(N log N) where N = mn. It uses a bit-vector of size IWORK words to
further increase its efficiency. When IWORK=0 no extra storage is used.
We also review some of the other existing algorithms for this problem.
These contributions were made by Gower, Windley, Knuth, Macleod,
Laffin and Brebner (ACM Alg. 380), Brenner (ACM Alg. 467), and Cate
and Twigg (ACM Alg. 513). Performance results are given and they are
compared to an Out-of-Place Transposition algorithm as well as ACM
Algorithm 467.

1 Introduction

We present a new algorithm that requires little or no extra storage to transpose a
m by n rectangular (non-square) matrix A in-place. We assume that A is stored
in the standard storage format of the Fortran and C programming languages. We
remark that many other programming languages use this same standard format
for laying out matrices. One can prove that it requires O(N log N) operations
in worst case where N = mn. It uses a bit-vector of size IWORK words to further
increase its efficiency. When IWORK=0 no extra storage is used. When IWORK =
m*n/ws where ws is the word size the algorithm has O(N) complexity.

Matrix AT is an n by m matrix. Now both A and AT are simultaneously
represented by either A or AT . Also, in Fortran, A and AT are stored stride one
by column. An application determines which format is best and frequently, for
performance reasons, both formats are used. Currently, Dense Linear Algebra
libraries do not contain in-place transpose algorithms when m �= n.

Our algorithm is based on following the cycles of a permutation P of length
q = mn − 1. This permutation P is defined by the mapping of A onto AT

that is induced by the standard storage layouts of Fortran and C. Thus, if one
follows a cycle of P then one must eventually return to the beginning point
of this cycle of P . By using a bit vector one can tag which cycles of P have
been visited and then a starting point for each new cycle is easily determined.
The cost of this algorithm is easily seen to be O(q) which is minimal. Now, we
go further and remove the bit vector. Thus, we need a method to distinguish

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 560–569, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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between a new cycle and a previous cycle (the original reason for the bit vector).
A key observation is that every new cycle has a minimum starting value. If we
traverse a proposed new cycle and we find an iterate whose value is less than
the current starting value we know that the cycle we are generating has already
been generated. We can therefore abort and go on to the next starting value. On
the other hand, if we return to the original starting value, thereby completing a
cycle, where every iterate is larger than this starting value we are assured that a
new cycle has been found and we can therefore record it. Our algorithm is based
on this simple idea which is originally due to Gower [2,7]. In [7] Knuth does
an in depth complexity analysis of Gower’s Algorithm as it applied to in-situ
permutation in general. Knuth showed that in-situ permutation had an average
case complexity of O(n log n) but worst case of O(n2). However, in the special
case when both P and P−1 are known (this includes matrix transposition), the
worst case is reduced to O(n log n). Now, using P and P−1 is equivalent to
searching a cycle in both directions which we did by the BABE (Burn At Both
Ends) programming technique.

References [6,4,8,9,10,13] all emphasize the importance of the fundamental
mapping P (k) = mk mod q. Here 0 < k < q, i = �k/n�, j = k − ni and
P (k) = i+mj is the location of Aij assuming Fortran storage order and 0-origin
subscripting of Aij . Aij moves to (AT )ij under this mapping.

Our algorithm Modified In-Place Transpose (MIPT) is closely related to ACM
Alg. 467 [8]. However, algorithm MIPT has the following four new features. First,
we use the BABE approach which makes our code provably O(N log N) in worst
case. Second, MIPT removes a bug in ACM Alg. 467. Third, MIPT stores a bit
vector in an integer array as opposed to using an integer array to just store 0 or
1. Fourth, the BABE inner loop of MIPT has been made more efficient than the
inner loop of ACM Alg. 467.

To remove the bug, we did not use the mapping P (k). We used instead the
Fortran statement KBAR=M*K-Q*(K/N). The map P (k) can cause destructive in-
teger overflow whereas the Fortran statement does not.

Our algorithm MIPT stores a bit vector in integer array MOVE of size IWORK
instead of having each element of MOVE hold 0 or 1. Thus, this gives a factor
of 32 storage gain over ACM Algs. 380, 467, and 513. Our experiments indicate
that a fixed size for IWORK, say 100 words, is always a good idea. Finally, we have
made several other changes to ACM Alg. 467 which we describe in Section 3.

In Section 2, we describe our basic key idea first discovered by Gower and
later used by most of our references. In Section 3, we fully describe Alg. MIPT. It
uses our discovery of a duality result which is a key feature of Alg. MIPT. We call
attention to Theorem 7 of [9] which proves that if a self dual cycle exists then
the dual cycle mechanism used in our Alg. MIPT (also in ACM Algs. 467 and
513) meets “in the middle” and so the recording of dual and self cycles can be
merged into single piece of code. In Section 4, we prove that k̄ = KBAR. Section 5
gives performance studies. Section 6 traces the history of research on the subject
of in-place transpose.
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2 The Basic In-Place Transposition Algorithm IPT

ALGORITHM IPT (m,n,A)
DO cnt = 1, mn-2
k = P(cnt)
DO WHILE (k > cnt)
k = P(k)

END DO
IF (k = cnt) then
Transpose that part
of A which is in the
new cycle just found

ENDIF
END DO

We have just described Gower’s algorithm; see pages 1 and 2 of [2] and page
2 of [7]. The algorithm IPT does extra computation in its inner while loop. Here
is an observation. Sometimes the algorithm IPT completes while cnt is still on
the first column of A; i.e. before cnt reaches m. However, when P has small
cycles this causes cnt to become much larger before IPT completes. Also, one
can compute the number of one-cycles in P for any matrix A. This is a greatest
common divisor (gcd) computation and there are 1 + gcd(m − 1, n − 1) one
cycles. Since non-trivial one cycles always occur in the interior of A; ie, for large
values of cnt, knowing their number can sometimes drastically reduce the cost of
running IPT. To see this, note that the outer loop of IPT runs from 1 to mn− 2.
If one records the total cycle count so far tcc then one can leave the outer loop
when tcc reaches mn. We now rename the modification of IPT that uses the gcd
logic and the tcc count our basic algorithm IPT.

3 Descriptive Aspects of Algorithm MIPT

A programming technique called BABE can be used to speed up the inner while
loop of IPT. BABE traverses the while loop from both ends and thus requires
use of both P and P−1. This additionally guarantees that MIPT will have a
worst case complexity of O(N log N). Use of BABE allows one to use functional
parallelism; [11]. More importantly, matrix elements are not accessed during the
inner while loop and so no cache misses occur. In fact the inner while loop
consists entirely of register based fixed point instructions and hence the inner
loop will perform at the peak rate of many processors. The actual transposition
part of IPT runs very very slowly in comparison to the inner loop processing: Any
cycle of P usually accesses the elements of A in a completely random fashion.
Hence, a cache miss almost always occurs for each element of the cycle; thus,
the whole line of the element is brought into cache and the remaining elements
of the line usually never get used. On the other hand, an out-of-place transpose
algorithm allows one to bring the elements of A into and out of cache in a fairly
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structured way. These facts illustrate the principle of “trading storage to increase
performance”.

Let k̄ = P (k) and l = q − k. One can show that P (l) = q − k̄. Thus, let
cnt generate a cycle and suppose that iterate l = q − cnt does not belong to
this cycle. Then q − cnt also generates a cycle. This result shows that a duality
principle exists for P . The criterion for cnt is j ≥ cnt for every j in the cycle.
For q − cnt the criterion is j ≤ q − cnt for every j in the companion cycle.

The value q is the key to understanding P and hence our algorithm. Let k
be the storage location of Aji, 0 < k < q. One can show P (k) = mk mod q.
P (k) is the storage location of Aij . If d is a divisor of q, then every iterate
of d also divides q. Hence, when cnt starts at d one can alternatively look at
k̄ = mod(nk, q/d) where cnt begins at 1. So, we can partition 0 < k < q into
a disjoint union over the divisors of d of q. For each d, we can apply a suitable
variant of algorithm IPT, called algorithm MIPT, as a routine that is called for
each d of q. This master algorithm drastically reduces the operation count of
the inner while loop of algorithm IPT. These remarks also describe several of
the features of ACM Alg. 467. Not mentioned is our use of integer array MOVE
to hold a bit vector (Alg. 467 uses the elements of its integer MOVE array to hold
either a 0 or 1). We mention our clever use of combining the search for a possible
new cycle with its dual cycle when such a dual cycle exists. When a dual cycle
does not exist, ACM Algs. 467 and 513 use self duality and meet in the middle.
However, when a dual cycle exists, the two new cycles are found using just P
; see also Theorem 7 on page 106 of [9]. Thus, to use our BABE approach we
needed a fast way to determine, apriori, when a cycle had a dual cycle.

3.1 Apriori Determination of Dual / Self Dual Cycles

The results of Knuth [7] and Fich et. al. [12] allowed us to prove that our BABE
approach was sufficient to guarantee an O(N log N) running time of Algorithm
MIPT. However, we need a way to modify the current Algorithm MIPT to do this:
Every divisor d of q is a cycle minima. Hence, at no additional cost, one finds CL
the cycle length of minima d. Knowing CL one can use Theorem 7 of [9] which
states that a cycle is self dual if and only if nCL/2 = q − 1. This computation is
very cheap if one uses powers-of-two doubling.

3.2 Some Details on Algorithm MIPT

We now describe the overall features of Algorithm MIPT by further contrasting
it to the three earlier algorithms [6,8,9].

Both Brenner [8] and later Cate and Twigg [9] improved Laflin and Brebner’s
algorithm [6] by combining the dual and self dual cases into a single processing
case. Brenner went further when he applied some elementary Abelian group
theory: the natural numbers 0 < i < mn partition into nd Abelian groups
where nd is the number of divisors d of φ(q); φ is Euler’s phi function. We
have q =

∑
d|q ord(Gd) and ord(Gd) = φ(q/d). We and he both recognized that

this partition can sometimes greatly reduce the time spent in the search for cycle
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minima. However, the inner loop now becomes a double loop where its inner loop
must run over only the numbers relatively prime to φ(q/d). This complication
forces the overhead of the inner inner loop to increase. However, sometimes the
cycle minima search is drastically reduced; in those cases the overall processing
time of the new double inner loop is greatly reduced. All three algorithms [6,8,9]
combine a variant of our bit vector algorithm with Gower’s algorithm. By variant
we mean they all use an integer sized array of size IWORK to just hold a bit. They
all say that setting the length of IWORK equal to (m+n)/2 is a good choice. Now
by using a bit vector we gain a factor of 32 over their use of integer array MOVE.
However, locating and accessing / testing a bit in a 32 bit word has a higher
processing cost than a simple integer compare against 0 / 1. Quite simply, the
bit vector approach is more costly per unit invocation. However, since one gains
a factor of 32 in the size of IWORK at no additional storage cost the number of
times the costly inner loop will be entered will be lessened and overall, in some
cases, there will be a big gain in the processing time of Algorithm MIPT.

4 Integer Overflow and the Fortran mod Function

Previously, we have seen that P (k) = mk mod q where 0 < k < q, i = �k/n�, j =
k−ni and P (k) = i+mj is the location of Aij assuming Fortran storage order and
0-origin subscripting of Aij . Aij moves to AT

ij under this mapping. Now, one can
safely use this ij direct definition of P (k) in a Fortran program as integer overflow
cannot occur. But, by using the Fortran mod function to compute P (k) instead,
one can increase the speed of computing P (k) and hence increase the speed of
the inner loop processing of Algorithm MIPT. But integer overflow can occur
when using the Fortran mod formula for P (k). And this Fortran mod formula
then computes an unwanted result. More bluntly, the use of the Fortran mod
formula produces a bug in Brenner’s ACM Alg. 467! In ACM Algs. 380 and 513
the authors compute m*k-q*(k/n) as the value for P (k). Now, integer overflow
also does occur. However, despite the overflow occuring, the Fortran formula
m*k-q*(k/n) computes P (k) correctly. Both [6,9] fail to note this possibility
of overflow although [9] states that the Fortran formula m*k-q*(k/n)computed
faster than the CDC 6600 system modulo function. Further thought would have
shown why this is so as these two formulas must compute different results in the
case of integer overflow. In any case, we now prove in the Lemma below that
m*k-q*(k/n) computes P (k) correctly.

Lemma: Given are positive integers m and n. Let q = mn−1 such that q ≤ 231−1.
Let 0 < k < q with k relatively prime to q. Set k̄ = mk mod q and i = �k/n�.
Then k̄ = mk − iq. Let KBAR=M*K-(K/N)*Q be a Fortran statement where I, K,
M, N, Q and KBAR are INTEGER*4 Fortran variables. We shall prove KBAR = k̄.

Proof: Put j = k − ni. Then k̄ = i + jm = mq − iq as simple calculations show.
Let mk = q1 × 232 + r1 and iq = q2 × 232 + r2 with 0 ≤ rl < 231, l = 1, 2. Let
rl = bl × 231 + sl, l = 1, 2. Here 0 ≤ bl ≤ 1 and 0 ≤ sl ≤ 231. Again simple
calulations show that k̄ = s1 − s2 when b1 = b2 and k̄ = 231 + s1 − s2 when



In-Place Transposition of Rectangular Matrices 565

b1 �= b2. Also, 0 < k̄ < q is representable by INTEGER*4 Fortran variable KBAR.
Suppose b1 = b2 = 0. Then M*K equals s1, -I*Q equals −s2 and the Fortran sum
KBAR equals s1 − s2 = k̄. Also, if b1 = b2 = 1, then M*K equals −(231 − s1) and
-I*Q equals 231 − s2. Their algebraic sum equals s1 − s2 = k̄ which also equals
the Fortran sum KBAR. Note that when b1 = b2, KBAR is the sum of terms of
mixed sign and overflow will not occur. Now suppose b1 = 0 and b2 = 1. Then
M*K equals s1 and -I*Q equals 231 − s2. Both operands are positive and their
Fortran sum KBAR = their actual sum k̄. Since k̄ is a 32 bit positive integer no
overflow will occur. Finally, let b1 = 1 and b2 = 0. Then M*K equals −(231 − s1)
and -I*Q equals −s2. After setting −231 = −232 + 231 we find the actual sum
equals −232 + k̄. However, in this case, for 32 bit arithmetic, overflow always
occurs and thus KBAR = k̄. This completes the proof.

5 Performance Studies of MIPT

In the first experiment, run only on a Power 5, ACM Alg. 467 was compared to
MIPT. 190 matrices of row and column sizes from 50 to 1000 in steps of 50 were
generated and one experiment was conducted. We made two runs where IWORK
= 0 and 100. When IWORK = 0 both codes do not use their arrays MOVE as their
sizes are zero. When IWORK = 100, MIPT uses 3200 entries of k whereas ACM
Alg. 467 uses 100 entries of k to reduce their respective inner loop searches. We
ruled out the cases when m = n as both codes are then the same. There are
19*20/2 = 190 cases in all. We label these cases from 1 to 190 starting at m=1000,
n=950. Thus m=1000, n=950:50:-50 are cases 1 to 19, m= 950, n=900:50:-50
are cases 20 to 37 and so on down to m=100, n=50 which is case 190. Our
performance results as functions of m and n are essentially random. Results in
both Tables are separated into good and bad cases. The good cases mean that
MIPT is faster than ACM Alg. 467 and the bad cases mean the opposite. The
good and bad cases are ordered into buckets of percent. A good case in bucket
10 means that MIPT is between 10 to 11 % faster than Alg. 467. In general a
good case in bucket j means that MIPT is between j % to (j+1) % faster than
Alg. 467. A result in bucket j (bad or good) translates to a factor of 1 + j/100
to 1 + (j+1)/100 times faster. If j >= 100, then one of the algorithms is more
than twice as fast as the other.

---------------------TABLE 1 ( IWORK = 0 )-------------------------------

5 BAD CASES as 2 Triples of %j : # of Problems : Problem Numbers

0:1: 142

1:4: 18 81 139 147

-------------------------------------------------------------------------

185 GOOD CASES as 5 Triples of %j : # of Problems : Problem Numbers

0:12: 38 51 60 86 87 107 113 125 127 128 142 155

1:36: 8 16 21 23 24 27 30 36 55 62 65 71 74 78 93 95 101 102 104 115 129

130 135 137 146 156 160 167 170 171 172 173 177 180 183 184

2:62: 5 9 11 13 14 15 20 26 28 29 31 32 33 34 41 45 46 49 50 54 58 61 63

66 72 75 77 79 80 85 88 89 92 94 103 105 108 109 110 117 118 119 120 122
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126 131 132 134 136 138 143 144 148 152 162 163 168 169 176 178 185 188

3:72: 1 2 3 4 6 7 10 12 17 19 22 25 37 39 40 43 44 47 48 52 53 56 57 59

64 67 68 69 70 73 76 82 83 84 90 91 96 97 98 99 100 106 111 112 114 116

123 124 133 140 141 145 149 150 151 153 154 157 158 159 161 164 165 174

175 179 181 182 186 187 189 190

4:3: 35 121 166

-------------------------------------------------------------------------

The results of Table 1 demonstrate that Algorithm MIPT is always marginally,
about 3 %, faster than ACM Alg. 467.

---------------------TABLE 2 ( IWORK = 100 )-----------------------------

76 BAD CASES as 12 Triples of %j : # of Problems : Problem Numbers

0:20:21 29 32 33 38 42 46 49 60 74 75 76 80 87 113 125 128 139 147 164

1:20:9 16 24 27 31 45 61 65 78 81 88 105 118 121 136 137 143 146 150 156

2:9:62 79 84 93 95 107 117 127 166 | 3 4:102 115 119 129 | 4 2:34 160

5:5:108 134 148 167 177 | 6:2:69 171 | 7:2:98 152 | 8:4:70 111 172 176

11:2:112 174 | 15:2:123 135 | 16:4:37 54 161 178

13 more BAD CASES as 13 Pairs of ( %j Problem Number )

(10 173), (12 185), (13 145), (14 179), (19 162), (21 182), (25 99)

(29 180), (30 188), (38 184), (40 187), (54 189), (90 190)

------------------------------------------------------------------------

60 GOOD CASES as 9 Triples of %j : # of Problems : Problem Numbers

0:27:5 7 8 28 30 41 47 51 55 58 64 71 77 83 86 94 96 100 101 104 120

130 131 132 142 149 155

1:14:4 17 23 26 36 44 57 67 110 114 122 140 141 170

2:4:20 25 56 90 | 3:4:52 72 157 163 | 4:3:63 68 109 | 22:2:22 175

93:2:1 169 | 102:2:2 6 | 114:2:15 138

41 more GOOD CASES as 41 Pairs of ( %j Problem Number )

( 5 18), ( 7 116), (11 35), (18 91), (27 126), (34 10), (39 11), (40 12),

(46 92), (47 133), (48 59), (53 159), (56 124), (58 50), (62 14),

(66 66), (70 48), (71 158), (72 73), (76 43), (77 151), (82 183),

(84 186), (87 82), (89 144), (92 39), (94 89), (95 19), (97 85), (104 13),

(108 181), (110 53), (111 153), (112 3), (113 154), (116 168), (132 40),

(139 97), (144 103), (156 165), (186 106)

-------------------------------------------------------------------------

The results of Table 2 demonstrate that Algorithm MIPT benefits from using a
bit-vector approach as opposed to using an integer array whose elements repre-
sent just single bits. The unit overhead cost of bit processing is greater than a
straight integer-compare of zero or one. The 89 bad-case results are due to the
effect of the higher unit cost being greater than the savings afforded by inner
loop testing. For the 101 good cases, there are more savings afforded by inner
loop testing in MIPT and these savings more than offset the losses of higher unit
cost bit processing. Note that there are 55 bad cases and 56 good cases whose
percentage is less than 5. So, in these 101 cases performance is about equal. In
the remaining 89 cases of which 45 are good and 34 are bad there are 16 good
cases and no bad cases that are more than twice as fast.
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In the second experiment, done on an IBM Power 5 and a PowerPC 604,
Algorithm MIPT was compared to ESSL subroutine DGETMO which is an out-of-
place transpose routine. The major cost of Alg. MIPT over DGETMO has to do with
accessing a whole line of A with only one element being used. Now the PowerPC
604 has line size 4 whereas the Power 5 has line size 16. And qualitatively, the
two runs show this as the ratios are better on the Power 5.

-----------TABLE 3 on the Power 5 ( IWORK = 100 )----------------------

190 CASES 13 Triples of 100j% : # of Problems : Problem Numbers

4:22: 35 36 67 68 69 95 96 97 120 121 122 139 140 141 142 143 155 156

157 158 170 171

5:28: 20 30 32 33 34 51 52 64 65 66 91 93 94 98 109 110 116 117 118

119 136 137 138 149 150 159 160 172

6:45: 1 17 21 22 23 24 25 26 27 28 29 31 50 55 56 57 58 59 60 61 62 63

83 86 87 88 89 90 92 107 108 111 113 114 115 123 132 146 147 148

151 152 163 176 177

7:31: 16 38 39 41 42 43 44 47 48 49 53 70 81 82 84 100 101 102 104 105

106 129 130 131 134 153 164 166 167 173 181

8:19: 2 3 4 8 19 37 40 45 46 54 80 103 127 128 133 161 165 174 178

9:26: 5 6 7 9 10 11 12 13 14 71 72 73 74 75 76 77 78 79 112 125 126 135

145 162 179 185

10:3: 99 144 182 | 11:5: 85 168 180 184 188 | 12:1: 124

13:4: 15 154 186 189 | 14:1: 175 | 15:1: 169 |16:3: 183 187 190 | 46:1: 18

-------------------------------------------------------------------------

-----------TABLE 4 on the PowerPC 604 ( IWORK = 100 )--------------------

190 CASES 4 Triples of 100j% : # of Problems : Problem Numbers

0:39: 19 37 53 54 68 70 84 98 112 113 123 134 135 142 143 145 152 153

161 162 165 166 167 168 171 172 173 174 176 177 178 179 181 182

185 186 188 189 190

1:128: 8 10 11 12 13 14 15 16 17 27 28 29 30 31 32 33 34 35 36 41 43 44

45 46 47 48 49 50 51 52 55 57 58 59 60 61 62 63 64 65 66 67 69 71

72 74 75 76 77 78 79 80 81 82 83 85 86 87 88 89 90 91 92 93 94 95

96 97 99 100 101 102 103 104 105 106 107 108 109 110 111 114 115

116 117 118 119 120 121 122 124 125 126 127 128 129 130 131 132

133 136 137 138 139 140 141 144 146 147 148 149 150 151 154 155

156 157 158 159 160 163 164 169 170 175 183 184 187

2:22: 1 2 3 4 5 6 7 9 18 20 21 22 23 24 25 26 38 39 40 42 56 73 | 4:1: 180

------------------------------------------------------------------------

In Tables 3 and 4 we have made each bucket 100 times larger. So, a result in
bucket j translates to a factor of 1 + j to 1 + j+1 times faster. If j >= 1, then
DGETMO is more than twice as fast as Alg. MIPT. One can see, on the Power 5 in
Table 3, that DGETMO is more than five times faster than MIPT for all 190 cases.
It is more than ten times faster for 45 cases and for one case it is 48 times faster.
On the PowerPC604 DGETMO is again always faster. This time there are 39 cases
where it is not twice as fast, 128 cases where it is between 2 and 3 times faster,
22 cases where it is between 3 to 4 times faster and one case where it is 5.9 times
faster. So, Tables 3 and 4 corroborate the remarks made in paragraph one of
Section 3.
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In Section 1 we described our bit vector algorithm that was based on our
Algorithm IPT (see Section 2). On the Power 5 we compared its performance on
our set of 190 matrices against our Algorithm MIPTwith IWORK=100. Surprisingly,
MIPT was faster in 189 cases and in 15 cases it was more than twice as fast.

6 Discussion of Prior In-Place Transpostion Algorithms

We thought our algorithms were new; the second printing of Knuth, Vol. 1,
Fundamental Algorithms gave us this impression, see [4]. In [4], we became aware
of problem 12 of section 1.3.3 which posed the subject of our paper as an exercise.
The solution of problem 12 gave outlines of bit-vector algorithms but gave no
specific details. Additionally, Berman’s algorithm [1], the algorithm of Pall and
Seiden and ACM Algorithm 302 by Boothroyd [3] were cited. However, one of our
key discoveries was not mentioned: the use of the bit vector could be removed;
however, at the cost of many additional computer operations. Later, in [13],
Knuth additionally cites Brenner and ACM Algorithm 467, [8], Windley, [2],
himself, [7], Cate and Twigg, [9] and Fich, Munro, Poblete, [12].

Windley’s [2] paper gave three solutions to the in-place transposition problem
which was an exercise to students taking the Cambridge University Diploma in
Numerical Analysis and Automatic Computing. Berman’s algorithm was noted
but not considered. The first solution by M. Fieldhouse was an O(m2n2) algo-
rithm. J. C. Gower produced our basic algorithm IPT by first discovering one
of our key discoveries. Gower also used the count of the elements transposed to
speed up his algorithm. The third algorithm, due to Windley, was a variant of
Gower’s Algorithm which for each k, 0 ≤ k < mn placed one element of the
transpose in its correct position. Macleod, in [5], discusses in-situ permutation
that governed the matrix transposition. He presents a modification of Gower’s
Algorithm which he believed to be “the most efficient yet devised”. He notes that
its performance varied from reasonable to poor depending on the permutation
governing matrix transposition.

ACM Alg. 380, in Laflin and Brebner [6], also uses Gower’s and our later
key discovery. It also uses another discovery of ours: a duality principal. In [6],
duality was called symmetric. Laflin and Brebner [6] were first to describe the
duality result. Finally, ACM Alg. 380 uses an integer array MOVE of length IWORK.
The purpose of array MOVE was to reduce the cost of the additional computer
operations imposed by using the key discovery. ACM Alg. 380 gives empirical
evidence that IWORK should be set to (m + n)/2. We note the use of IWORK
produces a hybrid algorithm that combines the bit vector approach with the
use of the key idea. Brenner’s ACM Alg. 467 is an improvement of ACM Alg.
380. Cate and Twigg [9] discuss some theoretical results related to in-situ trans-
position and use these to accelerate ACM Algs. 302 and 380. ACM Alg. 302,
see [3] was an improvement of Windley’s algorithm. Finally, in [10] Leathers
presents experimental evidence that ACM Alg. 513 is inferior to ACM Alg. 467
and laments the publication of ACM Alg. 513. In [12], Fich, Munro and Poblete
give new computational complexity results on permuting in-place. When both
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P and P−1 are known they give in their Figure 5 on page 269 a modified version
of Gower’s Algorithm. We now briefly indicate why ACM Alg. 467 is faster than
ACM Algs. 380 and 513. All three algorithms use array MOVE to reduce the use
of their costly inner loops. If IWORK = mn then one is using our bit vector algo-
rithm and one completely avoids using this inner loop. Unfortunately, these three
algorithms are then no longer in-situ. ACM Algs. 467 and 513 use the duality
principle in an optimal way whereas ACM Alg. 380 does not. Finally, ACM Alg.
467 additionally recognizes when q has divisors d. When q has several divisors
d the costly inner loop search can be greatly reduced. We also discovered these
facts. In [9], Cate and Twigg note that the Fortran statement for KBAR is faster
than using the system function for P (k). For this reason, ACM Alg. 380 and 513
avoided a latent bug whereas ACM Alg. 467 did not. We find it a curious fact,
which we proved, that the formula for KBAR works in the case of integer overflow
whereas the Fortran definition of mod forces extra operations that, when integer
overflow occurs, compute an unwanted result.
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1 IBM T.J. Watson Research Center, Yorktown Heights NY 10598, USA
fg2@us.ibm.com

2 Informatics & Mathematical Modeling, Technical University of Denmark,
DK-2800 Lyngby, Denmark

jw@imm.dtu.dk

Abstract. We describe a new data format for storing triangular and
symmetric matrices called RFP (Rectangular Full Packed). The standard
two dimensional arrays of Fortran and C (also known as full format) that
are used to store triangular and symmetric matrices waste nearly half
the storage space but provide high performance via the use of level 3
BLAS. Standard packed format arrays fully utilize storage (array space)
but provide low performance as there are no level 3 packed BLAS. We
combine the good features of packed and full storage using RFP format
to obtain high performance using L3 (level 3) BLAS as RFP is full for-
mat. Also, RFP format requires exactly the same minimal storage as
packed format. Each full and/or packed symmetric/triangular routine
becomes a single new RFP routine. We present LAPACK routines for
Cholesky factorization, inverse and solution computation in RFP format
to illustrate this new work and to describe its performance on the IBM,
Itanium, NEC, and SUN platforms. Performance of RFP versus LA-
PACK full routines for both serial and SMP parallel processing is about
the same while using half the storage. Performance is roughly one to a
factor of 33 for serial and one to a factor of 100 for SMP parallel times
faster than LAPACK packed routines. Existing LAPACK routines and
vendor LAPACK routines were used in the serial and the SMP parallel
study, respectively. In both studies vendor L3 BLAS were used.

1 Introduction

Recently many new data formats for matrices have been introduced for improv-
ing the performance Dense Linear Algebra (DLA) algorithms. Two ACM TOMS
papers [2,1] and the survey article [5] give an excellent overview. Since then at
least two new ones have emerged, [6] and the subject matter of this paper, RFP
format.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 570–579, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Description of Rectangular Full Packed Format

We describe RFP (Rectangular Full Packed) format. It represents a standard
packed array as a full 2D array. By using RFP format the performance of
LAPACK’s [3] packed format routines becomes equal to or better than their
full array counterparts. RFP format is a variant of Hybrid Full Packed (HFP)
format [4]. RFP format is a rearrangement of a Standard full rectangular Array
(SA) holding a symmetric / triangular matrix A into a compact full storage
Rectangular Array (AR) that uses the minimal storage NT = n(n + 1)/2. Note
also that the transpose of the matrix in array AR also represents A. Therefore,
level 3 BLAS can be used on AR or its transpose. In fact, with the equivalent
LAPACK algorithm, using array AR or its transpose instead of array SA, gives
slightly better performance. Therefore, this offers the possibility to replace all
packed or full LAPACK routines with equivalent LAPACK routines that work
on array AR or its transpose.

3 Cholesky Factorization Using Rectangular Full Packed
Format

RFP format is a standard full array of size NT = n(n + 1)/2 that holds a
symmetric / triangular matrix A of order n. It is closely related to HFP format,
see [4], which represents A as the concatenation of two standard full arrays whose
total size is also NT . A basic simple idea leads to both formats. Let A be an
order n symmetric matrix. Break A into a block 2 × 2 form

A =
[
A11 AT

21
A21 A22

]
(1)

where A11 and A22 are symmetric. Clearly, we need only store the lower triangles
of A11 and A22 as well as the full matrix A21. When n = 2k is even, the lower
triangle of A11 and the upper triangle of AT

22 can be concatenated together along
their main diagonals into an (k + 1) × k dense matrix. This last operation is the
crux of the basic simple idea. The off-diagonal block A21 is k × k, and so it can
be appended below the (k + 1) × k dense matrix. Thus, the lower triangle of
A can be stored as a single (n + 1) × k dense matrix AR. In effect, each block
matrix A11, A21 and A22 is now stored in ‘full format’. This means all entries
of AR can be accessed with constant row and column strides. So, the full power
of LAPACK’s block level 3 codes are now available for RFP format which uses
the minimum amount of storage. Finally, ART which is k × (n + 1) has the
same desirable properties. In the right part of Figures 1 and 2 with n = 7 and
n = 6 we have introduced colors and horizontal lines to try to visually delineate
triangles T1, T2 representing lower, upper triangles of symmetric matrices A11,
AT

22 respectively and square or near square S1 representing matrix A21. After
each ai,j we have added its position location in the arrays A and AR.

We now describe a 2 by 2 block algorithm (BA) that naturally suggests itself
for use on RFP format. A has a block 2 × 2 form Cholesky factorization
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LAPACK full data format
n = 7

memory needed: n × n = 49⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,11 � � � � � �
a2,12 a2,29 � � � � �
a3,13 a3,210 a3,317 � � � �
a4,14 a4,211 a4,318 a4,425 � � �
a5,15 a5,212 a5,319 a5,426 a5,533 � �
a6,16 a6,213 a6,320 a6,427 a6,534 a6,641 �
a7,17 a7,214 a7,321 a7,428 a7,535 a7,642 a7,749

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A matrix A

,

Rectangular full packed
n = 7, memory needed:

n × (n+1)/2 = 28⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,11 a5,58 a6,515 a7,522

a2,12 a2,29 a6,616 a7,623

a3,13 a3,210 a3,317 a7,724

a4,14 a4,211 a4,318 a4,425

a5,15 a5,212 a5,319 a5,426

a6,16 a6,213 a6,320 a6,427

a7,17 a7,214 a7,321 a7,428

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A matrix AR

Fig. 1. Rectangular Full Packed format if n is odd

LLT =
[

L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
(2)

where L11 and L22 are lower triangular. Equation (2) is the basis of a 2 by 2 BA
on RFP. We now describe this by using existing LAPACK routines and level 3
BLAS (see figure 3). The BA with block sizes k and k + 1 where k = �n/2� or
k = n/2 is: see equations (1), (2) and Figures 1, 2, 3.

LAPACK full data format
n = 6

memory needed: n × n = 36⎛
⎜⎜⎜⎜⎜⎜⎝

a1,11 � � � � �
a2,12 a2,28 � � � �
a3,13 a3,29 a3,315 � � �
a4,14 a4,210 a4,316 a4,422 � �
a5,15 a5,211 a5,317 a5,423 a5,529 �
a6,16 a6,212 a6,318 a6,424 a6,530 a6,636

⎞
⎟⎟⎟⎟⎟⎟⎠

A matrix A

,

rectangular full packed
n = 6, memory needed:

(n+1) × n/2 = 21⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a4,41 a5,48 a6,415

a1,12 a5,59 a6,516

a2,13 a2,210 a6,617

a3,14 a3,211 a3,318

a4,15 a4,212 a4,319

a5,16 a5,213 a5,320

a6,17 a6,214 a6,321

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A matrix AR

Fig. 2. Rectangular Full Packed format if n is even

This covers RFP format when uplo = ‘L’, and n is odd (figure 1) and even
(figure 2). For uplo = ‘U’, for n even and odd similar layouts exist. Also, all of
these layouts have associated layouts for ART .

We now consider performance aspects of using RFP format in the context of
using LAPACK routines on triangular matrices stored in RFP format. The above
BA should perform about the same as the corresponding full format LAPACK
routine. This is because both the BA code and the corresponding LAPACK code
are nearly the same and both data formats are full format. Therefore, the BA
code should outperform the corresponding LAPACK packed code by about the
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1. factor L11L
T
11 = A11;

call POTRF(’L’,k,AR(1,1),n,info)
2. solve L21L

T
11 = A21;

call TRSM(’R’,’L’,’T’,’N’,k-1,k, &
one,AR(1,1),n,AR(k+1,1),n)

3. update AT
22 := AT

22 − L21L
T
21;

call SYRK(‘U’,’N’,k-1,k,-one, &
AR(k+1,1),n,one,AR(1,2),n)

4. factor UT
22U22 = AT

22;
call POTRF(‘U’,k-1,AR(1,2),n,info)

For n odd, and k = �n/2�

1. factor L11L
T
11 = A11;

call POTRF(’L’,k,AR(2,1),n+1,info)
2. solve L21L

T
11 = A21;

call TRSM(’R’,’L’,’T’,’N’,k,k,one, &
AR(2,1),n+1,AR(k+2,1),n+1)

3. update AT
22 := AT

22 − L21L
T
21;

call SYRK(‘U’,’N’,k,k,-one, &
AR(k+2,1),n+1,one,AR(1,1),n+1)

4. factor UT
22U22 = AT

22;
call POTRF(‘U’,k,AR(1,1),n+1,info)

For n even, and k = n/2

Fig. 3. The Cholesky Factorization Algorithm using RFP format

same margin as does the corresponding LAPACK full code. In [4] performance
results for HFP format on the IBM Power 4 Processor is given. Those results
are similar to what we obtained for RFP format. Here the gain of full RFP code
over packed LAPACK code is about a factor of one to 36 for serial processing
and about a factor of one to 97 for SMP parallel processing.

4 A Performance Study Using RFP Format

There are 11 tables giving performance results of LAPACK and RFP routines.
The LAPACK routines POTRF, PPTRF, POTRI, PPTRI, POTRS and PPTRS
are compared with the RFPTRF, RFPTRI and RFPTRS for Cholesky factoriza-
tion, inverse and solution respectively. In all cases real long precision arithmetic

Table 1. Performance in Mflops of Cholesky Factorization on SUN UltraSPARC-III
computer

n RFP LAPACK
NO TRANS TRANS POTRF PPTRF
U L U L U L U L

50 456 520 516 482 460 464 291 294
100 753 813 829 768 612 827 399 369
200 946 979 997 955 933 1150 455 370
400 1208 1231 1158 1183 1081 1244 483 339
500 1173 1227 1138 1186 1121 1340 511 343
800 1316 1318 1189 1269 1256 1310 522 324
1000 1275 1318 1281 1303 1313 1406 530 288
1600 1350 1387 1358 1312 1405 1234 502 223
2000 1264 1367 1403 1323 1360 1491 394 163
4000 1287 1450 1537 1263 1392 1565 300 153
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Table 2. Performance in Mflops of Cholesky Inversion on SUN UltraSPARC-III com-
puter

n RFP LAPACK
NO TRANS TRANS POTRI PPTRI
U L U L U L U L

50 379 379 380 381 330 328 318 338
100 698 696 699 700 698 707 412 446
200 1012 989 1008 997 1052 1030 467 558
400 1290 1223 1229 1263 1229 1212 452 606
500 1290 1276 1238 1330 1285 1276 448 595
800 1446 1445 1330 1356 1343 1325 408 566
1000 1428 1337 1442 1436 1378 1318 404 531
1600 1418 1372 1369 1396 1142 1317 262 450
2000 1387 1333 1370 1536 1400 1366 242 394
4000 1460 1408 1389 1453 1421 1395 201 288

Table 3. Performance in Mflops of Cholesky Solution on SUN UltraSPARC-III com-
puter

r n RFP LAPACK
h NO TRANS TRANS POTRS PPTRS
s U L U L U L U L

100 50 1132 1123 1153 1135 1103 1069 353 353
100 100 1193 1163 1237 1211 1262 1262 478 478
100 200 1477 1478 1500 1490 1280 1235 557 554
100 400 1494 1505 1514 1534 1150 1149 582 582
100 500 1466 1443 1436 1445 1217 1229 560 569
100 800 1503 1505 1535 1469 1151 1096 528 526
100 1000 1553 1524 1499 1576 1089 1125 513 513
160 1600 1595 1564 1603 1577 1155 1121 421 403
200 2000 1600 1636 1610 1615 1105 1087 347 338
400 4000 1666 1668 1696 1665 1080 1084 292 290

(double precision) is used. Results were obtained on several different computers
using everywhere the vendor level 3 and level 2 BLAS.

Due to space limitations, we cannot present all of our timing results. We
noticed a few anomalies in the performance runs for POTRS on SUN in Table 3,
the PP runs on NEC (Tables 7, 8 and 9) and the PP and PO runs on SUN
SMP parallel, Table 11. We have re-run these cases and have obtained the same
results. At this time we do not have a rational explanation for these anomalies.
Finally, our timings do not include the cost of sorting any LAPACK data formats
to RFP data formats and vice versa.

The tables from 1 to 9 show the performance comparison in Mflops of fac-
torization, inversion and solution on SUN UltraSPARC-III (clock rate: 1200
MHz; L1 cache: 64 kB 4-way data, 32 kB 4-way instruction, and 2 kB Write,
2 kB Prefetch; L2 cache: 8 MB; TLB: 1040 entries), ia64 Itanium (CPU: Intel
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Table 4. Performance in Mflops of Cholesky Factorization on ia64 Itanium computer

n RFP LAPACK
NO TRANS TRANS POTRF PPTRF
U L U L U L U L

50 781 771 784 771 1107 739 495 533
100 1843 1788 1848 1812 1874 1725 879 825
200 3178 2869 2963 3064 2967 2871 1323 1100
400 3931 3709 3756 3823 3870 3740 1121 1236
500 4008 3808 3883 3914 4043 3911 1032 1257
800 4198 4097 4145 4126 3900 4009 612 1127
1000 4115 4038 4015 3649 3769 3983 305 697
1600 3851 3652 3967 3971 3640 3987 147 437
2000 3899 3716 3660 3660 3865 3835 108 358
4000 3966 3791 3927 4011 3869 4052 119 398

Table 5. Performance in Mflops of Cholesky Inversion on ia64 Itanium computer

n RFP LAPACK
NO TRANS TRANS POTRI PPTRI

u l u l u l u l
50 633 659 648 640 777 870 508 460
100 1252 1323 1300 1272 1573 1760 815 810
200 2305 2442 2431 2314 2357 2639 1118 1211
400 3084 3199 3188 3094 3152 3445 1234 1363
500 3204 3316 3329 3218 3400 3611 1239 1382
800 3617 3741 3720 3640 3468 3786 1182 1268
1000 3611 3716 3637 3590 3456 3790 767 946
1600 3721 3802 3795 3714 3589 3713 500 609
2000 3784 3812 3745 3704 3636 3798 473 596
4000 3822 3762 3956 3851 3760 3750 467 614

Table 6. Performance in Mflops of Cholesky Solution on ia64 Itanium computer

r n RFP LAPACK
h NO TRANS TRANS POTRS PPTRS
s u l u l u l u l

100 50 2409 2412 2414 2422 3044 3018 725 714
100 100 3305 3301 3303 3303 3889 3855 1126 1109
100 200 4149 4154 4127 4146 4143 4127 1526 1512
100 400 4398 4403 4416 4444 4469 4451 1097 1088
100 500 4313 4155 4374 4394 4203 4093 1054 1045
100 800 3979 3919 4040 4051 3969 4011 692 720
100 1000 3716 3608 3498 3477 3630 3645 376 372
160 1600 3892 3874 4020 3994 4001 4011 188 182
200 2000 4052 4073 4040 4020 4231 4203 119 119
400 4000 4245 4225 4275 4287 4330 4320 115 144
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Table 7. Performance in Mflops of Cholesky Factorization on SX-6 NEC computer
with Vector Option

n RFP LAPACK
NO TRANS TRANS POTRF PPTRF

u l u l u l u l
50 206 200 225 225 365 353 57 238
100 721 728 789 788 1055 989 120 591
200 2028 2025 2005 2015 1380 1639 246 1250
400 3868 3915 3078 3073 1763 3311 479 1975
500 4483 4470 4636 4636 4103 4241 585 2149
800 5154 5168 4331 4261 3253 4469 870 2399
1000 5666 5654 5725 5703 5144 5689 1035 2474
1600 6224 6145 5644 5272 5375 5895 1441 2572
2000 6762 6788 6642 6610 6088 6732 1654 2598
4000 7321 7325 7236 7125 6994 7311 2339 2641

Table 8. Performance in Mflops of Cholesky Inversion on SX-6 NEC computer with
Vector Option

n RFP LAPACK
NO TRANS TRANS POTRI PPTRI

u l u l u l u l
50 152 152 150 152 148 145 91 61
100 430 432 428 432 313 310 194 126
200 950 956 940 941 636 627 404 249
400 1850 1852 1804 1806 1734 1624 722 470
500 2227 2228 2174 2181 2180 2029 856 572
800 3775 3775 3668 3686 3405 3052 1186 842
1000 4346 4346 4254 4263 4273 3638 1342 985
1600 5313 5294 5137 5308 5438 4511 1690 1361
2000 6006 6006 5930 5931 5997 4832 1854 1536
4000 6953 6953 6836 6888 7041 4814 1921 2122

Itanium2: 1.3 GHz, cache: 3 MB on-chip L3 cache), and NEC SX-6 computer
(8 CPU’s, per CPU peak : 8 Gflops, per node peak : 64 Gflops, vector register
length: 256). The tables 10 and 11 show the SMP parallelism of these subroutines
on the IBM Power4 (clock rate: 1300 MHz; two CPUs per chip; L1 cache: 128 KB
(64 KB per CPU) instruction, 64 KB 2-way (32 KB per CPU) data; L2 cache:
1.5 MB 8-way shared between the two CPUs; L3 cache: 32 MB 8-way shared
(off-chip); TLB: 1024 entries) and SUN UltraSPARC-IV (the same hardware pa-
rameters as SUN UltraSPARC-III except the clock rate: 1350 MHz) computers
respectively. They compare SMP times of RFPTRF, POTRF and PPTRF. The
tables 10 and 11 also show the times of the four operations (POTRF, TRSM,
SYRK and again POTRF) inside the new algorithm RFPTRF.
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Table 9. Performance in Mflops of Cholesky Solution on SX-6 NEC computer with
Vector Option

r n RFP LAPACK
h NO TRANS TRANS POTRS PPTRS
s U L U L U L U L

100 50 873 870 889 886 1933 1941 88 88
100 100 2173 2171 2200 2189 3216 3236 181 179
100 200 4236 4230 4253 4245 4165 4166 352 347
100 400 5431 5431 5410 5408 5302 5303 648 644
100 500 5563 5562 5568 5567 5629 5632 783 779
100 800 6407 6407 6240 6240 5569 5593 1132 1128
100 1000 6578 6578 6559 6558 6554 6566 1325 1320
160 1600 6781 6805 6430 6430 6799 6809 1732 1727
200 2000 7568 7569 7519 7519 7406 7407 1920 1914
400 4000 7858 7858 7761 7761 7626 7627 2414 2410

Table 10. Performance Times and MFLOPS of Cholesky Factorization on an IBM
Power 4 computer using SMP parallelism on 1, 5, 10 and 15 processors. Here vendor
codes for Level 2 and 3 BLAS and POTRF are used, ESSL library version 3.3. PPTRF
is LAPACK code. UPLO = ’L’.

n n Mflp Times
pr RFPTRF in RFPTRF LAPACK
oc POTRF TRSM SYRK POTRF POTRF PPTRF

1000 1 2695 0.12 0.02 0.05 0.04 0.02 0.12 0.94
5 7570 0.04 0.01 0.02 0.01 0.01 0.03 0.32
10 10699 0.03 0.01 0.01 0.01 0.00 0.02 0.16
15 18354 0.02 0.00 0.01 0.00 0.00 0.01 0.11

2000 1 2618 1.02 0.13 0.38 0.38 0.13 0.97 8.74
5 10127 0.26 0.04 0.10 0.09 0.04 0.24 3.42
10 17579 0.15 0.02 0.06 0.05 0.03 0.12 1.65
15 23798 0.11 0.02 0.04 0.04 0.01 0.13 1.11

3000 1 2577 3.49 0.45 1.33 1.28 0.44 3.40 30.42
5 11369 0.79 0.11 0.28 0.30 0.11 0.71 11.76
10 19706 0.46 0.06 0.19 0.16 0.05 0.38 6.16
15 29280 0.31 0.05 0.12 0.10 0.04 0.26 4.28

4000 1 2664 8.01 1.01 2.90 3.09 1.01 7.55 75.72
5 11221 1.90 0.26 0.68 0.72 0.24 1.65 25.73
10 21275 1.00 0.13 0.39 0.36 0.12 0.86 13.95
15 31024 0.69 0.09 0.28 0.24 0.08 0.59 10.46

5000 1 2551 16.34 2.04 6.16 6.10 2.04 15.79 154.74
5 11372 3.66 0.45 1.37 1.44 0.40 3.27 47.76
10 22326 1.87 0.25 0.78 0.62 0.22 1.73 28.13
15 32265 1.29 0.17 0.53 0.45 0.14 1.16 20.95
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Table 11. Performance in Times and Mflops of Cholesky Factorization on SUN
UltraSPARC-IV computer with a different number of Processors, testing the SMP
Parallelism. PPTRF does not show any SMP parallelism. UPLO = ’L’.

n n Mflp Times
pr RFPTRF in RFPTRF LAPACK
oc POTRF TRSM SYRK POTRF POTRF PPTRF

1000 1 1587 0.21 0.03 0.09 0.07 0.03 0.19 1.06
5 4762 0.07 0.02 0.02 0.02 0.02 0.07 1.13
10 5557 0.06 0.01 0.01 0.02 0.02 0.06 1.12
15 5557 0.06 0.02 0.01 0.01 0.02 0.06 1.11

2000 1 1668 1.58 0.22 0.63 0.52 0.22 1.45 11.20
5 6667 0.40 0.07 0.13 0.13 0.07 0.38 11.95
10 8602 0.31 0.06 0.07 0.11 0.07 0.25 11.24
15 9524 0.28 0.06 0.06 0.08 0.08 0.23 11.66

3000 1 1819 4.95 0.62 1.98 1.72 0.63 4.86 45.48
5 6872 1.31 0.20 0.42 0.48 0.20 1.38 55.77
10 12162 0.74 0.14 0.22 0.21 0.16 0.76 46.99
15 12676 0.71 0.14 0.16 0.30 0.16 0.61 45.71

4000 1 1823 11.70 1.52 4.62 4.01 1.55 11.86 112.52
5 7960 2.68 0.40 0.94 0.92 0.42 2.74 112.77
10 14035 1.52 0.26 0.47 0.49 0.30 1.61 112.53
15 17067 1.25 0.24 0.37 0.35 0.29 1.29 111.67

5000 1 1843 22.61 2.92 8.76 8.00 2.93 23.60 218.94
5 8139 5.12 0.77 1.81 1.80 0.74 5.45 221.58
10 14318 2.91 0.50 0.97 0.93 0.51 3.11 214.54
15 17960 2.32 0.45 0.72 0.68 0.47 2.40 225.08

5 Summary and Conclusions

This paper describes RFP format as a standard minimal full format for repre-
senting both symmetric and triangular matrices. Hence, these matrix layouts are
a replacement for both the standard formats of DLA, namely full and packed
storage. These new layouts possess three good features: they are supported by
level 3 BLAS and LAPACK full format routines, and they require minimal stor-
age.
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Abstract. We present two implementations of dense matrix multipli-
cation based on two different non-canonical array layouts: one based on
a hypermatrix data structure (HM) where data submatrices are stored
using a recursive layout; the other based on a simple block data layout
with square blocks (SB) where blocks are arranged in column-major or-
der. We show that the iterative code using SB outperforms a recursive
code using HM and obtains competitive results on a variety of platforms.

1 Introduction
A matrix representation is a method used by a computer language to store matri-
ces of more than one dimension in memory. Fortran and C use different schemes.
Fortran uses ”Column Major”, in which all the elements for a given column are
stored contiguously in memory. C uses ”Row Major”, which stores all the ele-
ments for a given row contiguously in memory. These two schemes are considered
canonical storage. The default column/row-major order used by programming
languages such as Fortran and C limits locality to a single dimension.

As processor speed continues to increase relative to memory speed, locality op-
timizations get to be a significant performance issue for algorithms operating on
large matrices. Data has to be reused in cache as effectively as possible: locality
has to be exploited. In low associativity caches conflicts should be avoided or re-
duced. A considerable amount of research has been conducted towards achieving
an effective use of memory hierarchies. Although we tried to be complete we are
sure we missed some references. Performance can only be obtained by matching
the algorithm to the architecture and vice-versa [1,2]. Conventional techniques
such as cache bloking or tiling [3,4,5,6], precopying [3,7] and padding [7,8] have
been used extensively. In addition, alternative storage formats have been pro-
posed to address the issue of locality. Next, we provide an overview of such
work.

1.1 Serial Dense Codes Using Non-canonical Array Layouts

A submatrix storage was proposed in [9] with the purpose of minimizing the page
faulting occurring in a paged memory system. The authors partition matrices
� This work was supported by the Ministerio de Educación y Ciencia of Spain

(TIN2004-07739-C02-01).
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into square submatrices, keeping one submatrix per page, obtaining orders of
magnitude improvement in the number of page faults for several common matrix
operations.

In the last ten years there have been several studies on the application of
non-canonical array layouts in uniprocessor environments. Recursivity has been
introduced into linear algebra codes. Block recursive codes for dense linear al-
gebra computations appear to be well-suited for execution on machines with
deep memory hierarchies because they are effectively blocked for all levels of
the hierarchy [10,11]. Unfortunately, some block recursive algorithms do not
interact well with the TLB [12]. This has led to the eruption of new storage
formats [13,14,15,16,17,18].

Different authors refer to a given data layout using different names. A data lay-
out where matrices are stored as submatrices which are in turn stored by columns
has been named as Submatrix storage in [9], BC in [13,2], SB in [10,16,19,20,21],
4D in [22], BDL in [23], and TDL in [24]. In this document we will refer to such
data layout as SB (Square Block Format). This name reflects the square nature
of the submatrices and is the one used most extensively in the literature.

Some studies have focused on the use of quadtrees or Space Filling Curves
(SFC) for serial dense codes. In [25], a recursive matrix multiplication algorithm
with quadtrees was presented. This algorithm uses recursion down to the level
of single array elements which causes a dramatic loss of performance. Later, the
same authors improved performance by stopping recursion at 8 × 8 blocks [26].
In [27] the authors have experimented with five different SFCs (U, X, Z, Gray and
Hilbert) on the matrix multiplication algorithm. The performance reported was
similar for all five. Morton (Z) order has relative simplicity in calculating block
addresses compared to the other orderings and is often the order of choice. In
spite of its relative simplicity compared to other layouts, calculation of addresses
in Morton layout is expensive. There are several indexing techniques which differ
in their structure, but which all induce Morton order: Morton, level-order, and
Ahnentafel indexing. These indexing schemes require bit manipulation unless a
lookup table is precomputed [22]. Bit masks can be used when dimensions are
powers of two [28]. However, this requires padding. In [29] the authors show
how the strong locality features of Peano SFCs can be used to produce cache
oblivious matrix operations.

Tiling can also be applied to non-canonical data layouts. In [23] the authors
show that improved cache and TLB performance can be achieved when tiling is
applied to both Block Data Layout (BDL) and Morton layout. In their experi-
ments matrix multiplication with an iterative code using BDL was often faster
than a recursive code using Morton layout. As we will comment below, our re-
sults agree with this: our iterative tiled algorithm working on SB outperforms
the recursive code operating on hypermatrices. Authors have also investigated
on tile size selection for non-canonical array layouts [30,23,31] and have come
to similar conclusions to the case of canonical storage: blocks should target the
level 1 cache.
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2 A Bottom-Up Approach

We have studied two data structures for dense matrix computations: a Hyper-
matrix data structure [32] and a Square Block Format [16]. We present them in
section 3. In both cases we drive the creation of the structure from the bottom:
the inner kernel fixes the size of the data submatrices. Then the rest of the data
structure is produced in conformance. We do this because the performance of the
inner kernel has a dramatic influence in the overall performance of the algorithm.
Thus, our first priority is to use the best inner kernel at hand. Afterwards, we
can adapt the rest of the data structure (in case hypermatrices are used) and/or
the computations.

2.1 Inner Kernel Based on Our Small Matrix Library (SML)

In previous papers [33,24] we presented our work on the creation of a Small
Matrix Library (SML): a set of routines, written in Fortran, specialized in the
efficient operation on matrices which fit in the first level cache. The advantage
of our method lies in the ability to generate very efficient inner kernels by means
of a good compiler. Working on regular codes for small matrices, most of the
compilers we have used in different platforms create very efficient inner kernels
for matrix multiplication. We use the matrix multiplication routine within our
SML as the inner kernel of our general matrix multiplication codes.

3 Non-canonical Array Layouts

In this section we briefly describe two non-canonical data layouts: a hypermatrix
scheme and a simple square block format.

3.1 Hypermatrix Structure

We have used a data structure based on a hypermatrix (HM) scheme [32], in
which a matrix is partitioned recursively into blocks of different sizes. The HM
structure consists of N levels of submatrices, where N is an arbitrary number.
In order to have a simple HM data structure which is easy to traverse we have
chosen to have blocks at each level which are multiples of the lower levels. The top
N-1 levels hold pointer matrices which point to the next lower level submatrices.
Only the last (bottom) level holds data matrices (see Figure 1). Data matrices
are stored as dense matrices and operated on as such. Hypermatrices can be seen
as a generalization of quadtrees. The latter partition each matrix precisely into
four submatrices [34].

We have used a HM on dense Cholesky factorization and matrix multiplication
with encouraging results. In [35] we showed that the use of orthogonal blocks [36]
was beneficial to obtain performance. However, this approach presents some
overhead following pointers and recursing down to the data submatrix level.
There are also difficulties in the parallelization [37]. For these reasons we have
also experimented with a Square Block Format.
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Fig. 1. Hypermatrix: example with two level of pointer matrices

3.2 Square Block Format

The overhead of a dense code based on recursion and hypermatrices together
with the difficulties to produce efficient parallel code based on this data structure,
has led us to experiment with a different data structure. We use a simple Square
Block Format (SB) [16] stored as a 4D array. It corresponds to a 2D data layout
of submatrices kept in column-major order as can be seen in the left part of
Figure 2. We use a simple data structure which is described graphically in the
right part of Figure 2. The shaded area at the top represents padding introduced
to force data alignment.

Using this data structure we were able to improve the performance of our
matrix multiplication code, obtaining very competitive results. Our code imple-
ments tiling and we use a code generator to create different loop orders. We
present the results obtained with the best loop order found.

��

blkszy

dimx

dimy

m

mtofree
blkszx

Fig. 2. Square Block Format
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4 Results

We present results for matrix multiplication on three platforms. The matrix
multiplication performed is C = C − AT × B. Each of the following figures
shows the results of DGEMM in ATLAS [38], Goto [39] or the vendor BLAS,
and our code based on SB format and our SML. Goto BLAS are known to
obtain excellent performance on Intel platforms. They are coded in assembler
and targeted to each particular platform. The dashed line at the top of each
plot shows the theoretical peak performance of the processor. Some plots show
the performance obtained with the dense codes based on the hypermatrix (HM)
scheme. It can be seen on the plots that SB outperforms HM.

Fig. 3. Performance of DGEMM on Intel Pentium 4 Xeon

Fig. 4. Performance of DGEMM on Intel Itanium 2
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Fig. 5. Performance of DGEMM on Power 4

For the Intel machines (figures 3 and 4) we have included the Mflops obtained
with a version of the ATLAS library where the hand-made codes were not en-
abled at ATLAS installation time1. We refer to this code in the graphs as ’nc
ATLAS’. We can observe that in both cases ATLAS performance drops heav-
ily. SB with SML kernels obtain performance close to that of ATLAS on the
Pentium 4 Xeon, similar to ATLAS on the Itanium 2, and better than ATLAS
on the Power4 (Figure 5). For the latter we show the Mflops obtained by the
vendor DGEMM routine which outperforms both ATLAS and our code based
on SB. We can see that even highly optimized routines provided by the vendor
may be significantly slower under certain circumstances. For instance, some large
leading dimensions can be particularly harmful and produce lots of TLB misses
if data is not precopied. At the same time, data precopying must be performed
selectively due to the overhead incurred at execution time [8]. These problems
can be avoided using non-canonical array layouts.

5 Conclusions

The results obtained with an iterative code working on a Square Block Format
surpass those obtained with a recursive code which uses a hypermatrix. This
happens even when the upper levels of the hypermatrix are defined so that
the upper levels of the memory hierarchy are properly exploited. This is due
to the overhead caused by recursion. We conclude that a simple Square Block

1 Directory tune/blas/gemm/CASES within the ATLAS distribution contains about 90
files which are, in most cases, written in assembler, or use some instructions written
in assembler to do data prefetching. Often, one (or more) of these codes outperform
the automatically generated codes. The best code is (automatically) selected as the
inner kernel. The use of such hand-made inner kernels has improved significantly the
overall performance of ATLAS subroutines on some platforms.
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format provides a good way to exploit locality and iterative codes can outperform
recursive codes. Our results agree with those presented in [23,40].
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Abstract. The aim is to present a new data distribution of triangular
matrices that provides steady distribution of blocks among processes
and reduces memory wasting compared to the standard block-cyclic data
layout used in the ScaLAPACK library for dense matrix computations.
A new algorithm for solving triangular systems of linear equations is also
introduced. The results of experiments performed on a cluster of Itanium
2 processors and Cray X1 show that in some cases, the new method is
faster than corresponding PBLAS routines PSTRSV and PSTRSM.

1 Introduction: Block-Cyclic Distribution

The problem of solving triangular systems of linear equations belongs to the
most important tasks of computational linear algebra, and a large number of
papers has been published about handling such systems on distributed memory
architectures [3,8,9,11]. The most popular solvers, namely PSTRSV and PSTRSM for
solving Ax = b and AX = B (for multiple right hand sides) respectively, belong
to Level 2 and Level 3 PBLAS libraries designed as a part of ScaLAPACK [2].
They use the block-cyclic data distribution of matrices onto rectangular process
grids. A process in a P ×Q grid can be referenced by its coordinates (p, q), where
0 ≤ p < P and 0 ≤ q < Q. The general class of block-cyclic distributions can be
obtained by matrix partitioning like

A =

⎛
⎜⎝

A11 . . . A1M

...
...

AM1 . . . AMM

⎞
⎟⎠ (1)

where each block Aij is mb × mb. Let loc(Aij) denote coordinates (location) of
Aij in a grid. The blocks are mapped to processes by assigning Aij to the process
whose coordinates in a P × Q grid are

loc(Aij) = ((i − 1) mod P, (j − 1) mod Q) . (2)
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When A is a triangular (or symmetric) matrix, then only the lower (or upper)
triangle is distributed, so about half of the storage is wasted (Figure 1). To avoid
memory wasting, some improvements have been proposed [4,1,7]. However, these
solutions still support block-cyclic data distribution, thus the performance of the
algorithms PSTRSV and PSTRSM cannot be easily improved.

A11

A31 A33 A32

A51 A53 A55 A52 A54

A71 A73 A75 A77 A72 A74 A76

A21 A22

A41 A43 A42 A44

A61 A63 A65 A62 A64 A66

A81 A83 A85 A87 A82 A84 A86 A88

Fig. 1. Block-cyclic distribution of a lower triangular matrix over a 2 × 2 rectangular
process grid. About 50% of the memory is wasted.

2 New Data Distribution

First let us consider a special case of the block-cyclic distribution which gives
a better performance when the number of available processors is small (less
than nine [2]), or especially when we want to solve triangular systems with a
relatively small number of right hand sides, namely the block-cyclic distribution
over a P × 1 grid.

The system of linear equations AX = B, A ∈ IRm×m, B ∈ IRm×n can be
rewritten in the following block form

⎛
⎜⎜⎜⎝

A11
A21 A22
...

...
. . .

AM1 . . . . . . AMM

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X1
X2
...

XM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

B1
B2
...

BM

⎞
⎟⎟⎟⎠ , (3)

and then the data distribution can be depicted as in Figure 2. It is clear that
the block size mb should be small enough to minimize memory wasting. On the
other hand, mb should be large enough to utilize the cache memory and provide a
reasonable performance of BLAS operations performed on blocks of A [5], thus
choosing the optimal block size leads to a tradeoff between performance and
memory. Moreover, such a distribution leads to a kind of unbalance. For example,
the first processor holds six blocks, while the last holds twelve (Figure 2).

In [12] we have introduced a new method for the distribution of symmetric
and triangular matrices on orthogonal memory multiprocessors. The method can
significantly reduce memory wasting and can be adopted for distributing blocks
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A11 A51 A52 A53 A54 A55

A21 A22 A61 A62 A63 A64 A65 A66

A31 A32 A33 A71 A72 A73 A74 A75 A76 A77

A41 A42 A43 A44 A81 A82 A83 A84 A85 A86 A87 A88

B1 B5

B2 B6

B3 B7

B4 B8

Fig. 2. Block-cyclic distribution of a triangular matrix A and rectangular matrix B
over a 4 × 1 grid

Aij of a triangular (or symmetric) matrix over a P × 1 process grid. Let us
assume that M = 2P and define the new data distribution as

loc(Aij) =
{

(i − 1, 0) for i = 1, . . . , P
(2P − i, 0) for i = P + 1, . . . , 2P.

(4)

Figure 2 shows the example of such a distribution for P = 4. Simply, we divide
the lower (or upper) triangle into two parts. The number of block rows is 2P . The
blocks from the upper part are distributed from the first to the last processor
and the blocks from the lower part are distributed bottom up. Note that each
processor holds exactly the same number of blocks of A. Also, BLAS routines
(used locally) can operate on larger blocks, so one can expect that calls to such
routines will be more efficient.

A11 A81 A82 A83 A84 A85 A86 A87 A88

A21 A22 A71 A72 A73 A74 A75 A76 A77

A31 A32 A33 A61 A62 A63 A64 A65 A66

A41 A42 A43 A44 A51 A52 A53 A54 A55

B1 B8

B2 B7

B3 B6

B4 B5

Fig. 3. New distribution of a triangular matrix A and rectangular matrix B over a
4 × 1 grid

The block size is determined by the number of processors, namely all square
blocks Aij , i < M , are mb × mb, where

mb = �m/(2P )�. (5)

The leading dimension of all blocks AMj is

m′
b = (m − (M − 1)mb). (6)

Thus, the block size of AMM is m′
b × m′

b, while other blocks AMj are m′
b × mb.

All blocks Bj , j < M , are mb × n, while BM is m′
b × n.

Figure 4 shows local data structures for triangular matrices. Each process
allocates a two dimensional array with the same leading dimension equal to mb

defined by (5) or (6) in case of the process (0, 0). Nonzero blocks of A and B
are stored consecutively using conventional storage by columns. Note that the
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Fig. 4. New data distribution: local data structures for triangular matrices. “upper”
blocks represent Aij with i ≤ P , while “lower” blocks with i > P .

unused parts are relatively small. Each process holds exactly 2P + 1 blocks of a
triangular matrix and approximately one block is unused. Thus, about

100
2P + 1

%

of the memory is wasted. For P = 4, 8, 16, we get respectively 11%, 6%, and 3%
of memory wasted.

It should be pointed out that the the new data distribution has a disadvantage.
It does not allow the reuse of standard ScaLAPACK routines. The conversion
between the standard block-cyclic data layout and the new distribution requires
a data redistribution that can decrease the efficiency of the algorithms.

3 Implementation and Experimental Results

The following Algorithm 1 is a block version of the fan-out algorithm presented
in [8]. It solves systems of linear equations AX = B, where A ∈ IRm×m and
B ∈ IRm×n, just like the Level 3 PBLAS routine PSTRSM. Note that for n = 1,
it performs the same computational task as the Level 2 PBLAS routine PSTRSV.
Our new Algorithm 2 is a distributed SPMD version of Algorithm 1, using the
new data distribution (4).

The method has been implemented in Fortran and tested on a cluster of 16
Itanium 2 processors (1.3 GHz, 3 MB cache, approximately 5 Gflops peak per-
formance, 8 dual processor nodes, Gbit Ethernet, running under Linux), using



Blocked Data Distribution for Parallel Triangular Systems 593

Algorithm 1. Solving triangular systems (3)
Require: nonsingular, lower triangular matrix A ∈ IRm×m and general matrix B ∈

IRm×n

Ensure: B = A−1B
1: for i = 1 to M do
2: Bi ← A−1

ii Bi {STRSM}
3: for j = i + 1 to M do
4: Bj ← Bj − AjiBi {SGEMM}
5: end for
6: end for

Algorithm 2. Process (i, 0), i = 0, . . . , P − 1, for solving triangular systems (3)
Require: nonsingular, triangular matrix A ∈ IRm×m and general matrix B ∈ IRm×n

distributed using the new data distribution (4)
Ensure: B = A−1B
1: M ← 2P
2: for j = 1 to P do
3: if loc(Ajj) = (i, 0) then
4: Bj ← A−1

jj Bj {STRSM}
5: send Bj to all {(k, 0) : k = 0, . . . , P − 1 ∧ k �= i}
6: B2P−j+1 ← B2P−j+1 − A2P−j+1,jBj {SGEMM}
7: else
8: receive X from (loc(Ajj), 0)
9: if i > loc(Ajj) then

10: Bi+1 ← Bi+1 − Ai+1,jX {SGEMM}
11: end if
12: B2P−i ← B2P−i − A2P−i,jX {SGEMM}
13: end if
14: end for
15: for j = P + 1 to M − 1 do
16: if loc(Ajj) = (i, 0) then
17: Bj ← A−1

jj Bj {STRSM}
18: send Bj to all {(k, 0) : k = 0, . . . , i − 1}
19: else
20: if i < loc(Ajj) then
21: receive X from (loc(Ajj), 0)
22: Bi+1 ← Bi+1 − Ai+1,jX {SGEMM}
23: end if
24: end if
25: end for
26: if loc(AMM ) = (i, 0) then
27: BM ← A−1

MMBM {STRSM}
28: end if

Intel Fortran Compiler and Math Kernel Library as the efficient implementa-
tions of BLAS [5] and on 8 MSPs of Cray X1. Each Cray X1 processor, namely
MSP, comprises four SSPs. Each SSP consists of a fast vector processor and a
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very slow (400 MHz) scalar processor for scalar operations. The MSPs support
multistreaming, which means that vectors can be processed across all four SSPs.
Four MSPs (i.e. one node) operate in the symmetric multiprocessing mode, so
they have access to shared memory. To access more MSPs, a user can use MPI,
SHMEM, CAF or UPC [10]. The peak performance of one MSP is 18 Gflops. In
the case of the Itanium cluster, the libraries PBLAS [2] (routines PSTRSV and
PSTRSM) and BLACS [6] (based on MPI, used for communication) have been
downloaded from the Netlib. For the Cray we have used corresponding routines
provided by Cray.
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Fig. 5. The performance (in Mflops) of the PBLAS routine PSTRSV and the new method
on a cluster of Itanium 2 (left) and Cray X1 (right) for various matrix sizes (m) and
n = 1, obtained using a P × 1 grid

We have compared the performance of the new method with the performance
of the routine PSTRSV (Figure 5). On the Itanium cluster, the best performance
of PSTRSV is achieved for the block size 256 × 256. The new method is faster
on 4 and 16 processors. The results are similar on the Cray X1. Figure 6 shows
the performance of PSTRSM (optimal block size 64 × 64) and the new solver on
the Itanium cluster. We can observe that the performance of the new solver
is comparable to the performance of PSTRSM, but when we increase the size of
the matrix and the number of processors, the performance of the new solver is
explicitly better. Note that for smaller number of processors, the performance of
the new solver is a little bit worse. Figure 7 compares the performance of the new
solver to the performance of PSTRSM (for the optimal block size 128×128) on Cray
X1. One can observe that Algorithm 2 outperforms PSTRSM when P = 8. This
is a consequence of the reduced communication overhead. The new algorithm
operates on larger matrices, so the total number of broadcasts (lines 5, 18) is
reduced in comparison to the routines PSTRSV and PSTRSM which operates on
smaller blocks.
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4 Conclusions and Future Work

The new data format allows each processor to allocate the same amount of
memory in two dimensional arrays and only a small part is wasted. In some
cases, the new solver is faster than corresponding PBLAS routines PSTRSV and
PSTRSM. In the future we will consider the implementation of other PBLAS
routines for triangular matrices. The same idea can be applied for symmetric
matrices and some well known algorithms like the Cholesky factorization.
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Abstract. Direct methods for solving large sparse linear systems of
equations are popular because of their generality and robustness. Their
main weakness is that the memory they require increases rapidly with
problem size. We discuss the design and development of a new multi-
frontal solver that aims to circumvent this problem by allowing both the
system matrix and its factors to be stored externally. We highlight some
of the key features of our new out-of-core package, in particular its use
of efficient implementations of dense linear algebra kernels to perform
partial factorizations and its memory management system. We present
numerical results for some large-scale problems arising from practical
applications.

1 Introduction

The popularity of direct methods for solving large sparse linear systems of equa-
tions Ax = b stems from their generality and robustness. Indeed, if numerical
pivoting is properly incorporated, direct solvers rarely fail for numerical reasons;
the main reason for failure is a lack of memory. Although increasing amounts
of main memory have enabled direct solvers to solve many problems that were
previously intractable, their memory requirements generally increase much more
rapidly than problem size so that they can quickly run out of memory. Buying
a machine with more memory is an expensive and inflexible solution since there
will always be problems that are too large for the chosen quantity of memory.
Using an iterative method may be a possible alternative but for many of the
“tough” systems that arise from practical applications, the difficulties involved
in finding and computing a good preconditioner can make iterative methods in-
feasible. Another possibility is to use a direct solver that is able to hold its data
structures on disk, that is, an out-of-core solver.

The advantage of using disk storage is that it is many times cheaper than
main memory per megabyte, making it practical and cost-effective to add tens
or hundreds of gigabytes of disk space to a machine. By holding the main data
structures on disk, well implemented out-of-core direct solvers are very reliable
since they are much less likely than in-core solvers to run out of memory.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 598–607, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The idea of out-of-core linear solvers is not new (see, for example, [3],[8] and,
recently, [2], [10]). Our aim is to design and develop a sparse symmetric out-
of-core solver for inclusion within the mathematical software library HSL [6].
Our new Fortran 95 solver, which is called HSL MA77, implements an out-of-core
multifrontal algorithm. It is a uniprocessor code, but most of the arithmetic
is performed by Level-3 BLAS kernels (see Section 5) that typically make use
of any shared-memory parallelism. The first release of HSL MA77 is for positive-
definite systems and performs a Cholesky factorization. The second release will
have an option that incorporates numerical pivoting using 1×1 and 2×2 pivots,
which will extend the package to symmetric indefinite problems. An important
feature of the package is that all input and output to disk is performed through a
set of Fortran subroutines that manage a virtual memory system so that actual
input/output occurs only when really necessary. We describe this memory man-
agement system and highlight other key features of the new package, including
its use of efficient implementations of dense linear algebra kernels.

2 Introduction to the Multifrontal Method

The multifrontal method is a variant of sparse Gaussian elimination and involves
the matrix factorization

A = (PL)D(PL)T ,

where P is a permutation matrix and L is lower triangular. In the positive-
definite case, D = I; in the indefinite case, D is block diagonal with blocks
of size 1 × 1 and 2 × 2. Solving Ax = b is completed by performing forward
elimination followed by back substitution. The basic multifrontal algorithm for
element problems is summarised in Figure 1. The assemblies can be held as

Given a pivot sequence:
do for each pivot

Assemble all elements that involve the pivot into a full matrix (the frontal
matrix)

Perform static condensation, that is, eliminate the pivot variable and any
others that do not appear in any elements not yet assembled;

Treat the reduced matrix as a new element (a generated element)
end do

Fig. 1. The basic multifrontal algorithm

a tree, called an assembly tree. Each node of the assembly tree represents an
element. When a pivot is eliminated and a generated element created, a node is
added to the tree whose children are the elements that involve the pivot (these
may be original elements and/or generated elements). If the nodes of the tree
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are ordered using a depth-first search, the generated elements required at each
stage are the most recently generated ones of those so far unused. This makes
it convenient to use a stack for temporary storage during the factorization. This
alters the pivot sequence, but the arithmetic is identical apart from the round-off
effects of reordering the assemblies.

The multifrontal method can be extended to non-element problems by regard-
ing row i of A as a packed representation of a 1 × 1 element (the diagonal aii)
and, for each aij �= 0, a 2 × 2 element of the form

A(ij) =
(

0 aij

aij 0

)
.

When i is chosen as pivot, the 1×1 element plus the subset of 2×2 elements A(ij)

for which j has not yet been selected as a pivot must be assembled. Rows that
have an identical pattern may be treated together by grouping the corresponding
variables into supervariables.

Multifrontal data structures

The multifrontal method needs data structures for the original matrix A, the
frontal matrix, the stack of generated elements, and the matrix factor. An out-
of-core method writes the columns of the factor to disk as they are computed and
may also allow either the stack or both the stack and the frontal matrix to be held
on disk. If the stack and frontal matrix are held in main memory and only the
factors written to disk, the method performs the minimum possible input/output
for an out-of-core method: it writes the factor data to disk once and reads it once
during backsubstitution or twice when solving for further right-hand sides (once
for the forward substitution and once for the backsubstitution). However, for
very large problems, it may also be necessary to hold the stack or the stack and
the frontal matrix on disk. Main memory requirements can be reduced further
by holding the original matrix data on disk. HSL MA77 allows the original matrix
data plus the factor and the stack to be held on disk; currently the frontal matrix
is held in main memory.

3 Overview of the Structure of HSL MA77

HSL MA77 is designed to solve one or more sets of sparse symmetric equations
AX = B. To offer users flexibility in how the matrix data is held, A may be input
in either by rows or by square symmetric elements (such as in a finite-element
calculation). A reverse communication user interface is used, with control being
returned to the calling program for each row or element. This keeps the memory
requirements for the initial matrix to a minimum and gives the user maximum
freedom as to how the original matrix data is held.

Given a pivot sequence, the multifrontal method can be split into a number
of distinct phases:

– An analyse phase that uses the index lists for the rows or elements and the
pivot sequence to construct the assembly tree. It also calculates the work and
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storage required for the subsequent numerical factorization (in the indefinite
case, based on the assumption that there are no delayed pivots).

– A factorization phase that uses the assembly tree to factorize the matrix
and (optionally) solve systems of equations (in the indefinite case, the pivot
order may have to be modified to maintain numerical stability).

– A solve phase that performs forward elimination followed by back substitu-
tion using the stored matrix factors.

The HSL MA77 package has separate routines for each of these phases but does
not include routines for computing the pivot order. We note that there already
exist a number of packages that can be used compute a nested dissection ordering
(for example, the METIS graph partitioning package [7]) or a minimum degree
based ordering (a number of variants are offered by the analyse phase of the
HSL solver MA57 [4]).

4 Virtual Memory Management

A key part of the design of HSL MA77 is that all input and output to disk is
performed through a set of Fortran subroutines that manage a virtual memory
system so that actual input/output occurs only when really necessary. This set
of subroutines is available within HSL as the package HSL OF01.

HSL OF01 provides read and write facilities from and to one or more direct-
access files. To minimise the actual input-output operations, a single in-core
buffer is used for reals and a single in-core buffer is used for integers. The ad-
vantage of having one buffer is that the available memory is dynamically shared
between the files according to their needs at each stage of the computation. Each
buffer is divided into pages that are all of the same size, which is also the size
of each file record. All actual input-output is performed by transfers of pages
between the buffer and records of the file.

The data in a file is addressed as a virtual array, that is, as if it were a very
large array. The package allows any contiguous section of the virtual array to
be read or written, without regard to page boundaries. The virtual array is
permitted to be too large to be accommodated on a single file, in which case
secondary files are used. These may reside on different devices. We refer to a
primary file and its secondaries as a super-file.

The most recently accessed pages of the virtual array are held in the buffer.
For each buffer page, the index of the super-file and the page number within
the virtual array are stored. Wanted pages are found quickly with the help of a
simple hashing function, and hash clashes are resolved by holding doubly-linked
lists of pages having identical hash codes.

Once the buffer is full and another page is wanted, the least recently accessed
buffer page is freed. It is identified quickly with the aid of a doubly-linked list
of pages in order of access. This requires that whenever a page is accessed, it is
removed from its old position in the doubly-linked list and inserted at the front.
A special test is made for the page already being at the front since it can happen
that there are many short reads and writes that fit within a single page.
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A flag is kept for each page to indicate whether it has changed since its entry
into the buffer so that only those that have been changed need be written to
file when they are freed. On each call of OF01 read or OF01 write, all wanted
pages that are in the buffer are accessed before those that are not in the buffer
in order to avoid freeing a page that may be needed.

Because of the importance of assembly steps in the frontal method, we provide
an option in OF01 read to add a section of the virtual array into an array under
the control of a map.

The efficiency of reading to and writing from files using HSL OF01 depends on
the number of pages in the buffer and the size of each page. These are parameters
(npage and lpage) under the control of the user. Numerical experimentation has
shown that as the buffer size increases the timings generally reduce but, for a
given buffer size, the precise choice of npage and lpage is not critical, with
a range of values giving similar performances. However, using either a small
number of pages or a small page size can adversely effect performance. Based on
our experiments, we have chosen the default values for these control parameters
to be 1600 and 212, respectively, giving a buffer size of 6.6×106 reals or integers.

Option for in-core working

If the buffer is big enough, HSL OF01 will avoid any actual input/output, but
there remain the overheads associated with copying data to and from the buffer.
This is particularly serious in the solve phase for a single right-hand side since
each datum read during the forward or backward substitution is used only once.
We have therefore included the option of replacing the super-files by arrays. The
user can specify the initial sizes of these arrays and a limit on their total size.
If an array is found to be too small, the code attempts to reallocate it with a
larger size. If this breaches the overall limit or if the allocation fails because of
insufficient available memory on the computer being used, the contents of the
array are written to a super-file and the memory that was used by the array is
freed, resulting in a combination of super-files and in-core arrays being used. If
a user specifies the total size without specifying the initial sizes of the individual
arrays, the code automatically selects these sizes.

5 Kernel Code for Handling Full-Matrix Operations

The frontal matrix is a dense matrix that may be expressed in the form(
F11 FT

21
F21 F22

)
,

where the fully-summed variables correspond to the rows and columns of F11.
In the positive-definite case, the operations can be blocked as the Cholesky
factorization

F11 = L11L
T
11,

the update operation
L21 = F21L

−T
11 ,
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and the calculation of the generated element

S22 = F22 − L21L
T
21.

Within HSL MA77, we rely on a modification of the work of Andersen, Gunnels,
Gustavson, Reid and Wasniewski [1] on the Cholesky factorization of a positive-
definite full symmetric matrix to perform these operations and the corresponding
forward and backward substitution operations. Andersen et. al. pack the upper
or lower triangular part of the matrix into a block hybrid format that is as
economical of storage as packing by columns but is able to take advantage of
Level-3 BLAS. It divides the matrix into blocks, all of which are square and of
the same size nb except for the blocks at the bottom which may have less rows.
Each block is ordered by rows and the blocks are ordered by block columns. It
is illustrated by the lower triangular case with order 9 and block size nb = 3 in
Figure 2. Note that each of the blocks is held contiguously in memory.

The factorization is programmed as a sequence of blocks steps that involve
the factorization of a block on the diagonal, the solution of a triangular set of
equations with a block as it right-hand side, or the multiplication of two blocks.
Andersen et. al. [1] have written a special kernel for the factorization of a block
on the diagonal that uses blocks of size 2 to reduce traffic to the registers. The
Level-3 BLAS DTRSM and DGEMM are available for the other two steps.

2a. Lower Packed Format
0
1 10
2 11 19
3 12 20
4 13 21
5 14 22

∣∣∣∣∣∣
27
28 34
29 35 40

6 15 23
7 16 24
8 17 25

∣∣∣∣∣∣
30 36 41
31 37 42
32 38 43

∣∣∣∣∣∣
45
46 49
47 50 52

9 18 26
∣∣33 39 44

∣∣48 51 53
∣∣54

2b. Lower Blocked Hybrid Format
0
1 2
3 4 5
6 7 8
9 10 11

12 13 14

∣∣∣∣∣∣
27
28 29
30 31 32

15 16 17
18 19 20
21 22 23

∣∣∣∣∣∣
33 34 35
36 37 38
39 40 41

∣∣∣∣∣∣
45
46 47
48 49 50

24 25 26
∣∣42 43 44

∣∣51 52 53
∣∣54

Fig. 2. Lower Packed and Blocked Hybrid Formats

We have chosen to work with the lower packed format so that it is easy to sepa-
rate the pivoted columns that hold part of the factor from the other columns that
must be assembled into the parent element. The modification involves limiting
the eliminations to the fully-summed columns, the first p, say. The factorization
of the frontal matrix takes the form

F =
(

F11 FT
21

F21 F22

)
=

(
L11
L21 I

) (
I

S22

)(
LT

11 LT
21
I

)

where L11 is lower triangular and both F11 and L11 have order p. We use the
lower blocked hybrid format for the lower triangular part of both F11 and F22.
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Again, each is held by blocks of order nb, except that the final block may be
smaller. The rectangular matrix F21 is held as a block matrix with matching
block sizes. During factorization, these matrices are overwritten by the lower
triangular parts of L11 and S22 and by L21. We will call this format for F and
its factorization the double blocked hybrid format.

The modified code is collected into the module HSL MA54. It has facilities for
rearranging a lower triangular matrix in lower packed format (that is, packed by
columns) to double blocked hybrid format and vice-versa, for partial factoriza-
tion, and for partial forward and back substitution, that is, solving equations of
the form (

L11
L21 I

)
X = B and

(
LT

11 LT
21
I

)
X = B

and the corresponding equations for a single right-hand side b and solution x.
It is efficient to retain the factor in block hybrid format for the forward and

backward substitution operations but HSL MA77 reorders the matrix S22 back to
lower packed format for the assembly operations at the parent node since the
block structure at the parent is very unlikely to be the same.

6 Numerical Experiments

In this section, we illustrate the performance of HSL MA77. A set of 26 positive-
definite test problems taken from the University of Florida Sparse Matrix Col-
lection (www.cise.ufl.edu/research/sparse/matrices/) were used in our ex-
periments. Full details are given in [9]. The numerical results were obtained using
double precision (64-bit) reals on a single 3.6 GHz Intel Xeon processor of a Dell
Precision 670 with 4 Gbytes of RAM. The g95 compiler with the -O option was
used with the ATLAS BLAS and LAPACK (math-atlas.sourceforge.net).

Times for each phase

In Table 1, we report the wall clock times for each phase of HSL MA77 for a subset
of our test problems. The input time is the time taken to input the matrix data
using the reverse communication interface and the ordering time is the time to
compute the pivot sequence using a nested dissection ordering. MA77 solve(k)
is the time for the solve phase when called with k right-hand sides. The complete
solution time is for a single right-hand side.

Comparisons with MA57

We now compare the performance of HSL MA77 with that of the well-known HSL
sparse direct solver MA57 [4]. MA57 is also a multifrontal code and is designed
to solve both positive-definite and indefinite problems in assembled form; out-
of-core facilities are not offered. In Figures 3 and 4, we compare the factorize
and solve times for MA57 and for HSL MA77 in-core (using arrays in place of files)
with those for HSL MA77 out-of-core. The figures show the ratios of the MA57
and HSL MA77 in-core times to the HSL MA77 out-of-core times. MA57 failed to
solve problems 2, 11, 12, and 15 because of insufficient memory. For each of the
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Table 1. Times for the different phases of HSL MA77

Phase af shell3 cfd2 fullb pwtk thread

Input 2.18 0.42 0.55 1.32 0.45
Ordering 2.57 3.54 1.30 1.39 0.66
MA77 analyse 2.18 3.71 0.63 1.01 0.68
MA77 factor(0) 70.5 29.3 82.0 32.6 24.2
MA77 factor(1) 81.5 34.4 88.3 36.9 27.0
MA77 solve(1) 15.7 6.23 11.5 8.00 3.65
MA77 solve(10) 20.8 7.44 14.2 9.89 3.81
MA77 solve(100) 73.1 23.7 45.4 34.0 10.3
Complete solution 91.8 43.5 95.9 44.6 29.8
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Fig. 3. The ratios of the MA57 and HSL MA77 in-core factorize times to the HSL MA77
out-of-core factorize times

problems, HSL MA77 was able to successfully use a combination of arrays and
files. Further details of the test examples that could not be solved in core are
given in Table 2.

It is clear from Figure 3 that the factorization times for HSL MA77 in-core are
almost always faster than those for MA57 and that working out-of-core generally
decreases the speed by about 30 per cent. For the solution phase with a single
right-hand side, the penalty for working out-of-core is much greater because the
ratio of data movement to arithmetic operations is significantly higher than for
the factorization. This is evident in Figure 4. There are no HSL MA77 in-core
solve times shown for cases 2, 11, 12, and 15 because the main real super-file
was not held in-core.
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Table 2. Characteristics of the test problems that could not be solved in core. n is the
order of A. nz(A) and nz(L) denote the number of entries in A and L, respectively, in
millions. front denotes the maximum order of frontal matrix.

Identifier n nz(A) nz(L) front

2. audikw 1 943,695 39.298 1283.170 11223
11. inline 1 503,712 18.660 186.192 3261
12. ldoor 952,203 23.737 164.531 2436
15. nd24k 72,000 28.716 322.601 11363
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Fig. 4. The ratios of the MA57 and HSL MA77 in-core solve times to the HSL MA77 out-
of-core factorize times

7 Summary

In this paper, we have discussed some of the key features of a new out-of-core
direct solver. The solver is designed for both positive-definite and indefinite prob-
lems but, although we have already written preliminary code for the indefinite
case, work still remains to be done on developing an efficient indefinite kernel.
The first release of our solver will thus be for positive-definite systems only.
HSL MA77 together with the packages HSL OF01 and HSL MA54 that handle the
out-of-core working and perform the dense linear algebra computations, respec-
tively, will be included within the next release of HSL. Further details may be
found in [9].
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Abstract. In this paper we present two routines for the Cholesky fac-
torization of band matrices that target (parallel) SMP architectures and
expose coarser-grain parallelism than their LAPACK counterpart. Ex-
perimental results on two different parallel platforms show the benefits
of the new approaches.

Keywords: Band matrices, Cholesky factorization, LAPACK, multi-
threaded BLAS, Symmetric Multiprocessor (SMP).

1 Introduction

Exploiting the structure of the coefficient matrix for band linear systems yields
huge savings, both in number of computations and storage space. This is recog-
nized in LAPACK [1], which includes a blocked routine for the Cholesky factor-
ization of symmetric positive definite band (SPDB) matrices.

In this paper we analyze the parallel efficiency of the (double-precision) rou-
tine dpbtrf in LAPACK for the Cholesky factorization of SPDB matrices stored
in packed symmetric format. As the parallelism in LAPACK is extracted by us-
ing multithreaded implementations of BLAS, the fragmentation (partitioning)
of the operations in the LAPACK routine may reduce its parallel performance.
Our approach to overcome this problem consists in merging operations so that
parallelism with coarser-grain is exposed. In order to do so, our routine dpb-

trf A requires a simple modification of the storage scheme for band matrices so
that a few rows of zeros are added to the bottom of the matrix. By doing some
additional copies and manipulation of the matrix blocks, our routine dpbtrf B
does not require this workspace, at the expense of some performance loss.

The paper is structured as follows. The blocked routine in LAPACK for the
factorization of SPDB matrices, xpbtrf, is reviewed in Section 2. Our new
routines are then presented in Section 3. Experiments on two Intel R© SMP ar-
chitectures, based on XeonTM and Itanium2TM processors, show the benefits of
� This research was supported by the DAAD programme Acciones Integradas HA2005-

0081, the CICYT project TIN2005-09037-C02-02 and FEDER, and project No. P1B-
2004-6 of the Fundación Caixa-Castelló/Bancaixa and UJI.
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Fig. 1. Symmetric 5 × 5 band matrix with bandwidth k = 2 (left) and packed storage
used in LAPACK (right). The ‘∗’ symbols denote the symmetric entries of the matrix.

merging operations in Section 4. Finally, some concluding remarks are given in
Section 5.

2 LAPACK Blocked Routine for the Band Cholesky
Factorization

Given a SPDB matrix A ∈ R
n×n, with bandwidth k, routine xpbtrf from

LAPACK obtains a decomposition of this matrix into either

A = UT U or A = LLT ,

where the Cholesky factors U, L ∈ R
n×n are, respectively, upper and lower tri-

angular with the same bandwidth as A. We only consider hereafter the latter
decomposition, but the elaboration that follows is analogous for the upper tri-
angular case.

The LAPACK routines employ a packed format to save storage: due to the
symmetry of A, only its lower (or upper) triangular part is stored, following the
pattern illustrated in Figure 1 (right). Upon completion of the factorization, the
elements of L overwrite the corresponding entries of A in the packed matrix.

In order to describe routine xpbtrf, we will assume for simplicity that the
algorithmic block size, b, is an exact multiple of k. Consider now the partitionings

A =

⎛
⎝

ATL �

AML AMM �

ABM ABR

⎞
⎠ →

⎛
⎜⎜⎜⎜⎝

A00 � �

A10 A11 � �

A20 A21 A22 � �

A31 A32 A33 �

A42 A43 A44

⎞
⎟⎟⎟⎟⎠

, (1)

where ATL, A00 ∈ R
m×m, A11, A33 ∈ R

b×b, and A22 ∈ R
k×k, with k = k − b.

(The “�” symbol in A denotes the symmetric quadrant (block) of the matrix
and will not be referenced.) With this partitioning, A31 is upper triangular. It is
also important to realize that, due to the packed storage used in LAPACK, the
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entries that would be “logically” occupied by the strictly lower triangular part
of A31, “physically” correspond to entries (from the subdiagonals) of A11.

Routine xpbtrf corresponds to what is usually known as a right-looking algo-
rithm; that is, an algorithm where, at a certain iteration, ATL has been already
factorized, and AML and AMM have been updated correspondingly [2]. In order
to move forward in the computation by b rows/columns, during the current it-
eration of the routine the following operations are carried out (the annotations
to the right of these operations correspond to the name of the LAPACK/BLAS
routines that are used to perform them):

1. Compute the (dense) Cholesky factorization

A11 = L11L
T
11. (xpotf2) (2)

2. Solve the triangular linear systems

A21(= L21) := A21L
−T
11 , (xtrsm) (3)

A31(= L31) := A31L
−T
11 . (xtrsm) (4)

3. Compute the updates:

A22 := A22 − L21L
T
21, (xsyrk) (5)

A32 := A32 − L31L
T
21, (xgemm) (6)

A33 := A33 − L31L
T
31. (xsyrk) (7)

Due to A31/L31 having only their upper triangular parts stored, the operations
in (4), (6), and (7) in the actual implementation need special care, as described
next. In order to solve the triangular linear system in (4), a copy of the upper
triangular part of A31 is first obtained in an auxiliary workspace W of dimension
b × b, with its subdiagonal entries set to zero; the BLAS-3 solver xtrsm then
yields W (= L31) := WL−T

11 . The operation in (6) is computed as a general matrix
product using BLAS-3 kernel xgemm as A32 := A32 − WLT

21. The update in (7)
is obtained using BLAS-3 kernel xsyrk as A33 := A33 − WWT and the upper
triangular part of W is written back to A31 once this is done.

LAPACK is coded in Fortran 77 and there is no dynamic allocation of memory.
Instead of asking the user to provide the auxiliary space (as usual in many
routines from LAPACK), the implementation of xpbtrf includes a local array
of dimension bmax × bmax to store W . The actual value of bmax can be set during
the installation of LAPACK and limits the values of b that can be used during
the execution.

In our notation, after these operations are carried out, ATL (the part that has
been already factorized) grows by b rows/columns so that

A =

⎛
⎝

ATL �

AML AMM �

ABM ABR

⎞
⎠ ←

⎛
⎜⎜⎜⎜⎝

A00 � �

A10 A11 � �

A20 A21 A22 � �

A31 A32 A33 �

A42 A43 A44

⎞
⎟⎟⎟⎟⎠

(8)

in preparation for the next iteration.
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From this particular implementation we observe that:

– Provided b � k, a major part of the floating-point arithmetic operations
(flops) in (2)–(7) are performed in terms of the rank-k update in (5) (see
also (1)) so that, by calling a tuned implementation of xsyrk, high perfor-
mance is to be expected from the LAPACK blocked routine.

– No attempt is made to exploit the structure of W in the computations cor-
responding to (4), (6), and (7), as there is no BLAS kernel that fits such
operations in case A31/L31 are (upper) triangular.

– The additional work space W and the extra copies are only required in order
to use kernels from current implementations of BLAS to perform operations
(4), (6), and (7).

3 New Routines for the Band Cholesky Factorization

The exposition of the algorithm underlying routine xpbtrf in the previous sec-
tion shows that, in order to advance the computation by b rows/columns, two
invocations of routine xtrsm, two invocations of routine xsyrk, and an invoca-
tion of xgemm are necessary for the updates in Steps 2 and 3. This is needed
because of the special storage pattern used for band matrices in LAPACK. As
all parallelism is extracted in LAPACK from calling multithreaded implemen-
tations of BLAS routines, the fragmentation of the computations that need to
be performed in a single iteration of the algorithm into several small operations
(and a large one) is potentially harmful for the efficiency of the codes.

In this section we describe how to merge the operations corresponding to
Steps 2–3 so that higher performance is likely to be obtained on SMP architec-
tures. Our first routine requires additional storage space in the data structure
containing A so that b rows of zeros are present at the bottom of the matrix.
By doing some extra copies and manipulation of the matrix blocks, the second
routine does not require this workspace.

3.1 Routine xpbtrf A

Consider the data structure containing A (see Figure 1) is padded with bmax
(≥ b) rows at the bottom with all the entries in this additional space initially
set to zero. (Interestingly, that corresponds, e.g., to the structure that would be
necessary in the LAPACK storage scheme to keep a band matrix with square
blocks of order bmax in the lower band. Block band matrices are frequently
encountered in practice as well, but no specific support is provided for them in
the current version of LAPACK.) Then, Steps 2–3 in xpbtrf are transformed
in routine xpbtrf A as follows:

2. Solve the (single) triangular linear system:
(

A21
A31

) (
=

(
L21
L31

))
:=

(
A21
A31

)
L−T

11 . (xtrsm) (9)
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There is no longer need for workspace W nor copies to/from it as the ad-
ditional rows at the bottom accommodate for the elements in the strictly
lower triangle of A31/L31.

3. Compute the (single) update:
(

A22 �
A32 A33

)
:=

(
A22 �
A32 A33

)
−

(
L21
L31

) (
L21
L31

)T

. (xsyrk) (10)

3.2 Routine xpbtrf B

The previous approach, though efficient in the sense of grouping as many com-
putations as possible in coarse-grain blocks, requires a non-negligible workspace.
The following routine, xpbtrf B, also groups the computations at the expense
of two additional copies. The idea behind it is simple: The problem lies in the
operations involving A31 and L31 as only the upper triangular of these blocks
is actually stored, but the operations require them to be full square blocks. Op-
erating without taking this into account would therefore procure an erroneous
decomposition. Now, consider the symmetric packed storage used by the LA-
PACK routines. We can operate on A31 and L31 as if they were full square
blocks if we preserve the data that physically lies in their strictly lower trian-
gular parts (and which corresponds to the subdiagonals of A11). Therefore, we
propose the following modification of Steps 2–3 in routine xpbtrf B, which also
aims at clustering blocks but does not require storage for b rows:

2. Obtain W := stril(A31), a copy of the space that would be physically
occupied by the strictly lower triangular part of A31 and set stril(A31) := 0.
(Due to the storage format, after these operations W = stril(A11) and
stril(A11) = 0.) Then, solve the triangular linear system:

(
A21
A31

) (
=

(
L21
L31

))
:=

(
A21
A31

)
L−T

11 . (xtrsm) (11)

Now, a copy of the physical storage that would be overwritten in this step
is kept in W .

3. Compute the (single) update:
(

A22 �
A32 A33

)
:=

(
A22 �
A32 A33

)
−

(
L21
L31

) (
L21
L31

)T

, (xsyrk) (12)

and restore stril(A31) (= stril(A11)) from W .

Following LAPACK xpbtrf approach, the workspace W is a local array of
routine xpbtrf B and is not provided by the user.

4 Experimental Results

All experiments in this section were performed using ieee double-precision (real)
arithmetic and band matrices of order n=10,000, with bandwidth size ranging
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from k = 1 to 2,000. Provided n � k, the performance of the routines is only
determined by k and the block size b. In the evaluation, for each bandwidth
dimension, we employed values from 1 to 200 to determine the optimal block
size, bopt; only those results corresponding to bopt are shown.

We report the performance of the routines on two different SMP architectures,
with 2 and 4 processors; see Table 1. Two threads were employed on xeon and
4 threads on itanium. As the efficiency of the kernels in BLAS is crucial, for
each platform we use the implementations listed in Table 2.

Table 1. SMP architectures employed in the evaluation

Platform Architecture #Proc. Frequency L2 cache L3 cache RAM
(GHz) (KBytes) (MBytes) (GBytes)

xeon Intel Xeon 2 2.4 512 – 1
itanium Intel Itanium2 4 1.5 256 4 4

Table 2. Software employed in the evaluation

Platform BLAS Compiler Optimization Operating
Flags System

xeon GotoBLAS 1.00 gcc 3.3.5 -O3 Linux 2.4.27
MKL 8.0

itanium GotoBLAS 0.95mt icc 9.0 -O3 Linux 2.4.21
MKL 8.0

Figure 2 reports the results from a detailed evaluation which shows how the
time is distributed among the different operations within LAPACK routine dpb-

trf: (factorization of) A11, (update of) A21, etc. Two main observations can be
drawn from this experiment: The factorization of A11 is a major performance
bottleneck for the routine when Goto BLAS is employed. A closer inspection
revealed this to be due to the low performance of the multithreaded implemen-
tation of dgemv, invoked from dpotf2 during the factorization of A11, when
the size of this block (b × b) is small. A similar inspection concluded that MKL
employs a single thread in such situation and therefore avoids this bottleneck. A
second source of performance degradation is the update of A31, both for MKL
and Goto BLAS. Although in theory the time required to update this block
should be negligible, the experiments show that this is not the case, especially
on xeon.

Figure 3 illustrates the MFLOPs (millions of flops per second) of the origi-
nal codes dpbtrf in the lines labeled as Goto BLAS and MKL BLAS. In order to
overcome the problem with Goto BLAS, we factorize A11 using routine dpotf2

with the code in kernel dgemv directly inlined. This ensures that a single thread
is used during this operation and obtains an important performance enhance-
ment, as shown in the top two plots of Figure 3 by the lines labeled as Goto
BLAS inline.
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Fig. 2. Distribution of time among the different operations involved in routine dpbtrf

on xeon (left) and itanium (right) using multithreaded Goto BLAS (top) and MKL
BLAS (bottom)

The two new routines that we propose, dpbtrf A and dpbtrf B, merge the
update of A31 with that of A21, and the updates of A32 and A33 with that
of A22. This allows to combine the operations of the routine so that only sin-
gle invocations of dtrsm and dsyrk are required per iteration to operate on
the subdiagonal blocks of the band matrix. On the other hand, routine dpb-

trf B requires some extra copies (overhead), which are not present in routine
dpbtrf A, so that we can expect the performance of the former to be slightly
lower. The actual improvement that is obtained in the performance is illustrated
by the lines labeled as Goto BLAS A inline, Goto BLAS B inline, MKL BLAS A,
and MKL BLAS B in Figure 3. Let us comment each one of the cases:

– Goto BLAS on xeon: Routines Goto BLAS A inline and Goto BLAS B inline
offer similar performances which are significantly higher than that of the LA-
PACK routine with inline (Goto BLAS inline). Starting from k=1,100, rou-
tine Goto BLAS B inline slightly outperforms Goto BLAS A inline.
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Fig. 3. Performance of routine dpbtrf on xeon (left) and itanium (right) using mul-
tithreaded Goto BLAS (top) and MKL (bottom)

– Goto BLAS on itanium: The efficiency of routine Goto BLAS A inline is
moderately higher than that of Goto BLAS B inline and both are consis-
tently higher than that of the LAPACK routine with inline.

– MKL BLAS on xeon: The MFLOPs rate attained with this implementation of
BLAS is considerably lower than that reported for Goto BLAS on the same
architecture. Routine MKL BLAS A offers higher rates for matrices with mod-
erate bandwidth. For the larger bandwidth sizes, all three routines deliver
similar performance.

– MKL BLAS on itanium: The asymptotic performance is close to that obtained
with Goto BLAS. MKL BLAS A yields higher performance than the LAPACK
routine (MKL BLAS). The efficiency of MKL BLAS B lies between those of the
other two routines.

5 Conclusions

We have presented two routines for the Cholesky factorization of a band matrix
that reduce the number of calls to BLAS per iteration so that coarser-grain
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parallelism is exposed. The routines are thus potentially better suited to exploit
the architecture of SMP systems.

Several other (minor) conclusions have been extracted from our experience
with band codes:

– BLAS does not support all the functionality that is needed for the Cholesky
factorization of band matrices. However, even if these kernels were available,
exploiting the structure of A31 splits the computations in several parts and
usually results in lower performance when multiple processors are used.

– The performance of BLAS-1 and BLAS-2 is much more important than in
general for other dense routines and the optimal block size for the blocked
routines needs careful tuning.

– Operations that are considered minor in current LAPACK routines will need
to be reconsidered for future multicore architectures and some LAPACK
routines may even need to be recoded.

Compared with the message-passing programming paradigm in ScaLAPACK,
a parallel implementation based on LAPACK+multithreaded BLAS presents a
much better ease of use. Besides, this second approach offers programmers the
opportunity of improving existing sequential codes evolving the codes to be more
scalable.
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Abstract. We consider a parallel method for solving generalized eigen-
value problems that arise from molecular orbital computations. We use
a moment-based method that finds several eigenvalues and their corre-
sponding eigenvectors in a given domain, which is suitable for master-
worker type parallel programming models. The computation of eigen-
values using explicit moments is sometimes numerically unstable. We
show that a Rayleigh-Ritz procedure can be used to avoid the use of
explicit moments. As a test problem, we use the matrices that arise in
the calculation of molecular orbitals. We report the performance of the
application of the proposed method with several PC clusters connected
through a hybrid MPI and GridRPC system.

1 Introduction

Generalized eigenvalue problems arise in many scientific and engineering appli-
cations. Several methods for such eigenvalue problems are building sequences
of subspaces that contain the desired eigenvectors. Krylov subspace based tech-
niques are powerful tools for large-scale eigenvalue problems [1,2,8,9]. The rela-
tions among Krylov subspace methods, moment-matching approach and Padé
approximation are shown in [2].

In this paper we consider a parallel method for finding several eigenvalues and
eigenvectors of generalized eigenvalue problems in a grid computing environment.
A master-worker type algorithm is efficient to obtain a good performance with
distributed computing resources. However, it is not easy to adjust eigensolvers
for such type algorithms because of iterative processes of solvers.

We use a method using a contour integral proposed in [11] to find eigenvalues
that lie inside a given domain. In this method, a small matrix pencil that has

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 617–625, 2007.
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only the desired eigenvalues is derived by solving systems of linear equations.
Since these linear systems can be solved independently, we can obtain a master-
worker type parallel algorithm. In [12], a parallel implementation of the method
using a GridRPC system is presented.

In the method [11], complex moments obtained by a contour integral are used.
The explicit use of moments sometimes causes numerical instability. To improve
the numerical stability, we apply a Rayleigh-Ritz procedure with a subspace
obtained by a contour integral for some vectors.

As a test problem, we used the matrices that arise in the calculation of molec-
ular orbitals obtained from the fragment molecular orbital (FMO) method [3].
The FMO method has been proposed as a method for calculating the electronic
structure of large molecules such as proteins. The molecular orbitals of the FMO
method are obtained by solving the generalized eigenvalue problem for the Fock
matrix calculated with the total density matrix of the FMO method. In this
eigenvalue problem, we need several number of eigenvectors related to chemical
activities.

Since the target molecule is divided into small fragments, the process to gen-
erate matrices for molecular orbitals using FMO has a good performance with
distributed PC clusters. If we can use an eigensolver which also has a good par-
allel performance in a grid environment, whole processes can be done in a same
computing environment. We report the performance of the application of the
proposed method with several PC clusters connected through a hybrid MPI and
GridRPC system.

2 A Master-Worker Type Parallel Method

In this section, we briefly describe a master-worker type method for generalized
eigenvalue problems presented in [11,12]. This method, which is based on a
moment-based root finding method [4], finds several eigenvalues that are located
inside given circles. The error analysis of the method [4] is considered in [5,10].

Let A, B ∈ C
n×n, and let λ1, λ2, . . . , λn be eigenvalues of the matrix pencil

(A, B). For nonzero vectors u, v ∈ C
n, we define

f(z) := uH(zB − A)−1Bv

with a complex parameter z. Let pj and qj be left and right eigenvectors corre-
sponding to an eigenvalue λj , respectively. Then f(z) can be expressed as

f(z) =
n∑

j=1

νj

z − λj
+ g(z),

where νj = (uHqj)(pH
j Bv), g(z) is a polynomial of degree K, and K is a maxi-

mum size of Jordan blocks of B ([11]).
Let Γ be a circle with radius ρ centered at γ. Suppose that m distinct eigen-

values λ1, λ2, . . . , λm are located inside Γ . Define the complex moments

μk :=
1

2πi

∫

Γ

(z − γ)kf(z) dz, k = 0, 1, . . . . (1)
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By approximating the integral of (1) via the N -point trapezoidal rule, we obtain
the following approximations:

μk ≈ μ̂k :=
1
N

N−1∑

j=0

(ωj − γ)k+1f(ωj), k = 0, 1, . . . , (2)

where
ωj := γ + ρ e

2πi
N (j+ 1

2 ), j = 0, 1, . . . , N − 1.

Let the m × m Hankel matrices Ĥm and Ĥ<
m be

Ĥm := [μ̂i+j−2]mi,j=1 and Ĥ<
m := [μ̂i+j−1]mi,j=1.

The approximate eigenvalues λ̂1, λ̂2, . . . , λ̂m are obtained from the pencil (Ĥ<
m,

Ĥm).
Let ŵj be an eigenvector of the pencil (Ĥ<

m, Ĥm). The approximations for
right eigenvectors are obtained by

q̂j = [ŝ0, ŝ1, . . . , ŝm−1]ŵj , j = 1, 2, . . . , m, (3)

where

ŝk :=
1
N

N−1∑

j=0

(ωj − γ)k+1yj , k = 0, 1, . . . , m − 1, (4)

and
yj = (ωjB − A)−1v, j = 0, 1, . . . , N − 1. (5)

The approximate residues are evaluated by

ν̂j = (μ̂0, μ̂1, . . . , μ̂m−1)ŵj , j = 1, 2, . . . , m.

The accuracy of the results is sometimes improved by computing M(> m)
eigenvalues instead of m. In this case, we remove λ̂j when it is located outside
of Γ , or corresponding residue |ν̂j | is very small.

In order to evaluate the value of f(z) at z = ωj , j = 0, 1, . . . , N − 1, we solve
N linear systems (5) for yj , j = 0, 1, . . . , N − 1. When matrices A and B are
large, the computational costs for solving the linear systems are dominant in the
method. Since these linear systems are independent for each j, they are solved
on remote servers in parallel.

This method can be extended for the case that several circular regions are
given simultaneously. Suppose that Nc circles are given. Then we solve N × Nc
systems of linear equations

(ω(k)
j B − A)y(k)

j = v, j = 0, 1, . . . , N − 1, k = 1, 2, . . . , Nc,

where ω
(k)
j , j = 0, 1, . . . , N − 1 are equi-distributed points on the kth circle with

the center γ(k) and the radius ρ(k).
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Since A and B are common in each system of linear equations, we initially send
these data to each server. In order to solve another equation on the same server,
a scalar parameter ωj is sent. In this approach, we do not need to exchange data
between remote servers. Therefore, the present method is suitable for master-
worker programming models. A hybrid implementation by using a grid RPC
system Ninf-G [7] and MPI is presented in [13].

3 Modification by the Rayleigh-Ritz Procedure

In this section, we show a method for improving the accuracy of the eigenpairs
using a Rayleigh-Ritz procedure.

Let A ∈ R
n×n be symmetric, and let B ∈ R

n×n be symmetric positive definite.
Let Z ∈ Rn×M be an orthonormal basis of a certain subspace. The Rayleigh-Ritz
procedure is shown below:

Rayleigh-Ritz Procedure
1. Construct an orthonormal basis Z.
2. Form Ã = ZTAZ and B̃ = ZTBZ.
3. Compute the eigenpairs (θj , wj) (1 ≤ j ≤ M) of (Ã, B̃).
4. Set xj = Zwj, j = 1, 2, . . . , M .

If the subspace Z includes the subspace spanned by the m eigenvectors q1,
q2, . . . , qm, then some of the Ritz values θj of the projected pencil (Ã, B̃) are
taken as approximate eigenvalues for the original pencil (A, B) with correspond-
ing Ritz vectors xj . We can derive various methods by a choice of Z.

Now we show a method to provide a subspace using a contour integral. For a
nonzero vector v ∈ Rn, we define

sk :=
1

2πi

∫

Γ

(z − γ)k(zB − A)−1Bv dz, k = 0, 1, . . . , M − 1.

When M ≥ m and Z is the orthonormal basis of the space spanned by {s0,
s1,. . . , sM−1}, then m Ritz values are λ1, λ2, . . . , λm ([14]). This implies that
the eigenvalues located inside Γ can be obtained with vectors obtained by the
contour integral.

By approximating the contour integral via the N -point trapezoidal rule, we
obtain the following approximations for sk:

sk ≈ ŝk :=
1
N

N−1∑

j=0

(ωj − γ)k+1(ωjB − A)−1Bv, k = 0, 1, . . . , M − 1,

where N is a positive integer. Since ŝk suffer from the quadrature error which
arises from eigenvalues located outside the circle, we take the size of the subspace
larger than the exact number of the eigenvalues inside the circle. Thus we set,
in practice,

Z ∈ span(ŝ0, ŝ1, . . . , ŝM−1),
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with M(> m), and this approach is efficient to decrease the influence of the
quadrature error similar to the method in the previous section.

By using the Rayleigh-Ritz procedure, we can avoid the explicit use of the
moments in the computation of the approximate eigenvalues and eigenvectors.

4 Numerical Examples

In the first example, we compare the numerical accuracy of the method using
explicit moments and the modified method with Rayleigh-Ritz procedure in case
that the eigenvalues are given analytically. The matrices were

A = In, B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 6 −4
1 −4 5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where In is the n×n identity matrix, and n = 1, 000, 000. The exact eigenvalues
are given by

λ∗
j =

1

16 cos4
(

jπ

2(n + 1)

) , j = 1, 2, . . . , n.

Computation was performed with double precision arithmetic in MATLAB. The
systems of linear equations were solved by a direct solver of MATLAB function.
The parameter were N = 32 and M = 24, and the interval was [2.0000, 2.0002].
The results are given in Table 1 and 2. The relative error for λ̂i was given by

min
1≤j≤n

|λ̂i − λ∗
j |

|λ∗
j |

,

and the residual was given by ‖Aq̂j − λ̂iBq̂j‖2. In the case of explicit moment,
only 6 eigenvalues were found, while 7 eigenvalues were included in the circle.
We can see that the error was improved by using the Rayleigh-Ritz procedure.

The second example was derived from the molecular orbital computation of
a model DNA [3]. The size of the matrices was n = 1, 980. The parameters were
N = 32 and M = 24. We put four circles on the interval [−0.200, −0.175], and 30
eigenvalues were found. The relative error was evaluated by comparing with the
results obtained by a MATLAB function ’eig’. The numerical results are given
in Table 3.

Next, we show the wall-clock time using a GridRPC system. In order to evalu-
ate the performance of the method for the situation in which several PC clusters
are employed via a wide area network, we regarded some parts of a large-size
PC cluster system as distributed PC clusters.
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Table 1. Numerical results of the method using Rayleigh-Ritz procedure

Approximation Relative Error Residual
2.0000159105 4.4 × 10−16 6.7 × 10−13

2.0000430289 2.2 × 10−16 8.7 × 10−13

2.0000701478 1.8 × 10−15 5.2 × 10−11

2.0000972671 1.1 × 10−15 8.6 × 10−13

2.0001243870 8.9 × 10−16 1.1 × 10−11

2.0001515073 2.2 × 10−16 5.8 × 10−13

2.0001786281 2.2 × 10−16 5.7 × 10−13

Table 2. Numerical results of the method using explicit moments

Approximation Relative Error Residual
2.0000159085 1.0 × 10−9 5.3 × 10−8

2.0000430351 3.1 × 10−9 1.4 × 10−7

2.0000972715 2.2 × 10−9 2.4 × 10−7

2.0001243930 3.0 × 10−9 4.8 × 10−7

2.0001515063 4.9 × 10−10 1.4 × 10−6

2.0001786283 1.3 × 10−10 1.9 × 10−7

Experiments were performed on the AIST F32 Super Cluster of the National
Institute of Advanced Industrial Science and Technology. The node of the cluster
system was a 3.06-GHz Xeon with 4 GB of RAM. The client machine was a 3.0-
GHz Pentium 4 with 2 GB of RAM. The client was connected to servers via
100Base-TX Ethernet. The program was implemented with a GridRPC system,
Ninf-G ver. 2.4.0 [7].

The procedure to solve N systems was performed on remote servers. Since A,
B and v are common in each system of linear equations, we only need to send
these data at the first time to each server. In the hybrid algorithm [13], matrix
data are sent from a client to a remote server when a Ninf-G process is started.
Each Ninf-G process employs a specified number of MPI processes, and matrix
data are delivered to all processes. By this approach, we can reduce the number
of data transfer from a client to servers via a wide area network compared with
the case in which all remote servers receive matrix data directly from a client.
To solve another equation on a remote server, a scalar parameter ωj is sent.

The test matrices were derived from computation of the molecular orbitals
of lysozyme (129 amino-acid residues, 1,961 atoms) with 20,758 basis functions
[3]. The structure of the lysozyme molecule has been determined experimentally,
and we added counter-ions and water molecules around the lysozyme molecule in
order to simulate in vivo conditions. The size of both A and B was n = 20, 758,
and the number of nonzero elements was 10, 010, 416. A was symmetric, and B
was symmetric positive definite.

The original matrices were given as dense matrices. To decrease the size of
data to transfer from a client to servers, we dropped elements of A and B when
|aij | + |bij | ≤ δ × maxi,j(|aij | + |bij |) with small number δ. In Table 4, we show
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Table 3. Error and residual for model DNA

Interval Approximate eigenvalues Relative Error Residual
[−0.175,−0.164] −0.1653821623 2.7 × 10−15 9.1 × 10−14

−0.1660179534 1.6 × 10−14 4.4 × 10−11

−0.1665276422 8.2 × 10−15 2.7 × 10−12

−0.1671209292 1.9 × 10−14 2.5 × 10−11

−0.1701971456 5.4 × 10−15 1.0 × 10−12

−0.1713425781 9.6 × 10−15 4.2 × 10−12

−0.1720255816 5.5 × 10−15 5.6 × 10−13

−0.1734650856 6.9 × 10−15 1.6 × 10−13

[−0.188,−0.176] −0.1800584518 6.2 × 10−16 2.1 × 10−12

−0.1804114492 7.7 × 10−16 1.5 × 10−12

−0.1836742198 3.9 × 10−15 4.9 × 10−12

−0.1849530396 1.4 × 10−15 3.5 × 10−11

−0.1855093053 9.3 × 10−15 2.0 × 10−9

−0.1855909662 5.1 × 10−15 2.4 × 10−10

[−0.199,−0.190] −0.1924234809 3.1 × 10−14 3.8 × 10−11

−0.1930532724 2.3 × 10−15 2.2 × 10−11

−0.1938675180 8.6 × 10−16 4.1 × 10−11

−0.1947494181 1.3 × 10−15 5.1 × 10−11

−0.1957682188 2.6 × 10−15 4.2 × 10−10

−0.1960484797 6.7 × 10−15 1.8 × 10−9

−0.1967218965 9.6 × 10−15 9.7 × 10−10

−0.1970427773 3.2 × 10−15 6.4 × 10−11

[−0.207,−0.200] −0.2005919579 3.7 × 10−15 3.4 × 10−13

−0.2008357178 4.4 × 10−15 5.2 × 10−13

−0.2036556294 6.7 × 10−15 3.9 × 10−10

−0.2038003108 7.8 × 10−15 2.4 × 10−10

−0.2039320476 2.4 × 10−14 2.9 × 10−10

−0.2048059882 5.4 × 10−15 1.1 × 10−9

−0.2048242514 4.5 × 10−15 8.1 × 10−10

−0.2050547248 2.6 × 10−14 1.8 × 10−10

Table 4. Ratio of nonzero elements (%)

δ 10−16 10−14 10−12 10−10 10−8 10−6

A 16.22 11.50 7.18 3.65 1.34 0.42
B 2.19 1.74 1.33 0.94 0.49 0.29

|A| + |B| 16.22 11.51 7.18 3.65 1.35 0.44

the ratio of nonzero elements with drop tolerance δ for A, B and |A| + |B|. In
the numerical experiments below, we take δ = 10−9 by some experiments, and
A and B are treated as sparse matrices.

Since the matrix ωjB −A with complex ωj is complex symmetric, the COCG
method [15] with incomplete Cholesky factorization with a complex shift [6] was
used. In this case, a complex shift was effective to decrease the number of it-
erations. We used the same precondition matrix in each process of Ninf-G to
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Table 5. Wall-clock times (seconds)

Number of MPI Number of Ninf-G processes
processes 1 2 4 6 8

1 1351 670 351 265 240
2 901 447 238 182 159
4 529 265 142 117 82
8 348 173 86 84 50

save the computational costs. The stopping criterion for the relative residual
was 10−12. Computation was performed in double-precision arithmetic. The ele-
ments of v were distributed randomly on the interval [0, 1] by a random number
generator.

The intervals [−0.24, −0.18] and [0.16, 0.22] were covered by eight circles.
These intervals include the energy levels of the highest occupied molecular or-
bitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO), which
are key factors in the amount of energy needed to add or remove electrons in a
molecule. The parameters were chosen as N = 48 and M = 20.

We observed the wall-clock time in seconds with various combinations of the
numbers of Ninf-G processes and MPI processes. The time required to load the
input matrices into the memory of the client and that required to start up the
Ninf-G and MPI processes were not included. The results are listed in Table 5.
Twenty eigenvalues and corresponding eigenvectors were obtained in 50 seconds
with the combination of eight Ninf-G processes and eight MPI processes (64
processors).

In these computations, the preconditioning matrix was computed in serial
code, and was computed once in each Ninf-G process. This causes the load im-
balance between MPI processes. The use of a parallel preconditioner will improve
the performance. The application to larger size of matrices derived from practical
problems will be our future work.
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The fast development of new experimental biotechnologies has resulted in an
avalanche of genomic data. As a consequence, the life sciences are becoming
more quantitative, and information technology, mathematics and statistics are
being incorporated in a natural way. New fields such as bioinformatics and com-
putational biology have emerged and are now key players in the effort to unravel
the information hidden in the genomes. With the vast and ever growing amounts
of data, it has become necessary to employ parallel programming, and grid tech-
niques to accelerate the data processing and analysis. Although the bioinfor-
matics and computational biology fields are still in their infancy when it comes
to using parallel computers and grids, at least compared to other fields such as
computational chemistry and physics, they have already emerged as major users
of high-throughput computing resources.
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Abstract. We present a flexible parallel implementation of the exhaus-
tive grid search algorithm for multidimensional QTL mapping problems.
A generic, parallel algorithm is presented and a two-level scheme is in-
troduced for partitioning the work corresponding to the independent
computational tasks in the algorithm. At the outer level, a static block-
cyclic partitioning is used, and at the inner level a dynamic pool-of-tasks
model is used. The implementation of the parallelism at the outer level is
performed using scripts, while MPI is used at the inner level. By compar-
ing to results from the SweGrid system to those obtained using a shared
memory server, we show that this type of application is highly suitable
for execution in a grid framework.

Keywords: QTL analysis, grid computing.

1 Genetic Mapping of Quantitative Traits

Many important traits in animals and plants are quantitative in nature. Exam-
ples include body weight and growth rate, susceptibility to infections and other
diseases, and agricultural crop yield. Hence, understanding the genetic factors
behind quantitative traits is of great importance. The regions in the genome af-
fecting a quantitative trait can be found by analysis of the genetic composition
of individuals in experimental populations. The genetic regions are also known
as Quantitative Trait Loci (QTL), and the procedure of finding these is called
QTL mapping. A review of QTL mapping methods is given in [13].

In QTL mapping, a statistical model for how the genotypes of the individuals
in the population affect the trait is exploited. The data for the model is produced
by experiments where the genotypes are determined at a set of marker loci in
the genome. This data is input to a QTL mapping computer code, where the
computation of the model fit and the search for the most probable positions of
the QTL are implemented using numerical algorithms. Once the most probable
QTL is determined, further computations are needed to establish the statistical
significance of the result.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 627–636, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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It is generally believed that quantitative traits are governed by an interplay
between multiple QTL and environmental factors. However, using a model where
multiple QTL are searched for simultaneously makes the statistical analysis very
computationally demanding. Finding the most likely position of d QTL influenc-
ing a trait corresponds to a d-dimensional global optimization problem, where
the evaluation of the objective function is performed by computing the statistical
model fit for a given set of d QTL positions in the genome. So far, standard QTL
mapping software [18,6,25,7] has used an exhaustive grid search for solving the
global optimization problem. This type of algorithm is robust, but the compu-
tational requirement grows exponentially with d. This results in that often only
mapping of a single QTL (d = 1) can be easily performed. Models with multiple
QTL are normally fitted using for example a forward selection technique where
a sequence of one-dimensional exhaustive searches are performed. In this type
of procedure, the identified QTL are successively included as known quantities
when searching for additional QTL. However, it is not clear how accurate this
technique is for general QTL models. Lately, the interest in simultaneous map-
ping of multiple QTL has increased. Partly, the interest is motivated by analyses
of real data sets [26,27,12] where certain interactions [11] between pairs of QTL
have been found to only be detectable by solving the full two-dimensional opti-
mization problem.

2 Efficient Computational Schemes for QTL Analysis

A popular approach for computing the model fit is the linear regression method
[17,14,23], where a single least-squares problem is solved for each objective func-
tion evaluation. Efficient numerical algorithms for solving these least-squares
problems in the QTL mapping setting are considered in [20,19]. Because of the
exponential growth in work using the standard exhaustive grid search, algorithms
for the global optimization problem for simultaneous mapping of multiple QTL
have received special attention. Previously used optimization methods for QTL
mapping problems include a genetic optimization algorithm, implemented for
d = 2 using library routines [8], and an algorithm based on the DIRECT [16]
scheme, implemented for d = 2 and d = 3 [21] and later improved to include
a more efficient local search [22]. For multi-dimensional QTL searches, these
new optimization algorithms are many orders of magnitude faster than an ex-
haustive grid search. The results indicate that the new algorithms in [22] enable
simultaneous mapping of up to six QTL (d = 6) using a standard computer.

The purpose of the work presented in the rest of this paper is three-fold:

1. We want to be able to perform at least a few high-dimensional QTL map-
ping computations using the very costly exhaustive grid search. For real
experimental data, we do not know the true optimal QTL positions a priori.
Using results from exhaustive grid searches for representative data sets and
models, we can evaluate the accuracy (and efficiency) of the more elaborate
optimization methods mentioned above.
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2. The extreme computational cost for performing the exhaustive grid searches
for high-dimensional QTL mapping problems makes is necessary to imple-
ment a parallel computer code. This code will later provide a basis also for
the implementation of the more efficient optimization schemes in a variety
of high performance computing environments.

3. The structure of the multidimensional QTL search indicates that it can be
efficiently implemented in a computational grid environment. Using a flexible
parallel implementation, it is possible to investigate if this conjecture is valid.

3 Parallelization of Search Algorithms for Multiple QTL

In Section 5, we describe a flexible parallel implementation of a scheme for
simultaneous mapping of several QTL, using the linear regression statistical
method and an exhaustive grid search for finding the best model fit. More details
about the problem setting can be found for example in [21,22]. In the experiments
presented in Section 6, we use the parallel code to search for potential QTL
positions in data from an experimental intercross between European wild boars
and white domestic pigs consisting of 191 individuals [5]. The pig genome has 18
chromosomes, and its total length is ∼ 2300 cM1. In the computations we use
models with two and three QTL, including both marginal and epistatic effects2.
In this paper, we use this set of data and models as representative examples.
We do not consider the relevance of the models used, nor do we consider the
problem of which statistical model to use. Also, we do not attempt to establish
the statistical significance of the results, and we do not draw any form of genetic
implications from the computations. However, the code described in this paper
provides a basis for future studies of all these issues, and for performing complete
QTL mapping analyses using models including many QTL.

The search for the best QTL model fit should in principle be solved by opti-
mizing over all positions x in a d-dimensional hypercube where the side is given
by the size of the genome. The genome is divided into C chromosomes, result-
ing in that the search space hypercube consists of a set of Cd d-dimensional
unequally sized chromosome combination boxes, cc-boxes. A cc-box can be iden-
tified by a vector of chromosome numbers c = [c1 c2 . . . cd], and consists of all
x for which xj is a point on chromosome cj . The ordering of the loci does not
affect the model fit, and this symmetry can be used to reduce the search space.
We can restrict the search to cc-boxes identified by non-decreasing sequences of
chromosomes. In addition, in cc-boxes where two or more edges span the same
chromosome, for example c = [1 8 8], we need only consider a part of the box.

Since genes on different chromosomes are unlinked, the objective function
is normally discontinuous at the cc-box boundaries. This means that the QTL
search could be viewed as essentially consisting of n ≈ Cd/2 independent global
1 A standard unit of genetic distance is Morgan [M]. However, distances are often

reported in centi-Morgan [cM].
2 Marginal effects are additive, i.e. the combined effect from two loci equals the sum

of the individual effects. For epistatic effects, the relationship is nonlinear.
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optimization problems, one for each cc-box included in the search space. Note
that this fact must also be acknowledged when using more advanced optimization
algorithms. For example, it is of course not possible to utilize derivative infor-
mation across a cc-box boundary. This partitioning of the problem is a natural
basis for a straight-forward parallelization of multi-dimensional QTL searches:

do (in parallel) i=1:n
l_sol(i) = global_optimization(cc-box(i));

end
Find the global solution among l_sol(:);

The final (serial) operation only consists of comparing n objective function val-
ues, and the work is negligible compared to the work performed within the
parallel loop. This type of parallelization was also used in [9] for mapping of
single QTL.

Since the objective function evaluations (model fit computations) are rather
expensive, the work for performing global minimization in a cc-box is almost
exclusively determined by the number of calls to the objective function evaluation
routine. For an exhaustive grid search algorithm, this number is known a priori.
However, since the size of the different cc-boxes varies a lot (the chromosomes
have very different lengths), the work will be very different for different boxes.
Hence, the two main issues when implementing the algorithm above is load-
balancing and granularity for the parallel loop.

We use an equidistant 1 cM grid for the exhaustive grid search, and exploit
the symmetry of the search space to reduce the number of grid points. In Table 1,
the total number of objective function evaluations and the total number of cc-
boxes, n, for our pig data example are given for searches using models including
different number of QTL d. For this example, the number of objective function
evaluations for the different cc-boxes ranges from 400 to about 25000.

Table 1. The total number of objective function evaluations for different number of
QTL in the model

number of QTL (d) cc-boxes (n) function evaluations
2 171 2.645 · 106

3 1140 2.089 · 109

4 5985 1.260 · 1012

5 26334 0.612 · 1015

4 Computational Grids and Other Parallel Computer
Systems

Grid computing has been a buzz word in the computing community for some
years, and numerous research projects involving grid systems and grid com-
putations have been initiated. Still, a common view by computational science
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researches is that much work remains for grid systems to be mature enough for
practical benefit. However, within a grid computing framework, inhomogeneous
networks of commodity class computer and clusters can be used for performing
large-scale computational tasks. This is especially valuable for research institu-
tions where funding for large-scale, advanced HPC hardware can not be easily
found.

The concept of a computational grid is very suitable for multiple instances of
serial applications in need of a throughput computing capacity. If the communi-
cation requirement is limited and not heavily dependent on low communication
latency, general computational grids can also be used for executing a parallel job
utilizing web- or file-based communication. Moreover, if the grid is built up from
standard parallel computer systems (clusters) it could be used for efficient exe-
cution of parallel jobs with higher communication needs, given that the parallel
job is scheduled within a single cluster.

From the description of the generic parallel algorithm for multi-dimensional
QTL search presented in Section 2 it is clear that this algorithm is suitable for
implementation in a grid system. A very small amount of data is communicated,
and communication only has to occur at two points in the algorithm.

The code for QTL search described in this paper was implemented to be easily
ported to a large variety of parallel computer systems. In Section 6, we present
experiments using a grid system and a shared memory server. Running the code
to a standard cluster would be easy. As remarked earlier, our code will provide
the basis for implementing a more complete QTL mapping software, using more
efficient search algorithms, in a grid framework. Another initiative along these
lines is the GridQTL project [15].

As an example of a computational grid we use is the SweGrid system [1].
SweGrid consists of six clusters distributed over the six national HPC centers in
Sweden, and connected via the 1 Gbit SUNET national network. Each cluster has
100 nodes, where each node is equipped with a 2.8 GHz Intel P4 processor and 2
GB RAM. Within the clusters, the nodes are interconnected by standard gigabit
Ethernet. The clusters run different versions of Linux, and the grid middleware
Nordugrid [2] is used for submitting and scheduling jobs between clusters. Within
the clusters, the jobs are scheduled using a standard queuing system, for example
PBS. The Nordugrid jobs are specified in so called XRSL-files. Jobs parallelized
with MPI can be submitted to the grid for execution within a cluster, but MPI
parallelization is currently not possible across clusters.

As an example of a shared memory server, we use a SunFire 15k system at the
Uppsala University HPC center UPPMAX [3]. The partition of the system used
for our experiments consists of 32 UltraSPARC III+ CPUs running at 900 MHz,
all sharing a 48 GB primary memory. The system runs Solaris 9, and the parallel
jobs are submitted using the GridEngine N1 queuing system. For our QTL search
application, the much higher memory bandwidth of the SunFire system actually
results in that the serial performance is better than on the SweGrid system even
though the clock speed of the CPU is much lower.
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5 Implementation

Our implementation of the exhaustive grid search for multi-dimensional QTL
problems is based on existing serial codes written in both C and Fortran 95.
These codes use the efficient objective function evaluation algorithms described
in [20]. When using the serial codes in the package it is possible to choose between
different global optimization algorithms, including both exhaustive search and
the much faster algorithms in [21]. As we remarked earlier, we will later include
also these algorithms in the parallel version of the code.

The parallel implementation uses a hybrid, two-level scheme for partitioning
the tasks corresponding to global optimization in cc-boxes over a set of parallel
processors. On the outer level a static partitioning of tasks corresponding to
blocks of cc-boxes is used, and on the inner level dynamic partitioning of tasks
corresponding to single cc-boxes is exploited.

For the outer, static level a separate code partitions the cc-boxes over ps dif-
ferent jobs. This is performed by defining a single-index ordering of the cc-boxes
and assigning blocks of indices in this ordering to different jobs. The user spec-
ifies the block size, and the distribution of tasks is performed using a standard
block-cyclic partitioning. As remarked earlier the number of objective function
evaluations per cc-box is known a priori. It would be possible to take this infor-
mation into account and use a partitioning algorithm of the type presented in
[24]. However, the goal is to also include the more elaborate global optimization
algorithms mentioned in Section 2 in the parallel code package in the future. In
this case, the work per cc-box is not known beforehand, and we do not want the
implementation to be dependent on this type of information.

The preparation code stores the description of the partitioning in ps input
files, which are then used by ps instances of the computational code. A job
control script submits the ps computational jobs and wait for them to finish. In
the Nordugrid environment the computational jobs are started using XRSL-files,
and when using a standard queuing system some other form of script describing
the jobs are used. In our grid implementation, we currently do not include any
error handling for jobs that do not finish in a reasonable amount of time or
do not finish at all. In an initialization step, the computational code reads its
input file to get information about for which cc-boxes it should perform global
optimization. When an instance of the computational code has performed the
tasks assigned to it, it writes its local result (the optimal function value and
the corresponding position vector x) to a result file. Finally, when all jobs have
finished, a small separate code compares the local results and outputs the global
optimum. In this context it should be noted that the amount of data used by
the computational code is rather small, and data distribution is not an issue for
the grid implementation.

The inner, dynamic level of parallelization is implemented using MPI. Each of
the ps instances of the computational code is executed as a pd + 1-process MPI
job, where the partitioning of the cc-boxes over the processes is performed using
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a master-slave scheme3. The master process maintains a queue of tasks, each
consisting of global optimization in a single cc-box. These tasks are dynamically
handed out to the pd worker processes as soon as they have completed their pre-
vious task. At this level, the communication of cc-box specifications and results
is of course implemented using MPI routines.

Using a hybrid scheme of the type described above gives us the flexibility to
use only static or dynamic load balancing, or a combination of the two. Also,
since we have used different parallelization tools for the two levels, we can easily
port the code to a variety of different computer systems and configurations.
In the experiments performed below we only present results for pure static or
dynamic load balancing. However, on the SweGrid system, it would be possible
to run the code in the hybrid mode where the Nordugrid middleware is used to
submit a small number of MPI jobs, each consisting of a number of processes
that are executed locally on one of the six clusters.

6 Results

In this section, we present results for QTL searches where three QTL are simul-
taneously included in the model (d = 3). The code is not limited to these type
of problems, but before performing any very demanding experiments for prob-
lems where d > 3 we want to investigate the parallel behavior for problems that
do not require extensive amounts of resources. Also, expensive high-dimensional
searches should be carefully planned so that the results derived could be inter-
esting also from a genetics perspective.

We start by presenting results for the shared memory server, where we com-
pare the two strategies for load balancing implemented in the code. These re-
sults can also be used as a reference when assessing the performance on the grid
system studied later. The run times reported are wall-clock timings, and the
experiments were performed on a lightly loaded system.

In Table 2, timings are presented using both static and dynamic partitioning
of the work as described in Section 5. When employing static partitioning, the
preparation code was used to compute a block-cyclic partitioning of the tasks
corresponding to the cc-boxes over ps instances of the computational code, and
no MPI parallelization was used at the inner level (pd = 1). When using dynamic
partitioning, a single instance of the computational code is run (ps = 1), and
the tasks corresponding to the cc-boxes are distributed one-by-one to pd MPI
processes using the dynamic pool-of-tasks scheme. For this problem with d = 3,
the number of cc-boxes involved in the optimization is 1140, and the load balance
for the static scheme is rather good. The table shows that the performance of
the two schemes is very similar.

Next we present results for the SweGrid system. Here, we focus on the timings
for the three-QTL model (d = 3). On this systems, the experiments had to
be performed under regular load conditions and using the regular scheduling
3 In the special case when pd = 1, a single computational process is initiated and MPI

is not used.
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Table 2. Timings for d = 3 on the SMP. Static (left) and dynamic (right) partitioning

ps (pd = 1) Speedup Runtime [s] pd (ps = 1) Speedup Runtime [s]
1 1 535813 1 1 535730
2 1.99 269450 2 1.97 272242
4 3.94 135905 4 3.84 139439
8 7.78 68979 8 7.49 71561
16 14.97 35804 16 15.18 35287

policies. Some indication of the load of the SweGrid system can be given by the
idle time, i.e., the time the job has to wait in queue before it is started. However,
the idle time also depends on the scheduling policy of the queuing systems at
the local clusters, especially if MPI-job are used. In Table 3, timings for the
static and dynamic work partitioning schemes are presented. Note that when
using dynamic partitioning, a pd + 1-processor MPI-job is executed on one of
the SweGrid clusters. Since the static work partitioning scheme exploits XRSL-

Table 3. Timings for d = 3 on SweGrid. Static (left) and dynamic (right) partitioning

ps (pd = 1) Speedup Idle time [s] Runtime [s] pd (ps = 1) Speedup Idle time [s] Runtime [s]
1 1 1020 955800 1 1 180 941400
2 2.03 240 471180 2 2.01 180 469140
4 3.93 360 243240 4 4.00 540 235200
8 7.56 28440 12480 8 8.02 240 117420
16 14.20 240 67320 16 8.99 181160 104760
30 24.36 600 39240 30 29.49 140760 31920
60 47.98 5460 19920 60 43.11 118440 21840

scripts for executing multiple instances of a serial code, it is similar to schemes
used in other major grid applications, for example by the LHC Cern project [4].
From the results in Table 3, it is also clear that the scheduling policies used
in the queuing systems at the SweGrid clusters favors this type usage of the
grid. Parallel MPI-jobs often have to wait in queue a long time before they are
started. To some degree, this time could be reduced by giving parallel jobs higher
priorities. However, when the load on the system is high it is probably difficult
to improve the situation very much.

7 Conclusions

A major aim of this paper was to present a flexible parallel implementation of
multidimensional QTL search. When using the standard exhaustive grid search
algorithm for solving the global optimization problem for finding the best QTL
model fit, it is easy to partition the work into a large number of independent
tasks corresponding to cc-boxes in the search space. Also, the work per cc-box
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can be accurately estimated a priori, and the experimental results in Section 6
show that both static and dynamic work partitioning schemes are efficient.

Another major aim was to investigate if it possible to solve the multidimen-
sional QTL search problem efficiently on a computational grid. Again, the results
presented in Section 6 show that this is indeed the case. The speedup achieved
when using the SweGrid system is very similar to when a shared memory server is
used. For our implementation, the static partitioning scheme resulted in shorter
turn-around times than the dynamic scheme. The reason for this is that the
static version uses serial jobs which are efficiently scheduled on available proces-
sor nodes by the Nordugrid middleware, resulting in short queuing times for the
jobs. Our implementation of the dynamic scheme uses MPI, and thus a number
of processors must be available on a cluster before the local queuing system can
start the execution of the job. When the number of processors requested is large,
this results in long queuing times. On SweGrid, our static partitioning of work
results in dynamic execution of the corresponding computational tasks while our
dynamic partitioning in a sense results in static execution.

Finally, it should be noted that the parallelization technique presented in
this paper is adopted for efficient execution of a single, multidimensional QTL
search. For other QTL analysis settings, other schemes for parallelization should
be used. For example, multiple instances of non-expensive searches where d = 1
and possibly also d = 2 are perfectly suitable for serial execution in a grid
environment. Another class of problems arises in analyses where low-dimensional
(d = 1 or d = 2) QTL searches are performed for a single set of genetic data, but
for a large number of phenotypes. Here, the phenotypes can arise from micro-
array experiments or from permuted data sets used in significance testing. In this
case, it is more efficient to parallelize the computations over the phenotypes, as
described in [10]
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Abstract. The chemical master equation (CME) describes the proba-
bility for each internal state of the cell or rather the states of a model
of the cell. The number of states grows exponentially with the num-
ber of chemical species in the model, since each species corresponds to
one dimension in the state space. The CME can be approximated by a
Fokker-Planck equation (FPE), which can be solved numerically cheaper
than the CME. The FPE approximation of the full CME is not always
appropriate, while it can be suitable for a subspace in the state space. In
order to exploit the lower cost of the FPE approximation a method for
splitting the state space in two subspaces where one is approximated by
the FPE and one remains unapproximated is presented. A biologically
relevant problem in four dimensions is solved as an example.

1 Introduction

Chemical reactions are often accurately described with a system of ordinary
differential equations that is called the reaction-rate equations. Each equation
accounts for the change in concentration for a chemical species. This system of
equations describes a completely deterministic evolution of the chemical reactor.

The reaction-rate equations assume large number of molecules and that the
system is close to chemical equilibrium. These are reasonable assumptions in
chemical engineering, but not in molecular biology. When the reactor volume
is small with low copy numbers of some of the reacting molecules such a de-
terministic model is not always good enough. The discreteness of reactions and
molecules introduces a noise that cannot be disregarded [20]. Even if copy num-
bers are comparatively large there can be large fluctuations [5].

Stochastic models describe the system in a probabilistic way, where the prob-
ability for every possible state of the system is considered. This is equivalent
to determining the frequency of each state in an ensemble of cells, while the
reaction-rate equations is a model for the evolution of the mean state in the
ensemble. The theoretical importance of stochastic models has been known for
long time (see for instance the review [17]), but in recent years the experimental
results have been gathering as well [1], [6], [8] and as experimental methods are
developed to examine single molecules in single cells [3], [21] more experiments
can be expected.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 637–646, 2007.
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The chemical master equation (CME) is used to describe the time-evolution
of the probability density function of the state of the model. It is expensive to
solve numerically. This paper describes a splitting of the CME into one part that
is approximated by a Fokker-Planck equation (FPE) and one that is not.

2 Stochastic Biochemical Models

The physical foundation for the master equation as a stochastic model of bio-
chemical reactions requires some assumptions to be valid [11]. The basic assump-
tion for our model is that the system is well approximated by a Markov process,
that is a stochastic process with no memory. It is only the current state that
may affect the probability of the next reaction.

Definition 1. Let the system contain N chemical species Xi, i = 1 . . .N and
M reaction channels Rν , ν = 1 . . .M . Denote the number of Xi-molecules by
xi ∈ [0, ∞). Let the state of the system be determined by x = (x1, x2, . . . , xN )T .
Define cνδt as the probability for reaction Rν between a given set of reactant
molecules in the next time interval δt. Also define hν(x) as the number of such
reactive sets and the propensity of reaction Rν , wν(x) = hν(x)cν .

We assume that the biological cell is a homogeneous mixture of the reactive
molecules and some solvent. This is necessary due to the basic assumption since
there is no spatial component in the state variable and the process has no mem-
ory. The rationale for the well-stirred assumption is that the reactor volume can
be considered to be well-stirred if each reactive molecule collides a large number
of times with inert molecules between subsequent reaction events. The result
is that there is an equal probability for any two molecules to collide, which is
necessary for a reaction to take place.

A reaction is specified by a reaction propensity wν(x), which is defined as
the probability for reaction Rν per unit time, and stoichiometric coefficients
s = (s1, s2, . . . , sN )T determining the change in molecule numbers as the reaction
is fired. A state change can be written

x → x + s .

The propensity depends on the probability of collision and the probability for re-
action given that a collision has occurred. The latter probability depends on the
velocity distribution of the reactant molecules (hence the temperature), the ac-
tivation energy of the reaction, the probability of the molecules to be positioned
in a reactive orientation and so on.

The probability for collision of molecules is naturally dependent on the volume
of the reactor. Cells grow and divide which makes the propensities time depen-
dent and introduce additional noise due to the random splitting of molecules
between daughter cells. This complication is not difficult to include in the pre-
sented framework. Here a constant volume assumption is made to avoid these
technicalities.
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3 Methods

3.1 The Chemical Master Equation

Consider a system as defined in Definition 1. Let −nν denote the stoichiometric
coefficients of reaction Rν . Summing over all reactions we now can write the
CME [20]:

dp(x, t)
dt

=
M∑

ν=1

wν(x + nν)p(x + nν , t) −
M∑

ν=1

wν(x)p(x, t) . (1)

The CME states that the change in probability for state x is simply the probabil-
ity to reach state x from any other state x+nν (first sum), minus the probability
to leave state x for any other state (second sum).

The size of the state space grows exponentially with the number of molecular
species in the model. To compute probability density functions for larger and
larger biochemical models, the aim must be to allow solution of CMEs with
state spaces of higher and higher dimension. In that perspective, the impact of
parallelization is modest. It will add one or two dimensions to the set of solvable
problems. For larger problems it is necessary to use approximations.

3.2 The Fokker-Planck Approximation

For many problems the discrete CME has too many degrees of freedom to be
computationally tractable, even for rather low dimensions. If it is replaced by a
continuous approximation the discretization of the approximation has substan-
tially fewer degrees of freedom.

By Taylor expansion of the CME and truncation after the second order terms
the following FPE is obtained [20]

∂p(x, t)
∂t

=
M∑

ν=1

⎛

⎝
N∑

i=1

nνi
∂(wν(x)p(x, t))

∂xi
+

N∑

i=1

N∑

j=1

nνinνj

2
∂2(wν(x)p(x, t))

∂xi∂xj

⎞

⎠

≡
M∑

ν=1

Aνp , (2)

where nνi is the i:th element of nν .

3.3 Merging the Discrete CME and the Continuous FPE

Consider a CME for a system as described in Definition 1. Let X be the space of
all physical states (i.e. fulfilling xi ≥ 0 and other restrictions due to the model).
Divide the variables into two subsets X and Y such that spanX ∪ Y = X so
that Y is suitable for FPE approximation, but X is not. Split the stoichiometric
coefficients accordingly so that μν and ην are vectors containing the elements of
nν corresponding to the variables in X and Y , respecetively.
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The CME (1) for a splitting where x ∈ spanX and y ∈ spanY is now written

∂p

∂t
(x,y, t) =

∑

ν

wν(x + μν ,y + ην)p(x + μν ,y + ην) −
∑

ν

wν(x,y)p(x,y, t) .

Introduce qν(x, t) = wν(x)p(x, t) and apply the FPE approximation to the vari-
ables in Y

∂p

∂t
(x,y, t) =

∑

ν

qν(x + μν ,y + ην , t) − qν(x,y, t)

=
∑

ν

qν(x + μν ,y + ην , t) − qν(x + μν ,y, t) + qν(x + μν ,y, t) − qν(x,y, t)

=
∑

ν

⎛

⎝
∑

i

ηνi
∂qν

∂yi
+

1
2

∑

i

∑

j

ηνiηνj
∂2qν

∂yi∂yj

⎞

⎠ (x + μν ,y, t)+

∑

ν

qν(x + μν ,y, t) − qν(x,y, t) . (3)

For example, if the sets X and Y have one member each, x ∈ X and y ∈ Y
where x ∈ {0, 1, . . . , k}, and maxν |μν | = 1 then (3) can be written as the
following sum of block-diagonal matrices (zero elements not written)

p =

⎛

⎜⎜⎜⎝

p(0, y)
p(1, y)

...
p(k, y)

⎞

⎟⎟⎟⎠ ,
∂p

∂t
=

∑

ν,μν=0

⎛

⎜⎜⎜⎝

Aν,0
Aν,1

. . .
Aν,k

⎞

⎟⎟⎟⎠ p

+
∑

ν,μν=1

⎛

⎜⎜⎜⎜⎜⎝

−wν(0, y) Aν,1 + wν(1, y)
−wν(1, y) Aν,2 + wν(2, y)

. . . . . .
−wν(k − 1, y) Aν,k + wν(k, y)

−wν(k, y)

⎞

⎟⎟⎟⎟⎟⎠
p

+
∑

ν,μν=−1

⎛

⎜⎜⎜⎝

−wν(0, y)
Aν,0 + wν(0, y) −wν(1, y)

. . . . . .
Aν,k−1 + wν(k − 1, y) −wν(k, y)

⎞

⎟⎟⎟⎠ p ,

where Aν,i is the FPE operator from (2) for the y-variable and constant x = i.
Since negative molecule numbers are nonsense, wν(0, y) = 0 if μν = 1. The
numerical boundary at the truncation of the state space at k can be chosen
more freely, but here wν(k, y) = 0 if μν = −1, assuming the probability at this
boundary is zero.

3.4 Discretization of the Fokker-Planck Equation

The FPE is discretized and solved on a grid that is considerably coarser than
the state space [4]. A finite volume method (see [18]) is used to discretize the
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state space in the subspace where the master equation is approximated with an
FPE. Reflecting barrier boundary conditions [7] are used which prescribe that
there is no probability current over the boundary.

3.5 The Stochastic Simulation Algorithm (SSA)

The well-known stochastic simulation algorithm (SSA) was proposed by Gillespie
in 1976 [10] for simulation of stochastic trajectories through the state space of
chemical reaction networks. Since then several improvements, approximations
and extensions [2] [9], [12], [16], have been made to the original algorithm that we
summarize here. SSA can be used to solve the unapproximated master equation
and is relevant for comparison to the FPE-method with respect to accuracy and
efficiency.

SSA was not designed for the purpose of solving the CME, which at the
time seemed “virtually intractable, both analytically and numerically” [10]. That
statement is not out of date for the vast majority of CME problems, but numer-
ical solution for small reaction networks has become feasible.

Define the system as in Definition 1. The probability that the next reaction
is fired in the interval (t + τ, t + τ + δt) and is of type Rλ is

p(τ, λ)δt = wλ exp(−
M∑

ν

wντ).

SSA samples p(τ, λ) in order to take a statistically correct Monte Carlo step.
The algorithm for generating a trajectory is:

1. Initialize the state x, compute reaction propensities wν(x), ν = 1 . . .M and
set t = 0.

2. Generate a sample (τ, λ) from the distribution p(τ, λ)
3. Increase time by τ and change the state according to reaction Rλ

4. Store population and check for termination, otherwise go to step 2

By simulating an ensemble of trajectories the state probability distribution can
be estimated and a solution to the master equation is obtained. The error of
SSA can be estimated in a statistical sense. With a certain probability the error
is within the prescribed error bound [18].

3.6 Computational Efficiency

The convergence rate of solution by the FPE approximation is derived in [18].
For a certain error ε the computational work for the SSA is

WSSA(ε) = CSSA ε−2 ,

while the work for the FPE is

WFPE(ε) = CFPE ε−(N
r + 1

s ) ,
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where CSSA and CFPE are independent of ε, N is the dimension of the problem
and r and s are the order of accuracy of the space- and time-discretizations,
respectively. For some systems, numerical solution of the FPE approximation
can be much more efficient than SSA [18]. If, like here, second order accurate
discretizations schemes are used in time and space, less work is needed for FPE
when N < 3 and a small ε. For the hybrid method N is the number of variables
in Y .

High order schemes have a great potential of allowing solution of larger prob-
lems, but the dimensionality of the feasible problems will still be low compared
to the actual number of dimensions in most molecular biological models. There
are no principal impediments for using higher order schemes.

4 An Example Problem

To demonstrate a problem where the partial approximation is useful, consider a
gene which is regulated directly by its product. The gene products binds cooper-
atively at two sites, S1 and S2 in the regulatory region of the gene. There are five
molecular species in the model (notation within parenthesis): the gene product -
a metabolite (M), the gene with S1 and S2 unoccupied (DNA), the gene with S1
occupied by an M -molecule (DNAM ), the gene with both S1 and S2 occupied by
M -molecules (DNA2M ) and mRNA (RNA). The number of molecules is denoted
by the token for the corresponding species in lowercase characters, i.e. m, dna,
dnaM , dna2M and rna. Figure 1 shows the reactions of the model. A metabo-

M

M

M

M

M

M

M

M

RNA

S1S1

S1

S2S2

S2

Fig. 1. The reaction scheme of the example

lite bound to S1 activates transcription while a metabolite bound to S2 blocks
RNA polymerase and shuts down mRNA production. Cooperativity is necessary
for metabolite binding to S2 and so strong that a metabolite bound to S1 will not
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unbind while S2 is occupied. The metabolite and mRNA are actively degraded.
This example is a simplified version of the transcription regulation example in
[13].

No reactions change the number of gene copies. There are exactly two copies
during the entire simulation, i.e. the probability for dna + dnaM + dna2M =
2 is 1. Therefore the state space is actually a four-dimensional surface in the
five-dimensional state space and we can reduce the state description to x̃ =
(dna, dnaM , rna, m)T and substitute dna2M = 2− dna− dnaM in the propensity
functions. Table 1 lists the reactions of the reduced model. The symbol ∅ denotes
that no molecules are created in the reaction.

Table 1. The reactions of the example system

Reaction Stoichiometric Coeff. Propensity
RNA

w1−−→ RNA + M (0, 0, 0, 1)T w1 = 0.05 · rna

M
w2−−→ ∅ (0, 0, 0,−1)T w2 = 0.001 · m

DNAM
w3−−→ RNA + DNAM (0, 0, 1, 0)T w3 = 0.1 · dnaM

RNA
w4−−→ 0 (0, 0,−1, 0)T w4 = 0.005 · rna

DNA + M
w5−−→ DNAM (−1, 1, 0,−1)T w5 = 0.02 · dna · m

DNAM
w6−−→ DNA + M (1,−1, 0, 1)T w6 = 0.5 · dna

DNAM + M
w7−−→ DNA2M (0,−1, 0,−1)T w7 = 2 · 10−4 · dnaM · m

DNA2M
w8−−→ DNAM + M (0, 1, 0, 1)T w8 = 1 · 10−11 · (2 − dna − dnaM )

5 Experiments

The example in Section 4 was simulated for 35 minutes (approximately one cell
generation time) using SSA and the hybrid approach. The two variables dna and
dnaM were represented by the CME part (X) and rna and m were represented
by the FPE part of the hybrid method. The FPE part (Y ) was discretized in
the rna × m-plane using 20 × 60 cells of equal length in the m-dimension and
of increasing length in the RNA-dimension. Let hk be the length of the k:th
cell in the RNA-dimension. The step lengths were determined by hk = (1 +
θ)hk−1, i = 2 . . . 20 and h1 = 0.5. For time integration of (3) the implict second
order backward differentiation formula scheme (BDF-2) [14] was used. The time
step was chosen adaptively according to [15] with an error tolerance, measured in
the L1-norm, of one percent in each time step. The system of equations that arise
in each time step in BDF-2 is solved using BiCGSTAB [19]. The implicit method
is suitable for handling the ubiquitous stiffness of molecular biological systems.
As initial data, a normal distribution in the rna × m-plane was truncated at
the boundaries of the computational domain and rescaled. The mean E(x) and
variance V (x) of the normal distribution before truncation was E(x) = (1, 5)T

and V (x) = (1, 1)T . The probability for being in a state where dna = 2 and
dnaM = 0 was set to 1.

For SSA the simulation was used to compute mean and variance, but not
an approximation of the probability density function. The initial state of each
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trajectory was sampled from the initial distribution that was used for the CME-
FPE-hybrid simulation.

5.1 Results

Due to numerical approximation errors the solution is slightly negative at some
parts of the state space. In order to calculate the mean and standard deviation
those negative values are set to zero. Figure 2 shows the means and standard
deviations for the hybrid method compared to what is obtained by SSA using
104 trajectories. Figure 3 shows a projection of the probability density function.
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Fig. 2. Mean values (left) and standard deviations (right) for, from top to bottom,
dna, dnaM , rna and m. The hybrid solution (solid line) and the SSA solution (broken
line) is plotted for each case.

Isolines of

p̃(rna, m) =
∑

dna,dnaM

p(dna, dnaM , rna, m)

are plotted at four different times as indicated in the figure.
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Fig. 3. Snapshots of the numerical solution projected on the rna × m-plane

6 Conclusion

The splitting of the state space in two subspaces where one subspace is suitable
for approximation with the chemical master equation and one is not, extends
the range of problems that can solved numerically using the FPE approximation
of the master equation.

The main reason for introducing this hybrid method is that the FPE often
is a good approximation for some, but not all, dimensions in the state space.
Typically genes and gene configurations will not be well approximated. Such
dimensions need to be resolved by more grid points than the actual number of
states in that dimension. Furthermore the error in the FPE approximation is
bounded by the third derivatives [18]. For low copy numbers the probability of a
single dominating state is high resulting in probability peaks that cannot be well
approximated due to large third derivatives. There is also a point in avoiding
approximations when they are not needed.
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Abstract. At the core of the FISH (Family Identification with Structure
anchored Hidden Markov models, saHMMs) server lies the midnight
ASTRAL set. It is a collection of protein domains with low mutual se-
quence identity within homologous families, according to the structural
classification of proteins, SCOP. Here, we evaluate two algorithms for cre-
ating the midnight ASTRAL set. The algorithm that limits the number of
structural comparisons is about an order of magnitude faster than the all-
against-all algorithm.We therefore choose the faster algorithm, although it
produces slightly fewer domains in the set. We use the midnight ASTRAL
set to construct the structure-anchored Hidden Markov Model data base,
saHMM-db, where each saHMM represents one family. Sequence searches
using saHMMs provide information about protein function, domain orga-
nization, the probable 2D and 3D structure, and can lead to the discovery
of homologous domains in remotely related sequences.

The FISH server is accessible at http://babel.ucmp.umu.se/fish/.

1 Introduction

Genome sequencing projects contribute to an exponential increase of available
DNA and protein sequences in data bases. Millions of sequence entries contain
remarks such as “hypothetical”, “unidentified”, or “unknown”. It is therefore
crucial to develop accurate automated sequence annotation methods. For proper
characterization of newly sequenced proteins it is important to associate them
with homologous proteins of well characterized functions and possibly high qual-
ity three dimensional (3D) structures. Proteins are modular and can harbour
many domains. Consequently, it is advisable to characterize the constituent do-
mains rather than the protein as a whole. Existing resources, such as Pfam [1],
Superfamily [7], SMART [6] and others, provide the user with versatile tools
for domain identification. Common for these methods is that they use protein
sequence alignments that include as many sequences as possible, even with high
sequence identity of up to 95%, to construct hidden Markov models, HMMs. At
the core of our approach lies a data base of structure-anchored hidden Markov
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models, saHMMs. In contrast to the other methods, we derive structure an-
chored multiple sequence alignments, saMSAs, exclusively from multiple struc-
ture superimpositions of protein domains within SCOP families [9]. Only spatial
distance criteria are considered to find matching residues and to deduce the
multiple sequence alignments from which the saHMMs are built. Great care is
taken to ensure sequence diversity among the domains by including only such
members with a mutual sequence identity below a certain cut-off value. We call
the data set containing the low mutual sequence identity domains the “midnight
ASTRAL set”, since it was derived using the ASTRAL compendium [2]. We have
made the saHMM data base, saHMM-db, publicly available through the FISH
server, which has been introduced and briefly described earlier [13]. FISH, which
stands for Family Identification with Structure-anchored HMMs, is a versatile
server for the identification of domains in protein sequences. Here, we describe
the algorithms behind the server in more detail, in particular the creation of the
midnight ASTRAL set. In addition, we present a layout of the cross-linking of
the underlying data bases and describe in more detail how to use the server.

2 The Midnight ASTRAL Set and Selection Algorithms

The midnight ASTRAL set is the non-redundant collection of representative
domains used to construct the saHMMs. In order to maximize the sequence
variability within each SCOP domain family [9], we included only domains with
low mutual sequence identities, below the “twilight zone” curve, pI(L, 0) [10],[8]:

pI(L, n) = n +

⎧
⎨

⎩

100 for L ≤ 11,

480 · L−0.32·(1+e−L/1000) for 11 < L ≤ 450,
19.5 for L > 450.

(1)

The function pI(L, 0) defines the limit of percent sequence identity for clearly
homologous protein sequences, as a function of the alignment length L.

To construct the midnight ASTRAL set, representative domains must be se-
lected for each of the 2845 SCOP families belonging to true classes. Individual
families can harbour as few as one domain and as many as 1927 domains. We
have evaluated two methods for selecting saHMM-members into the midnight
ASTRAL set. Both methods are modified versions of the algorithms described
by Hobohm et al. [4]. The algorithms select, for each SCOP family, only those
domains that were determined by X-ray crystallography to a resolution of 3.6 Å
or better, and have mutual sequence identities equal to or less than pI(L, 0).

Within each family we construct pairwise structural superimpositions in or-
der to obtain the percent sequence identities. The coordinate files of the do-
mains are obtained from the ASTRAL compendium [2] corresponding to SCOP
version 1.69 [9]. We have evaluated several structure alignment programs, and
found that, currently, MUSTANG [5] results in the best performing saHMMs
(to be published elsewhere). In case the program fails to align two structures,
the pair of domains is treated like a pair with too high sequence identity. As a
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minimum requirement for building an saHMM, the SCOP domain family must
be represented by at least two structures. Therefore, all families with only one
representative were excluded from the midnight ASTRAL set.

All computations were done in parallel, using up to 20 processors on the
HPC2N Linux cluster Seth. The compute nodes on Seth are AMD Athlon
MP2000+ with 1GB of memory per dual node, connected in a high-speed SCALI
network.

2.1 Algorithm 1 for Selecting saHMM-Members

Algorithm 1 is designed to limit the number of structural comparisons. It works
by removing one of the domains in a pair from further consideration, if the mu-
tual sequence identity falls above pI(L, 0).

Outline of Algorithm 1

1. Collect all family members with < 3.6 Å resolution into to-be-checked set.
2. Take domain d1 from to-be-checked set, place in select set.
3. For each other domain d2 in to-be-checked set.

(a) Pairwise structural alignment of d1 and d2 to determine sequence iden-
tity sI and alignment length L.

(b) If sI > pI(L, 0) then dToRemove = selectOne(d1,d2).
i. place dToRemove in to-remove set.
ii. if dToRemove = d1 repeat from 2.

4. Repeat from 2 until no more domains remain in to-be-checked set.

In order to retain the highest quality structures for constructing optimal struc-
ture superimpositions as the basis for the saHMMs, the algorithm selects the
domain with the better resolution. In cases where the resolution values of the
structures to be compared are too similar, i.e., they differ by less than 10% of
their average, we exclude the domain with the higher mean thermal factor, B-
factor. This rule applies in particular to domains extracted from the same PDB
(Protein Data Bank) file. The mean B-factor reflects the data quality and is here
calculated as the arithmetic mean of the B-factors for all Cα atoms within the
domain. The function selectOne is used to select which domain to remove in
case of high sequence identity.

Outline of function selectOne

1. Read in domains to compare: d1 and d2
2. if |resolution(d1) - resolution(d2)|< 0.1·mean(resolution(d1), resolution(d2))

(a) if the mean B-factor for d1 is smaller than the mean B-factor of d2, then
set dToRemove = d2

(b) else set dToRemove = d1

3. else if resolution of d2 is poorer than that of d1, then set dToRemove = d2
4. else set dToRemove = d1
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After the first round of selection, all the preliminary discarded protein domains
stored in the to-remove set are again compared to all domains in the select set,
in order to assure that only domains with sequence identities above pI(L, 0) are
permanently discarded. The rationale behind this additional step is that in the
process of removing domains, it is possible that a domain A is removed due to
high sequence identity to domain B. If B is later removed due to high sequence
identity to domain C, it could be that A and C have low mutual sequence identity.
Thus A must be compared with C, and in case the identity is equal to or less
than pI(L, 0) both A and C must be kept.

2.2 Algorithm 2 for Selecting saHMM-Members

We evaluated a second algorithm, called Algorithm 2, which is designed to max-
imize the number of representative domains. Using Algorithm 2, one first fills
an n × n score matrix M based on all-against-all structural comparisons of all
n members within a particular SCOP family. An entry Mij is a measure of the
level of sequence identity and the relative data quality of domains di and dj , and
is defined as:

Mij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j,
0 if sI ≤ pI(L, 0),

1 + 1/n if dj = dToRemove,
1 − 1/n if di = dToRemove.

(2)

Which domain to remove in case of too great sequence identity is determined
using the same procedure selectOne as described for Algorithm 1. To select
representative domains using M , we remove in each step the domain similar to
most other domains, until no more similarities can be detected. The domain dk,
corresponding to row index k in M , which is similar to most other domains is
the one with the highest row sum:

k = argmaxi(
∑

j

Mij). (3)

Removing the domain dk from the set corresponds to setting elements Mki = 0
and Mik = 0 for all i, including the diagonal element Mkk. The process is finished
when maxi(

∑
j Mij) = 1. The representative domains are those with 1 on the

diagonal (Myy = 1 for all representatives y). For reasons described in Algorithm
1, all removed domains are checked once more against all selected domains to
make sure that no representatives were mistakenly discarded.

2.3 Comparing Algorithm 1 and Algorithm 2

Calculations using Algorithm 1 result in 3129 domains in the midnight ASTRAL
set, representing 850 different SCOP domain families. These families cover 65%
of the SCOP domains and correspond to 30% of the SCOP families belonging
to true classes. Algorithm 2 gives 3293 domains in the midnight ASTRAL set,
which represent 894 SCOP domain families. These families cover about 60% of
SCOP domains and correspond to 31% of the true class SCOP families.
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The advantage of Algorithm 2 is that it produces more saHMM-members for
the midnight ASTRAL set. However, it is time expensive due to the all-against-
all structural comparisons, which cause the problem to scale quadratically with
the number of domains. It was not practical to use Algorithm 2 for the four very
largest families, each harbouring more than 600 domains. Even so, the computing
time used to select representative domains with Algorithm 2 exceeded the total
time used by Algorithm 1 by an order of magnitude. We therefore decided against
Algorithm 2, and will from now on use Algorithm 1 to select saHMM-members,
even though Algorithm 1 results in a slightly reduced coverage of SCOP families.

2.4 Analysis of the Midnight ASTRAL Set

In Fig. 1(a) the distribution of lengths of domains within the midnight ASTRAL
set selected with Algorithm 1 is displayed. The sharp peak shows that the most
common sequence length of the saHMM-members is about 100 residues. The
length varies from 21 amino acids for the shortest domain up to 1264 residues for
the longest. In Fig. 1(b) the distribution of resolutions at which the structures of
the domains were determined is displayed. The majority of the crystal structures
from which the domains are extracted fall into the resolution range between 1.5
to 2.5Å. This assures a high confidence in the determined structures.
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Fig. 1. Distribution of (a) sequence lengths and (b) resolutions among domains in the
midnight ASTRAL set

3 The saHMM Data Base

The construction of structure-anchored Hidden Markov Models, saHMMs, re-
quires three major steps. First, the non-redundant midnight ASTRAL set must
be generated as was described above. Then a multiple 3D superimposition of the
peptide chains of these domains, called the saHMM-members, is constructed. By
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using only spatial criteria to compare their structures, it is possible to match
those amino acids that are from different chains and in close spatial vicinity, into
a structure anchored multiple sequence alignment (see also [12]). The final step
involves building the saHMMs from the deduced structure-anchored multiple
sequence alignment.

The coordinate files of the saHMM-members are obtained from the ASTRAL
compendium corresponding to SCOP version 1.69. The domains are superim-
posed with MUSTANG [5] and the saHMMs are built using HMMER 2.2g [3].

We implemented several Perl programs in order to automate the process from
raw SCOP family classification of domains, through the construction of the mid-
night ASTRAL set, to the creation and testing of the saHMMs. The programs
perform tasks such as detecting and correcting inconsistencies between the nota-
tions used in SCOP and the ASTRAL coordinate files, standardizing the notation
used in the coordinate files and parsing of results to convert output from one
program to input for another.

3.1 Coverage of SCOP

Since at least two structures are needed for superimposition, and because of
the stringent sequence identity restrictions, our collection of saHMMs currently
includes 850 saHMMs, which cover about 30% of the 2845 SCOP families be-
longing to true classes and 65% of the 67210 domain sequences. We expect these
numbers to improve due to the exponential increase of deposited 3D structures.

4 The FISH Server

4.1 Design of the FISH Server

Flat file data bases were imported into a relational data base (MySQL imple-
mented on a Linux platform) and cross-linked (Fig. 2). The user interface is
written in Perl, PHP, and JavaScript and integrated with the Apache web server.

Fig. 2. Schematic view of the data base cross-linking used in the FISH server
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The user inputs a query via the web interface. The query interpreter analyzes the
input, using the collection of saHMMs. The cross-link engine merges information
from the associated data bases with the results of the query. The results assem-
bler presents the outcome of the search to the user via the web interface. The
search results can also be sent to the user by e-mail in the form of a www-link
and are stored on the server for 24 hours.

4.2 How to Use the FISH Server

Sequence Searches vs. the saHMM-db
Using the FISH server, a user can compare a query sequence with all models
in the saHMM-db. Matches obtained in such a search provide the user with a
classification on the SCOP family level and outline structurally defined, putative
domain boundaries in the query sequence. This information is useful for sequence
annotation, to design mutations, to identify soluble domains, to find structural
templates for homology modelling and possibly for structure determination by
molecular replacement.

(a) (b)

Fig. 3. Sample (a) input and (b) results pages from a sequences vs saHMMs search

Fig. 3(a) displays an example of the input page. The user enters one or more
query sequences and can select an E-value cut-off for the results. The E-value of
a hit is the expected number of false matches having at least the same score as
the hit, and hence is a measure of the confidence one can have in the hit. The
closer the E-value is to zero, the more the match can be trusted. In the ‘overview
of results’ page (Fig. 3(b)) the list of matches is sorted in increasing order with
respect to the E-value, up to the chosen cut-off. When selecting one entry from
the list, the family specific information for that match is displayed (Fig. 4(a)).
The top table provides information about the SCOP classification. It is followed
by a table listing all saHMM-members of this family together with details about,
for example, the percent sequence identity of the query sequence aligned to the
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member. For each saHMM-member, it is possible to view the structure of the
selected domain in an interactive Java window, as shown in Fig. 4(b).

Below the list of matches in the ‘overview of results’ page (Fig.3(b)) is a
horizontal bar graph representation of the query sequence, where matches are
marked as coloured ranges. A light green range corresponds to an E-value of
0.1 or less, a yellow range to 0.1 ≤ E-value ≤ 1.0 and an orange range for
E-values above 1.0. Each coloured range links to a pairwise alignment of the
query sequence and the saHMM consensus. The user has the option to display
a multiple sequence alignment of the query sequence and the saHMM-member
sequences in different formats. In addition, it is possible to reach a list with
pairwise comparisons of the query and each saHMM-member. All alignments
are anchored on the saHMM.

(a) (b)

Fig. 4. Example pages displaying (a) the domain family information of the top hit
from Fig. 3(b) and (b) the structure view of the domain with highest sequence identity
compared to the query sequence

saHMM Searches vs. a Sequence Database
Furthermore, the FISH server allows the user to employ individual saHMMs for
searching against a sequence data base to find those proteins that harbour a cer-
tain domain, independent of sequence identity and annotation status. For this
purpose, the user can choose a particular saHMM from a list of available models
and specify against which data base to perform the search. Currently, the Swiss-
Prot, TrEMBL and the non-redundant data base, nr, from NCBI are available
for searching. In addition, a user has the option to upload his/her own sequence
database, as long as its size does not exceed 2 MB. In this way it is possible
to identify previously un-annotated sequences on the domain family level, even
in case of very low sequence identities, below pI(L, 0). For each match, the user
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obtains the corresponding sequence entry, as well as pairwise and multiple se-
quence alignments of the matched sequence and the saHMM-members, anchored
on the saHMM. Information about the domain family used for searching is also
easily available.

A search with a single saHMM vs. SwissProt can take from 15 minutes up to
about nine hours. Searching TrEMBL, which is about ten times larger, takes con-
siderably longer. In order to minimize the time a user has to wait for the results,
we pre-calculated the searches of all 850 saHMMs vs. SwissProt, TrEMBL and
nr using an E-value cut-off of 100. Depending on the E-value choice of the user,
the results are extracted and presented up to that value. The computations were
done in parallel, by searching the databases with several saHMMs concurrently,
using up to 20 processors on the HPC2N Linux cluster Seth.

Fig. 5 shows an example of (a) the input page and (b) the results page of a
search with an saHMM versus a sequence database. In the example, SwissProt
was used. The results of the search are represented in form of a list sorted by
E-value up to the user-specified cut-off.

(a) (b)

Fig. 5. Example of (a) input and (b) results of a search with the catenin saHMM
(a.24.9.1) vs SwissProt version 1.69. Only the top part of the results page is shown.

5 Conclusions

The foundation of the structure-anchored hidden Markov model method is the
3D superimposition of carefully chosen domains representing the SCOP domain
family to be modelled. For the selection of the representative domains, called
the saHMM-members, we evaluated two algorithms, Algorithm 1 and Algorithm
2. Even though the use of Algorithm 2 results in 164 more saHMM-members
in the midnight ASTRAL set, which leads to 44 more saHMMs, we prefer Al-
gorithm 1 since it is more than an order of magnitude faster and can handle
even the largest families in a reasonable amount of time. The resulting saHMMs
together constitute the saHMM-db, which covers 30% of the SCOP families and
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65% of the domains belonging to true classes. So far, every new SCOP release
has lead to new saHMMs and has increased the number of saHMM-members for
many families. As the number of deposited structures grows, we anticipate that
the saHMM-db will cover more of SCOP. In addition, we expect that new do-
main sequences will be added to families, which in turn increases the number of
saHMM-members and improve saHMMs with only few saHMM-members. The
saHMM-db is publicly available through the FISH server, which is a powerful
and versatile tool with dual function. On the one hand, the user can perform
sequence searches versus the saHMM-db, and possibly obtain matches even for
remote homologues, within the ”midnight zone” of sequence alignments. On the
other hand, the user can choose one of the saHMMs to perform a search against
a protein sequence data base. Since the saHMMs are based on structure an-
chored sequence alignments and the structures of all representatives are known,
the alignment of a sequence to the saHMM-members can be used to draw con-
clusions about the secondary and tertiary structures of the sequence.
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High Performance Computing (HPC) produces enormous amounts of data. This
simple truth has been the perennial bane of the HPC user and there is no
sign of the problem going away. The results of the computational process are
often large data sets in the form of molecular structures and property fields,
fluid density and velocity fields, particle positions and momenta or any of a
diverse host of other types all sharing the single property that they are large
and so difficult to interpret. In the case of many computational methods it is,
in addition, often useful to retain state information, perhaps as large as the
final output, from each step of the computational process for a post-mortem
analysis of the optimization or for computational steering. The size of the data
produced often scales with the problem size, the problem size typically increases
with the available computational power and so the ever-growing improvement
in computational power is likely to continue to make this problem more difficult
as time progresses.

To aid in the analysis of complex multidimensional, multivariate and often
time-varying data, visualization systems exploiting computer graphics and com-
plex interaction mechanisms are becoming required tools but the size of these
data sets presents unique problems in the efficient processing and graphical ren-
dering of representations of the data which will permit their interpretation.

This mini-symposium brings together researchers and developers from a range
of disciplines, both experts in the scientific fields which produce the data for
interpretation and experts in the techniques which are being used to provide
the visualization tools for this work. We hope this diverse panel will stimulate
an interesting and informative discussion with the audience, giving some ideas
about how visualization is likely to change in the future and how visualization
systems need to change to meet the needs of the user community.
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Abstract. Recent development work at the Laboratory for Computa-
tional Science & Engineering (LCSE) at the University of Minnesota
aimed at increasing the performance of parallel volume rendering of large
fluid dynamics simulation data is reported. The goal of the work is inter-
active visual exploration of data sets that are up to two terabytes in size.
A key system design feature in accelerating the rendering performance
from such large data sets is replication of the data set on directly at-
tached parallel disk systems at each rendering node. Adaptation of this
system for interactive steering and visualization of fluid flow simulations
as they run on remote supercomputer systems introduces special addi-
tional challenges which will briefly be described.

Keywords: scientific visualization, interactive steering, fluid flow simu-
lation.

1 Introduction

The visualization of fluid flow simulations using perspective volume rendering
provides a very natural means of understanding flow dynamics. This is especially
true in flow simulations, like those in astrophysics, that do not involve complex
confining walls and surfaces. However, volume rendering is data intensive, and
therefore even a modest flow simulation can easily result in quite a large amount
of data to be visualized. Our team at the University of Minnesota’s Laboratory
for Computational Science & Engineering (LCSE) has been exploiting volume
rendering for fluid flow visualization for many years. In this paper we report our
most recent efforts to accelerate this process so that even very large data sets
can be interactively explored at full PowerWall resolution. Our earlier efforts
at full resolution visualization were based principally on off-line generation of
movie animations. The challenge of speeding up perspective volume visualiza-
tion has been addressed by several groups. Like other teams (see, for example,
[1-2] and references therein), our hierarchical volume rendering software HVR
(www.lcse.umn.edu/hvr) utilizes a multiresolution, tree-based data format to
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render only coarsened data when there is little variation within a region or when
the region occupies very few pixels. Like many other groups we use PC graph-
ics engines to accelerate the parallel ray tracing calculations that we long ago
performed on vector CPUs like the Cray-2, then later implemented on SGI Re-
ality Engines. This is in contrast to ray tracing on large parallel machines, as
described in [4], which can be interactive when the data fits into the memory.
Unlike more comprehensive graphics software packages like VisIt and SciRun [5],
we concentrate exclusively on volume rendering at the LCSE and focus on the
special problems that come with very large, multi-terabyte data sets that do not
fit into the memories of essentially any available rendering resource. This focus
has led us to our present system design, which exploits full data set replication
at multiple rendering nodes as a key performance enabling feature.

2 Interactive Volume Rendering of Multi-TB Data

To set up for a session of data exploration, we generally decide upon a limited set
of variables we think will be useful and then process the sequence of compressed
dumps from the simulation to create “HV-file” sequences for these variables
that incorporate the multiresolution data structure that our renderer, HVR,
requires for performance. A medium-scale run, which we used to demonstrate
our system at the IEEE Visualization conference in October, 2005, in an exhibit
booth sponsored by our industrial partner, Dell, (see Figure 1) serves as a good
example. From this run, which took about 6 weeks on a 32-processor Unisys
ES7000 in our lab, we saved about 500 compressed dumps of about 10 GB each.
It took a few days to process these dumps into sets of 1.27 GB HV-files for
the vorticity, the divergence of velocity, and the entropy. These HV-files thus
constituted a data set of about 1.9 TB. This data set was sufficiently small that
we could place a full copy of it at each node of our 14-node rendering cluster.
Replication of the data to be explored is a key element of our system design.
Each node has a directly attached set of twelve 400 GB SATA disks striped using
a 3ware 12-channel disk controller and delivering up to 400 MB/sec sustained
data transfers. The capacity at each node therefore allows 2 TB to be declared
as scratch space and used for replication of whatever data might be under study
at the time. Fourteen different 2-TB data sets can be held on the system while a
user explores one of them replicated on all nodes. Our experience with building
inexpensive fast disk systems over many years indicates that data replication
is the only surefire way to guarantee the fast, sustained data delivery on every
node from a shared data set that is required for interactive volume rendering.
This system design allows each local disk subsystem to stream data unimpeded
by requests from other nodes for different portions of the shared data. Locally
attached disks are also considerably less expensive than storage area networks
of dedicated storage servers.

Although every node has an entire copy of the data under study, a node needs
at any one time to read only a small portion of it. Each HV-file has an octree
structure of voxel bricks, which overlap in order to enable seamless image ren-



Interactive Volume Visualization of Fluid Flow Simulation Data 661

Fig. 1. Jim Greensky and David Porter control 8 nodes of our system at IEEE Vis2005

dering. Although our software enables an initial rendering in low resolution to
be continuously improved, this strategy is not well suited to our large PowerWall
display, shown in Figure 2, which measures 25 feet across. The resolution of an
image rendering is very obvious on a display of this size. Therefore, on the Pow-
erWall we generally would prefer to continue looking at the previous high quality
rendering while waiting for the next high quality image to appear. Our solution
is thus to optimize the throughput of the pipeline from data on disk through
to the image on the screen with multiple renderers assigned their own segments
of the final image. In order to speed up the rate at which voxel bricks can be
loaded as 3-D textures into our Nvidia graphics cards, we have decreased the
size of these bricks from our previous standard of 1283 to 643 voxels. Although
this caused the data streaming rate from disk to drop by about 20%, the overall
system pipeline speed increased. The smaller voxel bricks do, however, increase
the efficiency of the parallel rendering by allowing each HVR volume rendering
server to read and render a section of the flow more closely approximating that
contained in its viewing frustum. For true interactive visualization of our exam-
ple 1.9 TB data set, the time to produce a new, full resolution PowerWall image
from data not in memory but on disk is the most essential measure of success.
Ten nodes of our cluster can produce a 13 Mpixel PowerWall image of a billion-
voxel data snap shot in just over 1 second. If we then choose to look at this same
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Fig. 2. A rendering of our decaying Mach 1 turbulence vorticity data on the PowerWall

data from a different viewing position and/or with a different color and opacity
mapping, we can generate the next image much faster, since our software takes
advantage of the voxel bricks that are already loaded into each graphics card. We
are now experimenting with increasing the interactivity by concentrating our 14
nodes of rendering power on less than the full 10 image panels of our PowerWall.
This allows us to trade off interactivity with image size and resolution.

3 Remote Flow Visualization and Simulation Steering

Our software (see www.lcse.umn.edu/hvr) supports the visualization cluster
members rendering portions of an image that they send to a remote node to
be stitched together and displayed on a single screen. This rendering is gener-
ally faster, since the screen has many fewer pixels than the PowerWall, and it
is therefore more interactive. This mode was used in the exhibit booth at IEEE
Vis2005, as shown in Figure 1. Just 8 of our 14 nodes were able to render images
from billion-voxel HV-files on disk at 1920×1200 resolution in about 0.7 sec.
Later in the year, we combined this capability with a high performance imple-
mentation of our PPM gas dynamics code running on 512 or 1024 CPUs of the
Cray XT3 at the Pittsburgh Supercomputer Center (PSC) to enable interactive
steering and visualization of an ongoing gas dynamics simulation. We worked
with the PSC team, and in particular Nathan Stone, who provided a utility,
PDIO [6], that allowed us to write tiny quarter-MB files from each of the 512
CPUs on the machine that PDIO managed and transported to a node of our
visualization cluster at the LCSE in Minnesota. Our software then constructed
HV-files from the stream of little files, which landed on a RAM disk, and broad-
cast the HV-files to 10 rendering nodes connected to the PowerWall. However,
the rendering nodes could also transmit portions of images to another machine
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located anywhere on the Internet, and that machine could display the result on
its monitor, as shown in Figure 3. Figure 3 shows the image viewer pane, the
opacity and color map control pane, the field (i.e. fluid state variable) and time
level control pane, and viewpoint and clipping plane control pane. A separate
GUI controls the simulation on the Cray XT3, which the user can pause, abort,
restart, or instruct to alter the frequency of data file output. Running on 1024
CPUs at a little over 1 Tflop/s, this application computes a flow simulation of
shear instability, as shown, to completion in about 20 minutes. A reenactment of
this TeraGrid Conference demonstration shown in Figure 3 using the actual data
generated by the XT3 at the event arriving according to its actual time stamps
(every 10 time steps, or about every 3 to 5 seconds, new voxel data arrived in
the LCSE) and showing the interactive control can be downloaded as a Windows
.exe file from www.lcse.umn.edu/TeraGridDemo.

Fig. 3. LCSE-PSC demonstration of interactive supercomputing, TeraGrid Conf

Grid resolutions of 5123 cells enable 30 to 40 minute simulations when com-
puting with PPM at 1 Tflop/s, and this is a good length of time for an interactive
session. The PDIO software enabled us to obtain 55 MB/sec throughput on the
University of Minnesota’s Internet connection during the day and almost twice
this much at night. This allows the transmission of a 128 MB voxel snap shot of
the flow in a single fluid state variable in about 3 seconds. While a new snap shot
is being transmitted, the interactive capabilities of our visualization cluster allow
the user to view the previous snap shot from different angles and with different
color and opacity settings using the control panes shown in Figure 3. The user
may also explore the data that has accumulated to this point. Responsiveness is
good, because the data size is small. However, if one wishes to view a different
fluid state variable from the one that was sent, one can only request that this
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be transmitted in subsequent snap shots; it can be made available at this same
time level only if multiple variables are transmitted. This would be possible on
a 10 Gbit/s connection.

As computer power and networking bandwidth grow, we anticipate that inter-
active flow visualization will be used more and more for steering simulations as
they run. The data sets associated with runs that are short enough to be steered
today are still under one TB, but as petascale computing systems are put into
place this will change.

This work has been supported by NSF CISE RR (CNS-0224424) and MRI
(CNS-0421423) grants, through grant DE-FG02-03ER25569 from the MICS pro-
gram of the DoE Office of Science, through a donation of an ES-7000 computer
from Unisys Corp., and by local support to the Laboratory for Computational
Science & Engineering (LCSE) from the University of Minnesota’s Digital Tech-
nology Center and Minnesota Supercomputer Institute. Our fluid dynamics sim-
ulations have also been supported by grants of time on the NSF TeraGrid cluster
at NCSA and at the Pittsburgh Supercomputing Center. We gratefully acknowl-
edge the work of Nathan Stone and Raghu Reddy at the Pittsburgh Supercom-
puter Center, who worked closely with us to make the data transfers from our
fluid dynamics application on the Cray XT3 to a node of our local visualization
cluster go smoothly and very fast using Stone’s PDIO utility.
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Computational Fluid Dynamics (CFD) is an important research field with a
broad spectrum, requiring a close interplay between mathematical modeling,
numerical methods, software development, and high performance computing.
Programming CFD applications is an inherently difficult task due to many fac-
tors related to numerics and software. For modern CFD applications, use of
parallel computers is a must, which makes the CFD code development even
more challenging. Rapid and flexible programming of a parallel CFD applica-
tion calls for re-usable serial and parallel software components plus a modular
overall parallel framework that allows an easy coupling between different com-
ponents. Moreover, more attention needs to be put on securing the performance
of the software components. This minisymposium thus attempts to shed some
light into the recent developments in respect of CFD-related numerical methods,
programming techniques and software libraries.
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Abstract. The numerical solution of partial differential equations fre-
quently requires the solution of large and sparse linear systems. Using
generic programming techniques in C++ one can create solver libraries
that allow efficient realization of “fine grained interfaces”, i.e. with func-
tions consisting only of a few lines, like access to individual matrix en-
tries. This prevents code replication and allows programmers to work
more efficiently. We present the “Iterative Solver Template Library”
(ISTL) which is part of the “Distributed and Unified Numerics Environ-
ment” (DUNE). It applies generic programming in C++ to the domain
of iterative solvers of linear systems stemming from finite element dis-
cretizations. Those discretizations exhibit a lot of structure. Our matrix
and vector interface supports a block recursive structure. Each sparse
matrix entry can itself be either a sparse or a small dense matrix. Based
on this interface we present efficient solvers that use the recursive block
structure via template metaprogramming.

1 Introduction

The numerical solution of partial differential equations (PDEs) frequently re-
quires solving large and sparse linear systems. Naturally, there are many libraries
available for doing sparse matrix/vector computations, see [7] for a comprehen-
sive list.

The widely available Basic Linear Algebra Subprograms (BLAS) standard has
been extended to cover also sparse matrices [5]. The standard uses procedural
programming style and offers only a FORTRAN and C interface. “Fine grained”
interfaces, i.e. with functions consisting only of a few lines of code, such as access
to individual matrix elements, impose an efficiency penalty here, as the relative
cost for indirect function calls becomes huge.

Generic programming techniques in C++ or Ada offer the possibility to com-
bine flexibility and reuse (“efficiency of the programmer”) with fast execution
(“efficiency of the program”). They allow the compiler to apply optimizations
even for “fine grained” interfaces via static function typing. These techniques
were pioneered by the Standard Template Library (STL), [16]. Their efficiency
advantage for scientific C++ was later demonstrated by the Blitz++ library [6].
For an introduction to generic programming for scientific computing see [2,17].
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Application of these ideas to matrix/vector operations is available with the Ma-
trix Template Library (MTL), [13,15] and to iterative solvers for linear systems
with the Iterative Template Library (ITL), [12].

In contrast to these libraries the “Iterative Solver Template Library” (ISTL),
which is part of the “Distributed and Unified Numerics Environment” (DUNE),
[3,8], is designed specifically for linear systems stemming from finite element
discretizations. The sparse matrices representing these linear systems exhibit a
lot of structure, e.g.:

– Certain discretizations for systems of PDEs or higher order methods result
in matrices where individual entries are replaced by small blocks, say of
size 2 × 2 or 4 × 4, see Fig. 1(a). Dense blocks of different sizes e.g. arise
in hp Discontinuous Galerkin discretization methods, see Fig. 1(b). It is
straightforward and efficient to treat these small dense blocks as fully coupled
and solve them with direct methods within the iterative method, see e.g. [4].

– Equation-wise ordering for systems results in matrices having an n×n block
structure where n corresponds to the number of variables in the PDE and
the blocks themselves are large and sparse. As an example we mention the
Stokes system, see Fig. 1(d). Iterative solvers such as the SIMPLE or Uzawa
algorithm use this structure.

– Other discretizations, e.g. those of reaction/diffusion systems, produce sparse
matrices whose blocks are sparse matrices of small dense blocks, see Fig. 1(c).

– Other structures that can be exploited are the level structure arising from
hierarchical meshes, a p-hierarchical structure (e.g. decomposition in linear
and quadratic part), geometric structure from decomposition in subdomains
or topological structure where unknowns are associated with nodes, edges,
faces or elements of a mesh.

Our library takes advantage from this natural block structure at compile time
and supports the recursive block structuredness in a natural way.

Other libraries, like MTL, provide the blockings as views to the programmer.
As this is done dynamically the block structure cannot be used efficiently in
custom generic algorithms. In the Optimized Sparse Kernel Interface (OSKI),
see [18], the sparse matrices are stored as scalar matrices, too. Here the user can

Fig. 1. Block structure of matrices arising in the finite element method
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provide hints about the dense block sizes which are used at runtime to tune the
solvers.

In the next section we describe the matrix and vector interface that represents
this recursive block structure via templates. In Sect. 3 we show how to exploit
the block structure using template metaprogramming at compile time. Finally
we sketch the high level iterative solver interface in Sect. 4.

2 Matrix and Vector Interface

The interface of our matrices is designed according to what they represent from
a mathematical point of view. The vector classes are representations of vector
spaces while the matrix classes are representations of linear maps between two
vector spaces.

2.1 Vector Spaces

We assume the reader is familiar with the concept of vector spaces. Essentially
a vector space over a field K is a set V of elements (called vectors) along with
vector addition + : V �→ V and scalar multiplication · : K × V �→ V with the
well known properties. See your favourite textbook for details, e.g. [11].

For our application the following way of construction plays an important role:
Let Vi, i = 1, 2, . . . , n, be a normed vector space of dimension ni with a scalar
product, then the n-nary Cartesian product

V := V1 × V2 × . . . × Vn = {(v1, v2, . . . , vn)|v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn} (1)

is again a normed vector space of dimension
∑n

i=1 ni with the canonical norm
and scalar product.

Treating K as a vector space itself we can apply this construction recursively
starting from the field K.

While for a mathematician every finite dimensional vector space is isomorphic
to R

k for an appropriate k, for our application it is important to know how the
vector space was constructed recursively by the procedure described in (1).

Vector Classes. To express the construction of the vector space by n-nary
products of other vector spaces ISTL provides the following classes:

FieldVector. The template<class K, int n> FieldVector<K,n> class template is
used to represent a vector space V = K

n where the field is given by the type
K. K may be double, float, complex<double> or any other numeric type. The
dimension given by the template parameter n is assumed to be small.

Example: Use FieldVector<double,2> for vectors with a fixed dimension 2.

BlockVector. The template<class B> BlockVector<B> class template builds a vec-
tor space V = Bn where the “block type” B is given by the template parameter
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Table 1. Types of vector classes

expression return type
field type The type of the field of the represented vector space, e.g.

double.
block type The type of the vector blocks.
size type The type used for the index access and size operations.
block level The block level of the vector, e.g. 1 for FieldVector, 2 for

BlockVector<FieldVector<K>,n>.
Iterator The type of the iterator.
ConstIterator The type of the immutable iterator.

B. B may be any other class implementing the vector interface. The number of
blocks n is given at run-time.

Example: BlockVector<FieldVector<double,2> > can be used to define vectors of
variable size where each block in turn consists of two double values.

VariableBlockVector. The template<class B> VariableBlockVector' class can
be used to construct a vector space having a two-level block structure of the form
V = Bn1 × Bn2 × . . . × Bnm , i.e. it consists of m blocks i = 1, . . . , m and each
block in turn consists of ni blocks given by the type B. In principle this structure
could be built also with the previous classes but the implementation here is more
efficient. It allocates memory in one big array for all components. For certain
operations it is more efficient to interpret the vector space as V = BN , where
N =

∑m
i=1 ni.

Vectors are containers. Vectors are containers over the base type K or B

in the sense of the Standard Template Library. Random access is provided via
operator[](int i) where the indices are in the range 0, . . . , n−1 with the number
of blocks n given by the N method. Here is a code fragment for illustration:

typedef Dune :: FieldVector <std:: complex <double >,2> BType;
Dune :: BlockVector <BType > v(20);
v[3][0] = 2.56;
v[3][1] = std:: complex <double >(1,-1);

Note how one operator[]() is used for each level of block recursion.
Sequential access to container elements is provided via iterators. The Iterator

class provides read/write access while the ConstIterator class provides read-only
access. The type names are accessed via the ::-operator from the scope of the
vector class.

A uniform naming scheme enables writing of generic algorithms. See Table 1
for the types provided in the scope of any vector class.

2.2 Linear Maps

For a matrix representing a linear map (or homomorphism) A : V �→ W from
vector space V to vector space W the recursive block structure of the matrix
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rows and columns immediately follows from the recursive block structure of the
vectors representing the domain and range of the mapping, respectively. As a
natural consequence we designed the following matrix classes:

Matrix classes. Using the construction in (1) the structure of our vector spaces
carries over to linear maps in a natural way.

FieldMatrix. The template<class K, int n> FieldMatrix<K,n,m> class template
is used to represent a linear map M : V1 → V2 where V1 = K

n and V2 = K
m

are vector spaces over the field given by template parameter K. K may be double,
float, complex<double> or any other numeric type. The dimensions of the two
vector spaces given by the template parameters n and m are assumed to be small.
The matrix is stored as a dense matrix. Example: Use FieldMatrix<double,2,3>

to define a linear map from a vector space over doubles with dimension 2 to one
with dimension 3.

BCRSMatrix. The template<class B> BCRSMatrix class template represents a
sparse matrix where the “block type” B is given by the template parameter B.
B may be any other class implementing the matrix interface. The matrix class
uses a compressed row storage scheme.

VariableBCRSMatrix. The template<class B> VariableBCRSMatrix' class can
be used to construct a linear map between two vector spaces having a two-level
block structure V = Bn1 × Bn2 × . . . × Bnk and W = Bm1 × Bm2 × . . . × Bml .
Both are represented by the template<class B> VariableBlockVector' class,
see Sect. 2.1. This is not implemented yet.

Matrices are containers of containers. Matrices are containers over the ma-
trix rows. The matrix rows are containers over the type K or B in the sense of the
Standard Template Library. Random access is provided via operator[](int i) on
the matrix to the matrix rows and on the matrix rows to the matrix columns (if
present). Note that except for FieldMatrix, which is a dense matrix, operator[]
on the matrix row triggers a binary search for the column.

For sequential access use RowIterator and ColIterator for read/write ac-
cess or ConstRowIterator and ConstColIterator for read-only access to rows and
columns, respectively.

As with the vector interface a uniform naming convention enables generic
algorithms. See Table 2 for the most important names.

3 Block Recursive Algorithms

A basic feature of the concept described by the matrix and vector classes, is their
recursive block structure. Let A be a matrix with block level l > 1 then each
block Aij can be treated as (or actually is) a matrix itself. This recursiveness can
be exploited in a generic algorithm using the defined block_level of the matrix
and vector classes.
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Table 2. Type names in the matrix classes

expression return type
field type The type of the field of the vector spaces we map from and

to
block type The type representing the matrix components
row type The container type of the rows.
size type The type used for index access and size operations
block level The block recursion level, e.g. 1 for FieldMatrix and 2 for

BCRSMatrix<FieldMatrix<K,m,n> >.
RowIterator The type of the mutable iterator over the rows
ConstRowIterator Ditto, but immutable
ColIterator The type of the mutable iterator over the columns of a row.
ConstColIterator Ditto, but immutable

Note that we do not use recursive blocked algorithms on the dense matrix
blocks, as described in [9], as the dense blocks resulting from finite element
discretizations will generally be small.

Most preconditioners can be modified to honor this recursive structure for a
specific number of block levels k. They then work as normal on the offdiagonal
blocks, treating them as traditional matrix entries. For the diagonal values a
special procedure applies: If k > 1 the diagonal is treated as a matrix itself and
the preconditioner is applied recursively on the matrix representing the diagonal
value D = Aii with block level k − 1. For the case that k = 1 the diagonal
is treated as a matrix entry resulting in a linear solve or an identity operation
depending on the algorithm.

In the formulation of most iterative methods upper and lower triangular and
diagonal solves play an important role. ISTL provides block recursive versions
of these generic building blocks using template metaprogramming, see Table 3
for a listing of these methods. In the table matrix A is decomposed into A =
L+D+U , where L is a strictly lower block triangular, D is a block diagonal and
U is a strictly upper block triangular matrix. d = b − Ax denotes the current
residual used to calculate the update v to the current guess x. An arbitrary
block recursion level can be given by an additional parameter. If this parameter
is omitted it defaults to 1.

Using the same block recursive template metaprogramming technique, kernels
for the residual formulations of simple iterative solvers are available in ISTL. The
number of block recursion levels can again be given as an additional argument.
See the second part of Table 3 for a list of these kernels.

4 Solver Interface

The solvers in ISTL do not work on matrices directly. Instead we use an abstract
operator concept. This allows for using matrix-free operators, i.e. operators that
are not stored as matrices in any form. Thus our solver algorithms can easily be



672 M. Blatt and P. Bastian

Table 3. Iterative Solver Kernels

function computation

block triangular and block diagonal solves
bltsolve(A,v,d) v = (L + D)−1d
bltsolve(A,v,d,ω) v = ω(L + D)−1d
ubltsolve(A,v,d) v = L−1d
ubltsolve(A,v,d,ω) v = ωL−1d

butsolve(A,v,d) v = (D + U)−1d
butsolve(A,v,d,ω) v = ω(D + U)−1d
ubutsolve(A,v,d) v = U−1d
ubutsolve(A,v,d,ω) v = ωU−1d

bdsolve(A,v,d) v = D−1d
bdsolve(A,v,d,ω) v = ωD−1d

iterative solves
dbjac(A,x,b,ω) x = x + ωD−1(b − Ax)
dbgs(A,x,b,ω) x = x + ω(L + D)−1(b − Ax)

bsorf(A,x,b,ω) xk+1
i = xk

i + ωA−1
ii

[

bi −
∑

j<i

Aijx
k+1
j −

∑

j≥i

Aijx
k
j

]

bsorb(A,x,b,ω) xk+1
i = xk

i + ωA−1
ii

[

bi −
∑

j≤i

Aijx
k
j −

∑

j>i

Aijx
k+1
j

]

turned into matrix-free solvers just by plugging in matrix-free representations of
linear operators and preconditioners.

4.1 Operators

The base class template<class X, class Y> LinearOperator represents linear
maps. The template parameter X is the type of the domain and Y is the type of the
range of the operator. A linear operator provides the methods apply(const X&

x, Y& y) and applyscaledadd(field_type alpha, const X& x, Y& y) perform-
ing the operations y = A(x) and y = y + αA(x), respectively. The subclass
template<class M, class X, class Y> AssembledLinearOperator represents lin-
ear operators that have a matrix representation. Conversion from any matrix
into a linear operator is done by the class template<class M, class X, class Y>

MatrixAdapter.

4.2 Scalar Products

For convergence tests and the stopping criteria, Krylow methods need to com-
pute scalar products and norms on the underlying vector spaces. The base class
template<class X> Scalarproduct provides methods field_type dot(const X&

x, const X&y) and double norm(const X& x) to calculate these. For sequential
programs use template<class X> SeqScalarProduct which simply maps this to
functions of the vector implementations.
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Table 4. Preconditioners

class implements s/p recursive

SeqJac Jacobi method s x
SeqSOR successive overrelaxation (SOR) s x
SeqSSOR symmetric SSOR s x
SeqILU incomplete LU decomposition (ILU) s
SeqILUN ILU decomposition of order N s
Pamg::AMG algebraic multigrid method s/p
BlockPreconditioner Additive overlapping Schwarz p

4.3 Preconditioners

The template<class X, class Y> Preconditioner provides the abstract base
class for all preconditioners in ISTL. The method void pre(X& x, Y& b) has to
be called before applying the preconditioner. Here x is the left hand side and
b is the right hand side of the operator equation. The method may, e.g. scale
the system, allocate memory or compute an (I)LU decomposition. The method
void apply(X& v, const Y& d) applies one step of the preconditioner to the sys-
tem A(v) = d. Here d should contain the current residual and v should use 0
as the initial guess. Upon exit of the method v contains the computed update
to the current guess, i.e. v = M−1d where M is the approximate of the opera-
tor A characterizing the preconditioner. The method void post(X& x) should be
called after all computations to give the preconditioner the chance to clean up
allocated resources.

See Table 4 for a list of available preconditioner.They have the template pa-
rameters M representing the type of the matrix they work on, X representing the
type of the domain, Y representing the type of the range of the linear system.
The block recursive preconditioners are marked with “x” in the last column. For
them the recursion depth is specified via an additional template parameter int

l. The column labeled “s/p” specifies whether they support sequential and/or
parallel mode.

4.4 Solvers

All solvers are subclasses of the abstract base class template<class X, class

Y> InverseOperator representing the inverse of an operator from the domain
of type X to the range of type Y. The actual solve of the system A(x) = b is
done in the method void apply(X& x, Y& b, InverseOperatorResult& r). In the
InverseOperatorResult object some statistics about the solution process, e.g.
iteration count, achieved residual reduction, etc., are stored. All solvers only
use methods of instances of LinearOperator, ScalarProduct and Preconditioner.
These are provided in the constructor.

See Table 5 for a list of available solvers. All solvers are template classes with
a template parameter X providing them with the vector implementation used.
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Table 5. ISTL Solvers

class implements

LoopSolver only apply preconditioner multiple time
GradientSolver preconditioned gradient method
CGSolver preconditioned conjugate gradient method
BiCGStab preconditioned biconjugate gradient stabilized method

Table 6. Performance Tests

(a) scalar product

N 500 5000 50000 500000 5000000
MFLOPS 896 775 167 160 164

(b) daxpy operation y = y + αx

500 5000 50000 500000 5000000
936 910 108 103 107

(c) Matrix-vector product, 5-point stencil, b: block size

N, b 100,1 10000,1 1000000,1 1000000,2 1000000,3
MFLOPS 388 140 136 230 260

(d) Damped Gauß-
Seidel (N = 106, b = 1)

C ISTL
time / it. [s] 0.17 0.18

4.5 Parallel Solvers

Instead of using parallel data structures (matrices and vectors) that (implicitly)
know the data distribution and communication patterns like in PETSc [14,1] we
decided to decouple the parallelization from the data structures used. Basically
we provide an abstract consistency model on top of our linear algebra. This
is hidden in the parallel implementations of the interfaces of LinearOperator,
Scalarproduct and Preconditioner, which assure consistency of the data (by
communication) for the InverseOperator implementation. Therefore the same
Krylow method algorithms work in parallel and sequential mode.

Based on the idea proposed in [10] we implemented parallel overlapping
Schwarz preconditioners with inexact (sequential) subdomain solvers and a par-
allel algebraic multigrid preconditioner together with appropriate implementa-
tions of LinearOperator and Scalarproduct. Nonoverlapping versions are cur-
rently being worked on.

Note that using this approach it is easy to switch from the currently im-
plemented MPI version to new parallel programming paradigms that might be
needed on new platforms.

4.6 Performance Evaluation

We evaluated the performance of our implementation on a Pentium 4 Mobile
2.4 GHz processor with a measured memory bandwidth of 1084 MB/s for the
daypy operation (x = y + αz) in Tables 6. The code was compiled with the
GNU C++ compiler version 4.0 with -O3 optimization. In the tables N is the
number of unknown blocks (equals the number of unknowns for the scalar cases
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in Tables 6(a), 6(b), 6(d), b is the size of the dense blocks. All matrices are
sparse matrices of dense blocks. The performance for the scalar product, see
Table 6(a), and the daxpy operation, see Table 6(b) is nearly optimal and for
large N the limiting factor is clearly the memory bandwidth. Table 6(c) shows
that we take advantage of cache reusage for matrices of dense blocks with block
size b > 1. In Table 6(d) we compared the generic implementation of the Gauss
Seidel solver in ISTL with a specialized C implementation. The measured times
per iteration show that there is no significant lack of computational efficiency
due to the generic implementation.
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Abstract. We present results with a parallel CFD code that computes
steady-state solutions of the Reynolds-Favre averaged Navier-Stokes
equations for the simulation of the turbulent motion of compressible
and incompressible Newtonian fluids. We describe solution techniques
used for the discretization, algorithmic details of the implementation
and report on preliminary experiments on 2D and 3D problems, for both
internal and external flow configurations.

1 The Physical Problem

The simulation of fluid dynamic problems relies on the solution of Euler and
Navier-Stokes equations, a set of partial differential equations that describe the
fundamental conservation laws of mass, motion quantity and energy applied to
continuous flows. Approximate time-dependent values of the conserved variables
may be computed by decomposing the computational domain Ω ⊆ R

d(d =
2, 3) into a finite set of nonoverlapping control volumes Ci and discretizing the
conservation laws for each infinitesimal volume. The discretization results in a
system of nonlinear equations that can be solved using Newton’s method. Given
a control volume Ci, fixed in space and bounded by the control surface ∂Ci with
inward normal n, the integral, conservation law form of the mass, momentum,
energy and turbulence transport equations can be concisely written as:

∫
Ci

∂Ui

∂t
dV =

∮
∂Ci

n · F dS −
∮

∂Ci

n · G dS +
∫

Ci

S dV (1)

where we denote by U the vector of conserved variables. For compressible flows,
we have U = (ρ, ρe, ρu, ν̃)T , and for incompressible, constant density flows,
U = (p,u, ν̃)T

. Throughout this paper, the standard notation is adopted for the
kinematic and thermodynamic variables: u is the flow velocity, ρ is the density, p
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is the pressure (divided by the constant density in incompressible, homogeneous
flows), T is the temperature, e and h are the specific total energy and enthalpy,
respectively, ν̃ is a scalar variable related to the turbulent eddy viscosity ν via
a damping function. The operators F and G represent the inviscid and viscous
fluxes, respectively. For compressible flows,

F =

⎛
⎜⎜⎝

ρu
ρuh

ρuu + pI
ν̃u

⎞
⎟⎟⎠ , G =

1
Re∞

⎛
⎜⎜⎝

0
u · τ + ∇q

τ
1
σ [(ν + ν̃)∇ν̃]

⎞
⎟⎟⎠ ,

and for incompressible, constant density flows,

F =

⎛
⎝ a2u

uu + pI
ν̃u

⎞
⎠ , G =

1
Re∞

⎛
⎝ 0

τ
1
σ [(ν + ν̃)∇ν̃]

⎞
⎠ .

Finally, S is the source term, which has a non-zero entry only in the row
corresponding to the turbulence transport equation:

S =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

cb1 [1 − ft2] S̃ν̃ + 1
σRe

[
cb2 (∇ν̃)2

]
+

− 1
Re

[
cw1fw − cb1

κ2 ft2
] [

ν̃
d

]2
+ Reft1ΔU2

⎞
⎟⎟⎟⎟⎟⎠

.

In the case of high Reynolds number flows, turbulence effects are accounted for by
the Reynolds-Favre averaged Navier-Stokes (RANS) equations that are obtained
from the Navier-Stokes (NS) equations by means of a time averaging procedure.
The RANS equations have the same structure as the NS equations with an
additional term, the Reynolds’ stress tensor, that accounts for the effects of the
turbulent scales on the mean field. A closure problem arises, since the Reynolds’
stresses require modeling. Using Boussinesq’s hypothesis as the constitutive law
for the Reynolds’ stresses amounts to link the Reynolds’ stress tensor to the
mean velocity gradient through a scalar quantity which is called turbulent (or
eddy) viscosity. With Boussinesq’s approximation, the RANS equations become
formally identical to the NS equations, except for an “effective” viscosity (and
turbulent thermal conductivity), sum of the laminar and eddy viscosities, which
appears in the viscous terms of the equations. In the present work, the turbulent
viscosity is modeled using the Spalart-Allmaras one-equation model [7]. Despite
the non-negligible degree of empiricism introduced by turbulence modeling, it
is recognized that the solution of the RANS equations still remains the only
feasible approach to perform computationally affordable simulations of problems
of engineering interest on a routine basis.

2 Solution Techniques

The compressible RANS equations are discretized in space using Fluctuation
Splitting (or residual distribution) schemes [9]. Introduced in the early eighties by
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P.L. Roe, and successively further developed by a number of groups worldwide,
this class of schemes shares common features with both Finite Element (FE) and
Finite Volume (FV) methods. Just as with iso-P1 FE, the dependent variables
are stored in the vertices of the mesh, which is made of triangles in two space
dimensions (2D) and tetrahedra in three (3D), and assumed to vary linearly
in space. Control volumes (Ci) are drawn around each gridpoint by joining (in
2D) the centroids of gravity of the surrounding cells with the midpoints of all
the edges that connect that gridpoint with its nearest neighbors. An example of
these polygonal shaped control volumes (so-called median dual cells) is shown
by dashed lines in Fig. 1. Using a FV-type approach, the integral form of the
governing equations (1) is discretized over each control volume Ci; however,
rather than calculating fluxes by numerical quadrature along the boundary ∂Ci

of the median dual cell, as would be done with conventional FV schemes, the flux
integral is first evaluated over each triangle (tetrahedron) in the mesh and then
splitted among its vertices, see Fig. 1(a). Gridpoint i will then collect fractions ΦT

i

of the flux balances of all the elements by which it is surrounded, as schematically
shown in Fig. 1(b).

Φ3

Φ2Φ1

(a) The flux balance of cell T is
scattered among its vertices.

(b) Gridpoint i gathers the
fractions of cell residuals from
the surrounding cells.

Fig. 1. Residual distribution concept

This approach leads to a space-discretized form of Eq. (1) that reads:
∫

Ci

∂Ui

∂t
dV =

∑
T�i

ΦT
i

where

ΦT =
∮

∂T

n · F dS −
∮

∂T

n · G dS +
∫

T

S dV
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is the flux balance evaluated over cell T and ΦT
j is the fraction of cell residual

scattered to its jth vertex. Conservation requires that the sum over the vertices
of a given cell T of the splitted residuals ΦT

j equals the total flux balance, i.e.,∑
j∈T ΦT

j = ΦT . The properties of the scheme will depend upon the criteria used
to distribute the cell residual: distributing the convective flux balance along the
characteristic directions gives the discretization an upwind flavour, while the
distribution of the viscous flux balance can be shown to be equivalent to a
standard Galerkin FE discretization. It should also be stressed that, since the
dependent variables are continuous across the element interfaces, the Riemann
problem model, so commonly used in most FV discretizations, is not adopted
in the present framework. As a consequence, this rather unusual approach to
a FV-type discretization leads to a set of discrete equations that shows closer
resemblance [3] to FE Petrov-Galerkin schemes rather than to FV ones. Full
details concerning the spatial discretization can be found in [2].

The discretization of the governing equations in space leads to the following
system of ordinary differential equations:

M
dU
dt

= R(U) (2)

where t is the physical time variable. In Eq. (2), M is the mass matrix and R(U)
represents the spatial discretization operator, or nodal residual, which vanishes
at steady state. We solve Eq. (2) in pseudo-time until a stationary solution is
reached. Since we are interested in steady state solutions, the mass matrix can be
replaced by a diagonal matrix V, whose entries are the volumes (areas in 2D) of
the median dual cells. The residual vector R(U) is a (block) array of dimension
equal to the number of meshpoints times the number of dependent variables, m;
for compressible flows and a one-equation turbulence model m = d + 3 where
d is the spatial dimension. The i-th entry of R(U) represents the discretized
equation of the conservation laws for meshpoint i:

Ri =
∑
T�i

ΦT
i =

Ni∑
j=1

(Cij − Dij) Uj . (3)

In Eq. (3) the second summation ranges over the set Ni of nodes surrounding
(and including) meshpoint i, and the matrices Cij and Dij , respectively, account
for the contribution of the inviscid and viscous terms in the governing equations;
their detailed form is given in [2]. If the time derivative in equation (2) is
approximated using a two-point, one-sided finite difference formula:

dU
dt

=
Un+1 − Un

Δt
,

then an explicit scheme is obtained by evaluating R(U) at time level n and an
implicit scheme if R(U) is evaluated at time level n + 1. In this latter case,
linearizing R(U) about time level n, i.e.

R(Un+1) = R(Un) +
(

∂R
∂U

)n (
Un+1 − Un

)
+ H.O.T.



680 A. Bonfiglioli, B. Carpentieri, and M. Sosonkina

we obtain the following implicit scheme:
(

1
Δtn

V − J
) (

Un+1 − Un
)

= R(Un), (4)

where we denote by J the Jacobian of the residual ∂R
∂U . Eq. (4) represents a large

nonsymmetric (though structurally symmetric) sparse linear system of equations
to be solved at each pseudo-time step for the update of the vector of the conserved
variables. Due to the compact stencil Ni of the schemes, the sparsity pattern
of the Jacobian matrix coincides with the graph of the underlying unstructured
mesh, i.e. it involves only one-level neighbours. On average, the number of non-
zero (block) entries per row equals 7 in 2D and 14 in 3D.

3 EulFS

We present experiments with an academic code [2] that simulates the turbulent
motion of compressible and incompressible Newtonian fluids on 2D and 3D
computational domains. The code computes the steady-state solution of the
RANS equations for both inviscid (Euler’s equations) and viscous (Navier-Stokes
equations) fluids, for internal and external flow configurations using unstructured
grids. The numerical schemes adopted in the package are fluctuation splitting for
the spatial discretization of the conservation equations and pseudo-time stepping
for the time discretization. The analytical evaluation of the Jacobian matrix,
though not impossible, is rather cumbersome [4] so that two alternatives have
been adopted in the present implementation: one is based on an analytically
calculated, but approximate Jacobian, the other uses a numerical approximation
of the “true” Jacobian, obtained using one-sided finite differences formulae. In
both cases, the individual entries of the Jacobian matrix are computed and stored
in memory.

The approximate (or Picard) linearization amounts to compute a given
Jacobian entry as follows:

Jij ≈ Cij − Dij ,

i.e. it neglects the dependence of the convective and diffusive matrices upon the
solution, see Eq. (3).

In the finite difference (FD) approximation, the individual entries of the vector
of nodal unknowns are perturbed by a small amount ε and the nodal residual
is then recomputed for the perturbed state Ûj . The Jacobian entries are then
approximated using one-sided FD formulae:

Jij ≈ 1
ε

(
Ri(Ûj) − Ri(Uj)

)
.

Although the Jacobian matrix can be assembled using a single loop over all cells
[4], its evaluation is computationally expensive, as it requires (d+1)×m residual
evaluations. Therefore, the use of the FD approximation to the true Jacobian
matrix pays off only if a considerable reduction in number of iterations can
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be achieved over simpler iterative schemes. This can be obtained by exploiting
the quadratic convergence of Newton’s rootfinding method, which is recovered
from Eq. (4) as the timestep approaches infinity. However, the error reduction
in Newton’s method is quadratic only if the initial guess is within a sufficiently
small neighborhood of the steady state. This circumstance is certainly not met if
the numerical simulation has to be started from “scratch”, so that in practice the
following two-step approach is adopted. In the early stages of the calculation, the
turbulent transport equation is solved in tandem with the mean flow equations:
the mean flow solution is advanced over a single time step using an approximate
(Picard) Jacobian while keeping turbulent viscosity frozen, then the turbulent
variable is advanced over one or more pseudo-time steps using a FD Jacobian
with frozen mean flow variables. Due to the uncoupling between the mean flow
and turbulent transport equations, this procedure will eventually converge to
steady state, but never yields quadratic convergence. Therefore, once the solution
has come close to steady state, a true Newton strategy is adopted: the mean
flow and turbulence transport equation are solved in fully coupled form and
the Jacobian is computed by FD. Also, the size of the time-step needs to be
rapidly increased to recover Newton’s algorithm and, according to the Switched
Evolution Relaxation (SER) strategy proposed in [5], this is accomplished by
letting Δtn in Eq. (4) vary with the L2 norm of the residual at the initial and
current time-step as:

Δtn = Δt
||R(U0)||2
||R(Un)||2

,

where Δt is the time-step computed using the stability criterion of the explicit
time integration scheme.

The code is implemented using the PETSc library [1] and has been ported to
different parallel computer architectures (SGI/Cray T3E-900, SUN E3500, DEC
Alpha, SUN Solaris and IBM RS6000, Linux Beowulf cluster) using the MPI
standard for the message-passing communications. The simulations presented in
this study are run on a Linux Beowulf cluster.

Experiments on the RAE Problem

The first test-case that we consider is the compressible, subsonic flow past the
two-dimensional RAE2822 profile. Free-stream conditions are as follows: Mach
number M∞ = 0.676, Reynolds’ number based on chord: ReC = 5.7 · 106, angle
of attack: α∞ = 2.40◦. The computational mesh, which is shown in Fig. 2(a), is
made of 10599 meshpoints and 20926 triangles. The simulation is started from
uniform flow and the solution is advanced in pseudo-time using approximate
linearization. Once the L2 norm of the residual has been reduced below a
pre-set threshold, the fully coupled approach is put in place. The convergence
history towards steady-state is shown in Fig. 2(b): only seven Newton iterations
are required to reduce the L2 norm of the residuals (mass, energy, x and y
momentum) to machine zero. For the inner linear solver, we use GMRES(30) [6]
preconditioned by an incomplete LU factorization with pattern selection strategy
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(a) Computational mesh for the
RAE2822 aerofoil.

(b) L2 residual norms versus solution time.

Fig. 2. Experiments on the RAE2822 airfoil

based on the level of fill. The set F of fill-in entries to be kept for the approximate
lower triangular factor L is given by

F = { (k, i) | lev(lk,i) ≤ � } ,

where integer � denotes a user specified maximal fill-in level. The level lev(lk,i)
of the coefficient lk,i of L is defined as follows:

Initialization

lev(lk,i) =

⎧⎨
⎩

0 if lk,i �= 0 or k = i

∞ otherwise
Factorization

lev(lk,i) = min { lev(lk,i) , lev(li,j) + lev(lk,j) + 1 } .

The resulting preconditioner is denoted by ILU(�). A similar strategy is adopted
for preserving sparsity in the upper triangular factor U . We take x0 = 0 as
initial guess for GMRES and the stopping criterion as to reduce the original
residual by 10−5, so that it can then be related to a norm-wise backward error.
In Tables 1 and 2, we report on the number of iterations and the solution time
(in seconds for a single-processor execution), respectively, obtained with ILU(�)
for different levels of fill-in from zero to four. Note that, in Fig. 2(b), the results
are for ILU(2). It may be observed from Table 1, that the ILU(�) variants with
a non-zero fill level lead to a more uniform iteration numbers needed to solve
the linear system in each Newton step.

A blocking strategy is incorporated in the construction of the preconditioner to
exploit the inherent block structure of the coefficient matrix of the linear system.
Block row operations replace standard row operations and diagonal blocks are
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inverted instead of the diagonal entries. The block size is equal to five, that is the
number of fluid dynamic variables in each computational node. We observe that
the use of block storage schemes combined with optimized routines available in
PETSc for inverting the small diagonal blocks enables to save both memory and
setup costs. For this small problem, blocking of the physical variables reduces
the solution time of each linear system by a factor of three. Finally, the curves
of the pressure distribution along the airfoil, reported in Fig. 3(a), show a very
good agreement between the simulation and the experimental data.

Table 1. Iterations for solving the
RAE problem using GMRES(30)
preconditioned by block ILU(�)

Newton iter
Iterations for ILU(�)

0 1 2 3 4
1 56 35 22 19 17
2 115 55 29 23 21
3 111 60 44 27 23
4 85 53 32 22 20
5 56 43 23 19 16
6 116 55 36 24 19
7 82 35 25 20 17

Table 2. CPU time for solving the
RAE problem using GMRES(30)
preconditioned by block ILU(�)

Newton iter
Solution time (sec)

0 1 2 3 4
1 1.7 1.2 0.9 0.9 1.0
2 3.3 1.7 1.1 1.1 1.1
3 3.2 1.9 1.6 1.2 1.2
4 2.5 1.7 1.2 1.0 1.1
5 1.6 1.4 0.9 0.9 0.9
6 3.4 1.7 1.4 1.1 1.0
7 2.4 1.2 1.0 0.9 0.9

Experiments on the Stanitz Elbow

The three-dimensional test case that we have examined deals with the internal
compressible flow through the so-called Stanitz elbow. The simulation reproduces
experiments [8] conducted in early 1950’s at the National Advisory Committee
for Aeronautics (NACA), presently NASA, to study secondary flows in an
accelerating, rectangular elbow with 90◦ of turning. The chosen flow conditions
correspond to a Mach number in the outlet section of 0.68 and Reynolds’ number
4.3·105. Figure 3(b) shows the geometry along with the computed static pressure
contours. The computational mesh consists of 156065 meshpoints and 884736
tetrahedral cells. The simulation has been run on 16 processors of a Linux
Beowulf cluster. Figures 4(a)–4(b) show the convergence history of the iterative
solution; we report on experiments with an Additive Schwarz preconditioner
(see, e.g. [6]) with overlap=2 for GMRES, where the diagonal blocks are
approximately inverted using ILU(1). It can be seen that the decoupled strategy
which integrates the mean flow variables using Picard linearization and the
turbulent transport equation using Newton linearization is not robust enough to
obtain residual convergence to machine epsilon. Thus it needs to be accelerated
using a true Newton algorithm close to the steady state. The only problem is
to determine an effective strategy for switching from one integration scheme to
the other. In the present implementation, we adopt a criterium based on a user-
defined tolerance for the residual reduction and a maximum number of (Picard)
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Fig. 3. The RAE and “Stanitz” elbow problems

iterations. Although maybe not optimal, this strategy proves to be fairly robust
on the reported experiments. In Table 3, we report on comparative results with
respect to number of iterations and solution time (in seconds) with a block
Jacobi preconditioner. For the Additive Schwarz method, we performed tests
with different values of overlap observing very similar results.

Although the solution of the RANS equation may require much less
computational effort of other simulation techniques like LES (Large Eddy
Simulation) and DNS (Direct Numerical Simulation), severe numerical
difficulties may arise when the mean flow and turbulence transport equation
are solved in fully coupled form, the Jacobian is computed exactly by means
of FD and the size of the time-step is rapidly increased to recover Newton’s
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Table 3. Solution cost for solving the Stanitz problem using GMRES(30)

Newton iter
BJ+ILU(1) ASM(2)+ILU(1)

Iter CPU time Iter CPU time
1 72 10.1 49 8.8
2 121 16.7 76 12.3
3 147 20.0 98 15.8
4 175 23.5 112 17.8
5 200 26.9 127 20.1

algorithm. Indeed, on 3D unstructured problems reported successful experiments
are not numerous in the literature. The code is still in a development stage but
the numerical results are encouraging. Perspectives of future research include
enhancing both the performance and the robustness of the code on more
difficult configurations, and designing a multilevel incomplete LU factorization
preconditioner for solving the inner linear system, that preserves the inherent
block structure of the coefficient matrix and scales well with the number of
unknowns.
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Abstract. Extending the philosophy of additive Schwarz algorithms,
we propose a hybrid framework that allows different subdomains to use
different mathematical models, different spatial discretizations, differ-
ent local mesh types, and even different serial codes. This hybrid soft-
ware framework is implemented using object-oriented techniques, such
that existing serial codes are easily reused after being equipped with the
standard interface of a generic subdomain solver. The resulting hybrid
parallel tsunami simulator thus has full flexibility and extensibility. The
focus of this paper is on the software design of the framework, with an
illustrating example of application.

1 Introduction and Motivation

Computing the propagation of waves in the open sea is a key issue in tsunami
simulation. When an entire ocean is the solution domain, this computational task
becomes extremely challenging, both due to the huge amount of computations
needed and due to the fact that different physics are valid in different regions. For
example, the effect of dispersion is important for modeling wave propagation over
an vast region with large water depth (see e.g. [5,10]). Moreover, in regions where
water depth rapidly changes or close to the coastlines, nonlinear effects become
important. Both the above factors mean that using a simple wave propagation
model (such as the shallow water formulation (3)-(4) to be given later) over an
entire ocean domain may seriously affect the accuracy (see e.g. [8,6]). Therefore,
the computations should preferably adopt a hybrid strategy, i.e., using advanced
mathematical models in small local areas where needed, while applying simple
models to the remaining large regions. This is for achieving an acceptable balance
between computational efficiency and accuracy.

Although tsunami simulations often employ the non-dispersive standard shal-
low water equations, we have in this work applied a set of Boussinesq equations,
which are capable of modeling weakly dispersive and nonlinear waves:

∂η

∂t
+ ∇ · (H + αη)∇φ + εH

(
1
6

∂η

∂t
− 1

3
∇H · ∇φ

)
∇H = 0, (1)

∂φ

∂t
+

α

2
∇φ · ∇φ + η − ε

2
H∇ ·

(
H∇∂φ

∂t

)
+

ε

6
H2∇2 ∂φ

∂t
= 0, (2)
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Equation (1) is called the continuity equation, and Equation (2) is a variant
of the Bernoulli (momentum) equation. In the above equations, η and φ are
the primary unknowns denoting, respectively, the water surface elevation and
the velocity potential. The water depth H is assumed to be a function of the
spatial coordinates x and y. In (1)-(2) the effect of dispersion and nonlinearity
is controlled by the two dimensionless constants ε and α, respectively. For more
mathematical and numerical details, we refer to [10,7,3]. Note that by choosing
ε = α = 0, we recover the widely used linear shallow water equations:

∂η

∂t
+ ∇ · (H∇φ) = 0, (3)

∂φ

∂t
+ η = 0. (4)

The Boussinesq equations (1)-(2) can be considered a compromise between
the computationally too expensive Navier-Stokes equations and the simple shal-
low water model (3)-(4). The numerical algorithm for solving (1)-(2) typically
consists of a time-stepping process that solves the following two semi-discretized
equations per time level:

η� − η�−1

Δt
+ ∇ ·

((
H + α

η�−1 + η�

2

)
∇φ�− 1

2

+εH

(
1
6

η� − η�−1

Δt
− 1

3
∇H · ∇φ�− 1

2

)
∇H

)
= 0, (5)

φ�+ 1
2 − φ�− 1

2

Δt
+

α

2
∇φ�− 1

2 · ∇φ�+ 1
2 − εH

2
∇ ·

(
H

∇φ�+ 1
2 − ∇φ�− 1

2

Δt

)

+
εH2

6
∇2φ�+ 1

2 − ∇2φ�− 1
2

Δt
= −η�. (6)

The above numerical scheme has adopted centered differences in the temporal
direction and an associated staggered temporal grid [9]. The superscript � in (5)-
(6) denotes the time level. For the spatial discretization, both finite elements and
finite differences can be used, depending on whether or not unstructured (and
adaptively refined) meshes are needed to resolve the details of the water depth
and/or the shape of coastlines. We mention that the shallow water model (3)-(4),
being a special case of the Boussinesq equations (1)-(2), can be discretized in the
temporal direction in the same fashion as in (5)-(6), likewise for the subsequent
spatial discretization. The difference is that the resulting numerical strategy for
solving (3)-(4) is often of an explicit nature (no need to solve linear systems),
giving rise to an extremely fast algorithm. In contrast, the numerical strategy
for (1)-(2) is of an implicit nature, meaning that linear systems must be solved
for both (5) and (6) at every discrete time level. Moreover, unstructured finite
element meshes will incur more computation time, in comparison with solving
linear systems related to (5)-(6) on uniform finite difference spatial meshes. This
is due to the complex data structure and indirect memory access that are used by
the finite element codes. Therefore, in respect of software, the coding complexity
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and computational cost also suggest that advanced mathematical models and
unstructured computational meshes should only be applied to local small areas
where necessary.

2 Parallelization by a Subdomain-Based Approach

Parallel computing is essential for simulating wave propagation over an entire
ocean, because a huge number of degrees of freedom are often needed. As we
have discussed above, different physics are valid in different regions, calling for
a computationally resource-aware parallelization. More specifically, in regions
where nonlinear and/or dispersive effects are important, existing serial software
for Boussinesq equations (1)-(2) should be applied. Likewise can existing serial
software for linear shallow water equations (3)-(4) be used in the remaining
regions.

Such a parallelization strategy is most easily realized by using subdomains,
such that the entire spatial domain Ω is decomposed into a set of overlapping
subdomains {Ωs}P

s=1. Mathematically, this idea of parallelization was first con-
ceived in the additive Schwarz algorithms, see [11]. In a generic setting, where a
partial differential equation (PDE) is expressed as

LΩ(u) = fΩ,

the Schwarz algorithm consists of an iterative process generating u0, u1, . . . , uk

as a series of approximate solutions. During Schwarz iteration k, each subdomain
first independently updates its local solution through

LΩs(u
k
s) = fk−1

Ωs
. (7)

Note that notation fk−1
Ωs

means a right-hand side due to restricting fΩ within Ωs

while making use of the latest global approximation uk−1 on the internal bound-
aries of Ωs. When all the subdomains have finished solving (7), the new global
solution uk is composed by “sewing together” the subdomain local solutions
uk

1 , u
k
2 , . . . , uk

P .
Equation (7) thus opens for the possibility of using different local solvers in

different subdomains. Taking the idea of additive Schwarz one step further, we
can also apply different mathematical models in different subdomains. Therefore,
different serial codes may be deployed regionwise. In the context of solving (5)-
(6), these two equation can each use a series of the above Schwarz iterations at
every discrete time level. The same set of subdomains should be used for both
(5) and (6), to avoid unnecessary cross-subdomain data shuffle.

3 An Object-Oriented Implementation

To implement a hybrid parallel tsunami simulator as argued above, we resort to
object-oriented programming techniques. For simplicity, the implementation can
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be extended from a generic library of Schwarz algorithms for solving PDEs, such
as that described in [1]. Our objective is a flexible design, such that existing serial
wave propagation codes can be easily integrated into a hybrid parallel simulator
of wave propagation. We will use C++ syntax in the following text, but the
object-oriented strategy is equally implementable using another language such
as Python, see e.g. [2].

3.1 A Generic Schwarz Framework

Before explaining the overall design of an object-oriented hybrid parallel tsunami
simulator, it is necessary to briefly repeat the generic library of Schwarz al-
gorithms, as described in [1]. Let us assume that the generic Schwarz library
consists of two generic components, say, class SubdomainSolver and class
Administrator. The purpose of the generic base class SubdomainSolver is to
declare on beforehand a generic interface of all concrete subdomain solvers, which
can later be inserted into the generic Schwarz framework. The generic interface
is namely a set of virtual member functions without concrete implementation.
For example, createLocalMatrix is a virtual function meant for setting up the
subdomain matrix associated with discretizing (7), and function solveLocal
is meant for solving the discretized form of (7) during each Schwarz iteration.
The actual computational work is of course realized inside a concrete subclass
of SubdomainSolver, which implements the virtual member functions such as
createLocalMatrix and solveLocal, either by a cut-and-paste of old serial
codes or more elegantly as a wrapper of an existing solver class.

Regarding the generic base class Administrator, the purpose is also to im-
plement on beforehand a common set of functions, some of them as virtual
member functions, useful later in a concrete parallel PDE solver based on ad-
ditive Schwarz iterations. The typical functions of Administrator deal with,
e.g., checking the global convergence among subdomains and invoking required
inter-subdomain communication, all of which are independent of specific PDEs.

3.2 Designing a Parallel Tsunami Simulator

Now it is time for us to present the design of a hybrid parallel tsunami simulator.
To maintain flexibility, while considering the special features with solving the
Boussinesq water wave equations (1)-(2) (recall that (3)-(4) is a special case),
we introduce a new generic class SubdomainBQSolver. The class is derived as a
subclass of SubdomainSolver to implement all the virtual member functions of
SubdomainSolver, while introducing a small set of new virtual functions. This is
because, e.g., the two semi-discretized equations (5)-(6) both need to be solved
using additive Schwarz iterations, thus requiring the solveLocal function to
contain two versions, one for (5) and the other for (6). The structure of function
SubdomainBQSolver::solveLocal may therefore be as follows:
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if (solve_4_continuity)
return solveContinuityEq ();

else
return solveBernoulliEq ();

Here, solve 4 continuity is a flag indicating which equation, (5) or (6), is
the current solution target. We note that the two new virtual member func-
tions solveContinuityEq and solveBernoulliEq are left open for concrete
subclasses to later insert their actual code of computation.

Once the new generic class SubdomainBQSolver is ready, a new class with
name HybridBQSolver is derived as a subclass from base class Administrator.
All the virtual functions of Administrator are implemented in HybridBQSolver,
which also implements the time-stepping process that solves (5)-(6) at each
time level. This in turn relies on an object of SubdomainBQSolver to per-
form the actual subdomain work for solving (7) during each Schwarz itera-
tion. We remark that an object of HybridBQSolver and an object of a sub-
class of SubdomainBQSolver will be deployed on each processor during a par-
allel simulation, and inter-subdomain communication is handled between the
objects of HybridBQSolver. The remaining programming work needed to im-
plement an actual parallel tsunami simulator is mainly in form of deriving con-
crete subclass(es) of SubdomainBQSolver, best illustrated by the following case
study. A hybrid parallel simulator arises when objects of different subclasses of
SubdomainBQSolver are deployed on different subdomains.

4 Case Study

We have two existing serial software codes: (1) an advanced C++ finite element
solver named class Boussinesq applicable for unstructured meshes, and (2) a
legacy F77 finite difference code applicable for uniform meshes. Both codes are
hard to parallelize following the standard approach of inserting MPI commands
directly into linear algebra operations. This is especially true for the legacy F77
code, which has a tangled internal data structure. Our objective is to build a
hybrid parallel tsunami simulator based on these two codes, in a straightforward
and effective way. To this end two light-weight new classes are programmed:

class SubdomainBQFEMSolver and class SubdomainBQFDMSolver

Here, class SubdomainBQFEMSolver uses double inheritance, as subclass of both
SubdomainBQSolver and Boussinesq, so that it inherits the computational func-
tionality from Boussinesq and at the same time is accepted by HybridBQSolver
as a subdomain solver. Similarly, class SubdomainBQFDMSolver is derived from
SubdomainBQSolver and at the same time “wraps up” the F77 subroutines of
the legacy code inside its solveLocal function.

Using such a hybrid software framework, a parallel tsunami simulator has
been built for the 2004 Indian Ocean tsunami. The entire spatial domain is
depicted in Fig. 1, where the epicenter is located at position (1, 1). Moreover,
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Fig. 1. An example of partitioning the Indian Ocean domain into a mixture of rectan-
gular and complex-shaped subdomains. Finite differences are used by the rectangular
subdomains to carry out the spatial discretization, whereas the complex-shaped sub-
domains use finite elements and adaptively refined local meshes.

the figure also shows different types of local meshes, i.e., uniform local meshes in
the rectangular subdomains and adaptively refined local meshes in the complex-
shaped subdomains. Different spatial discretizations (finite differences and finite
elements) can thus be deployed in different regions. The simulation results have
been reported in [4].

5 Concluding Remarks

We have explained a hybrid software framework for parallelizing and, at the
same time, combining different existing serial codes. Such a parallelization strat-
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egy is numerically inspired by the additive Schwarz algorithms, while implemen-
tationally enabled by object-oriented programming techniques. The approach is
particularly attractive for creating parallel simulators of wave propagation, as
many old serial wave codes exist but are otherwise difficult to be parallelized. For
ocean-scale simulations, the advantage of such a hybrid parallel simulator is that
small areas of difficulty can be handled by subdomains that are equipped with
an advanced mathematical model and a sophisticated numerical solver, whereas
the remaining vast regions are handled by a simple mathematical model and fast
code.

Future work will apply the software approach from this paper to other aspects
of tsunami simulation, for instance, run-up of waves on beaches. Quite some so-
phisticated serial codes have been developed for the run-up problem, and these
are hard to parallelize well. Our suggested approach makes parallelization fea-
sible with little work. Of even more importance is the fact that reuse of very
well-tested codes contributes to high reliability in a new hybrid, parallel simu-
lator. For each new problem such as wave run-up it always remains, however,
to investigate whether the additive Schwarz algorithm is capable of delivering
satisfactory parallel efficiency.
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Abstract. Computational analysis requires huge amounts of computa-
tional resources. However, for the usual developer, parallelization is diffi-
cult as it requires special programming skills. In addition, since recently
available architectures vary from PC-clusters to SMP clusters, the opti-
mization strategies to make the best use of the hardware performance
are no longer unique. In the present study, we develop a problem solving
environment, which supports parallelization and optimizations for easily
developing parallel FEM code. The load of code development on this
PSE is evaluated. The parallel efficiency of the developed code is also
discussed.

1 Introduction

Parallel computing involves unique techniques such as domain decomposition,
message passing, and vectorization. The additional work required for implement-
ing these techniques is extremely burdensome for application developers, often
resulting in very time consuming development and buggy code. In addition, since
recently available architectures vary from PC-clusters to SMP clusters, the op-
timization strategies used to efficiently exploit the available hardware vary from
case to case. For this reason, the approach of Problem Solving Environment
(PSE) [1,2,3,4,5,6,7,8,9] has been investigated by several researchers.

PSEs for software development support are categorized as being of the library-
type or the middleware-type. The library-type PSE only provides some of the
important functions in the applications as external subroutines. ScaLapack [6] is
a package of linear matrix solvers, which are optimized for distributed-memory
parallel computers. MpCCI [7] enables different analysis codes to be coupled by
handling data exchange on the interface.

The middleware-type PSE gives some guideline for developing analysis code.
POOMA [8] is a templated C++ library for developing parallel simulation code
of partial differential equations. PCP [9] is a platform for developing parallel
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analysis codes. By building legacy code onto the sample code, parallelization is
achieved.

PSE for software development support must provide three features: versa-
tility, easy implementation, and optimization. Versatility means flexibility for
algorithms and governing equations. The library-type PSE has advantages with
respect to optimization and easy implementation, but a disadvantage with re-
spect to versatility. The middleware-type PSE has advantages with respect to
versatility and/or easy implementation. Therefore, we developed a new PSE
”HPC middleware” (HPC-MW) [10] which provides the above three features.

2 HPC-MW

As mentioned previously, the HPC middleware (HPC-MW) must provide versa-
tility, easy implementation, and optimization. For versatility, the finite element
method is employed as the base of this PSE because FEM is a general discretiza-
tion method of partial differential equations.

2.1 Easy Implementation

For easy implementation, two requirements must be satisfied: provision of FEM
common procedures and automatic parallelization.

The FEM consists of four main functions: I/O, construction of the global stiff-
ness matrix, calculation of the right-hand side vector, and the solver. By provid-
ing these functions, the application developer can concentrate on the algorithm.
The domain decomposition method (DDM) is employed for parallelization. In
this method, message massing is needed for some processes.

I/O. Input data must be distributed for each processor in parallel computing.
There are two approaches for data distribution. In the entire data approach, a
certain processor reads the data in its entirety and distributes the data to other
processors. The other approach is the distributed data approach, in which each
processor reads decomposed data. The latter is inevitable in large-scale analysis.
Output is simply performed for each processor by writing the results to a file.

Construction of the Global Stiffness Matrix. This function is composed of
three processes: Jacobian calculation, calculation of the element matrix, and as-
sembling the element matrix to the global matrix. Jacobian calculation depends
only on the type of element so that it should be included in HPC-MW.

Assembling the element matrix to the global stiffness matrix must be provided
because the CRS format (described in Section 2.2) [11] has to be used.

Calculation of the Right-Hand Side Vector. In this function, operations
such as matrix-vector multiplication and vector inner product are needed. These
operations also require the CRS format. Thus, subroutines for matrix-vector
multiplication and vector inner product must be supported. The block matrix
method is employed so that the subroutines used for matrix-vector multiplication
have some types that correspond to the typical block size.
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Table 1. Examples of HPC-MW subroutines

I/O
hpcmw get mesh Input mesh data
hpcmw write result Output result data
Construction of the global matrix
hpcmw mat con Create CRS table
hpcmw matrix allocate Allocate of a matrix memory
hpcmw Jacob Calculate shape functions
hpcmw matrix assemble Assemble an element matrix to global matrix
Calculation of the right-hand side vector
hpcmw matrix vector Matrix-vector multiplication
hpcmw vector innerProduct Vector inner product
Solver
hpcmw solver 11 Linear matrix solvers for CG, GMRES, etc

The Solver. The solver dominates the performance of the developed code, thus
it is significant. Many optimized solvers, such as CG and GMRES, are prepared
in HPC-MW. Powerful preconditioners are also included.

Table 1 shows examples of subroutines from HPC-MW. All functions in-
evitable for the FEM procedure are successfully provided.

For parallelization, message passing should be included in HPC-MW. The
functions that require message passing include matrix-vector multiplication, the
vector inner product, and the solvers. By adapting these functions for message
passing, the application developer is free from parallelization.

Fig. 1. An example of compressed row storage (CRS) format is shown. In this format,
a matrix is stored by three one-dimensional arrays. One stores the number of column
of the component, and the other stores the number of non-zero components in the row
and the other stores the value of the component.
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2.2 Optimization

Since recently available architectures vary from PC-clusters to SMP clusters, the
optimization strategies used to efficiently exploit the available hardware vary
from case to case. However, the optimization strategy always depends on the
data structure. Here, the data structure indicates how to store the data on the
memory. In HPC-MW, CRS format [11] is employed.

Figure 1 shows an example of the CRS format. This format is profitable for
memory usage and computational cost in large-scale problems because it stores
only the non-zero components of a matrix. The process that uses the CRS format
is matrix-vector multiplication and assembling the element matrix to the global
matrix. These two processes were optimized previously.

3 Example of Application Development

In this section, we explain how to apply HPC-MW for the development of anal-
ysis code. Here, incompressible fluid analysis code was developed. This phe-
nomenon is appropriate for evaluating the developed PSE because of its charac-
teristics of non-linearity and time-dependency.

Figure 2 shows the utilization image of HPC-MW. The method by which to
use HPC-MW will be explained in the following sections.

Fig. 2. This figure shows the utilization image of HPC-MW. Optimized parallel code is
generated by special language/compiler based on analysis data and H/W information.

3.1 Algorithms and Development Process

The governing equations are the Navier-Stokes equations and the continuum
equation. The P1P1 finite element is employed for spatial discretization, and
the predictor-multicorrector method [12] is applied for temporal discretization.
For stabilization,the SUPG/PSPG method [12] is also employed. Navier-Stokes
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Fig. 3. Flowchart and the main part of the source of the developed code. This algorithm
includes seven processes: Input, CRS data, Construction of Global Matrix, Predictor,
Solver, and Output. The four processes that are colored in the figure are entirely
supported by HPCMW functions.

equations are applied in the SUPG, and the continuum equation is applied in
the PSPG, as follows.

∫
Ω

wi ·ρ
(

∂ui

∂t
+ ujui,j − fi

)
dΩ −

∫
Ω

wiσij,jdΩ

+
∑

e

∫
Ωe

τujwi,j ·
[
ρ

(
∂ui

∂t
+ ujui,j − fi

)
− σik,k

]
dΩ = 0. (1)

∫
Ω

q ui,idΩ +
∑

e

∫
Ωe

τ
1
ρ
q,j

[
ρ

(
∂ui

∂t
+ ujui,j − fi

)
− σij,j

]
dΩ = 0. (2)

σij = −pδij + μ (ui,j + uj,i) . (3)

Here, u denotes the velocity, p denotes the pressure, ρ denotes the density, w de-
notes the weight function for the Navier-Stokes equations, q denotes the weight
function for the continuum equation, and τ denotes the stabilization coefficient,
and μ denotes viscousity coefficient, and δ denotes Kronecker delta. Figure 3
shows a flowchart and the source of the main part of the developed code. Ac-
cording to Fig. 3, the algorithm and the structure of the source are well synchro-
nized.
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The program source of the mass matrix construction is shown below.

Program source of mass matrix construction

subroutine MakeMass

do iElem = 1, hpcMESH%n_elem
localMAT = 0.0
call hpcmw_Jacob_341(iElem, volume, b, c, d)

do i = 1, 4
do j = 1, 4

if ( i == j ) then
localMAT(i,j,1) = localMAT(i,j,1) + rho * volume / 10.0
else
localMAT(i,j,1) = localMAT(i,j,1) + rho * volume / 20.0
end if

end do
end do

call hpcmw_matrix_assemble(iElem, 4, 1, localMAT, massMAT)

end do

end subroutine MakeMass

Equation (4) expresses the weak-form of the element mass matrix equation.
Here, both α and β denote the local node numbers, ρ denotes the density, Ve

denotes element volume, and N denotes the shape function. This integration can
be expanded as Eq. (4) if a P1P1 tetrahedral element is employed.

Mαβ =
∫

NαNβdΩ = ρ
Ve

20

⎡
⎢⎢⎣

2 1
2

2
1 2

⎤
⎥⎥⎦ . (4)

In order to calculate the mass matrix, the following three steps are required:

1. Calculate Ve.
2. Calculate element mass matrices using ρ and Ve.
3. Assemble the element matrices to the global matrix.

According to the program source,Ve was calculated by the subroutine
hpcmw Jacob 341 (step 1), and the calculated element matrix was assembled
to the global matrix by the subroutine hpcmw matrix assemble automatically
(step 3).
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4 Numerical Results

4.1 Parallel Efficiency

The parallel efficiency of the developed code was measured. The simulated model
is a lid-driven cavity flow. The number of nodes was 1,000,000, and the number of
d.o.f.fs was 4,000,000. The specifications of the PC-cluster are shown in Table 2.
Figure 4 shows the speed-up of the solver provided by HPC-MW. The definition
of the speed-up is given by Eq. (5), in which S denotes the speed-up, T denotes
the calculation time, and the subscript n denotes the number of processors. A
parallel efficiency of approximately 94% is achieved with 24 processors for a
mid-sized model.

S =
8T8

Tn
(5)

Table 2. Specification of the PC-cluster

CPU Xeon 2.8GHz
Memory 2 Gbyte
Network Myrinet

Fig. 4. Speed-up of the solver. The cases of 8, 16 and 24 processors are shown.

4.2 Development Efficiency

Table 3 shows the number of steps in the developed code. The number of steps is
1,812. We estimate the number of steps that are covered by HPC-MW functions.
The estimation is 2,450. Thus, we consider the total steps of the developed code
as 4,250.

According to the estimation, approximately 57% of the steps are covered by
HPC-MW.
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Table 3. Number of steps in the developed code

Number of steps Ratio(%)
Total 4250 100
Algorithm 1812 42.6
HPC-MW 2438 57.4

Details of HPC-MW
CRS data 245 5.76
Matrix assemble 55 1.29
Jacobian 62 1.46
Matrix-vector multiplication 571 13.4
Solver (with precond.) 1388 32.6

5 Conclusions

A PSE for an FEM application developer was designed and developed. Various
procedures common to FEM are provided by the PSE, and parallelization is
automatically achieved. An incompressible fluid analysis code was developed
using this PSE. The developed PSE saved approximately 57% with respect to
the number of steps of developed code. A parallel efficiency of approximately
94% was obtained for a mid-sized model run on a PC-cluster.
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ary Simulation Software for the 21st century (RSS21)” project supported by
the next-generation IT program of the Ministry of Education, Culture, Sports,
Science and Technology (MEXT).
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Abstract. SyFi is an open source C++ library for defining and using
variational forms and finite elements based on symbolic representations
of polygonal domains, degrees of freedom and polynomial spaces. Once
the finite elements and variational forms are defined, they are used to
generate efficient C/C++ code.

1 Introduction

SyFi [15], which stands for Symbolic Finite Elements, is a C++ library for
finite element computations. SyFi is equipped with a Python interface by using
SWIG [16]. It relies on the symbolic mathematics library GiNaC [9] and the
Python interface to GiNaC called Swiginac [17]. SyFi, Swiginac, and GiNaC are
open source.

This paper is only a short overview of the SyFi project in the context of finite
element methods for the incompressible Navier-Stokes equations. A more com-
prehensive description of the project can be found on its webpage
http://syfi.sf.net, which contains a tutorial, a complete reference and the
source code. We will show various code snippets in this paper. The complete
code examples can be found in the subdirectory para06 in the SyFi source code
tree.

There are quite a few other projects that are similar in various respects to
SyFi. Within the FEniCS [4] project there are two Python projects: FIAT [6] and
FFC [5]. FIAT is a Python module for defining finite elements while FFC gen-
erates C++ code based on a high–level Python description of variational forms.
The DSEL project [3] employs high–level C++ programming techniques such
as expression templates and meta-programming for defining variational forms,
performing automatic differentiation, interpolation and more. Sundance [14] is
a C++ library with a powerful symbolic engine which supports automatic gen-
eration of a discrete system for a given variational form. Analysa [1], GetDP [8],
and FreeFem++ [7] define domain-specific languages for finite element compu-
tations. The main difference between SyFi and the other projects is that it uses
a high level symbolic framework in Python to generate efficient C/C++ code.

A key point in the design of SyFi is, as already mentioned, that we want
to employ symbolic mathematics and code generation in place of the numerics.
The powerful symbolic engine GiNaC and the combination of the high–level
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languages C++ and Python have so far proven to be a solid platform. Consider
for instance, the computation of an entry in the mass matrix

Aij =
∫

T̂

NiNj D dx, (1)

where D is the Jacobian of the geometry mapping between the reference element
T̂ and the global element T , and {Ni}i are the finite element basis functions. If
the geometry mapping is affine, the computation of one matrix entry based on (1)
will result in a real number times D. Because everything but the multiplication
with D (in case of a mass matrix) can be precomputed, the generated code will
be very efficient compared to traditional codes, which typically implements a
loop over quadrature points and numerical evaluation of the finite element basis
functions. See also mass.py for a demonstration of such code generation.

As will be explained later, other advantages of this approach include an easy
way of defining finite elements, and straightforward computation of the Jacobian
in the case of nonlinear PDEs.

2 Using Finite Elements and Evaluating Variational
Forms

One main goal with SyFi has been that it should be a tool with strong support
for differentiation and integration of polynomials on polygonal domains, which
are basic ingredients both when defining finite elements and using finite ele-
ments to define variational forms. Many finite elements have been implemented
in SyFi. Of particular importance for the simulation of incompressible fluids are
the continuous and discontinuous Lagrangian elements of arbitrary order and
the Crouzeix-Raviart element [2]. However, also the H(div)-Raviart-Thomas el-
ements [13] and the H(curl)- Nedelec elements [11,12] of arbitrary order have
been implemented. We will come back to the construction of finite elements in
Section 4. In this section we concentrate on the usage of already implemented
elements.

We construct the commonly used Taylor–Hood element P
2
2−P1 as follows (see

also div.py),

from swiginac import *
from SyFi import *

polygon = ReferenceTriangle()

v_element = VectorLagrangeFE(polygon,2)
v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The polygonal domain here is a reference triangle, but it may be a line, a triangle,
a square, a tetrahedron or a box. Furthermore, these geometries are not limited
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to typical reference geometries. For instance, we may construct the elements
on a global triangle defined by the points (x0, y0), (x1, y1), and (x2, y2) where
x0, . . . , y2 might be both numbers and/or symbols. The following code shows the
Taylor–Hood element on a triangle defined in terms of the symbols x0, . . . , y2,
(see also div global.py),

x0 = symbol("x0"); y0 = symbol("y0")
x1 = symbol("x1"); y1 = symbol("y1")
x2 = symbol("x2"); y2 = symbol("y2")

p0 = [x0,y0]; p1 = [x1,y1]; p2 = [x2,y2]

polygon = Triangle(p0,p1,p2)
v_element = VectorLagrangeFE(polygon,2)
v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The computed basis functions are standard polynomials also in this case, al-
though they depend on x0, . . . , y2. These polynomials can be added, multiplied,
differentiated, integrated etc. in the standard way (within a symbolic frame-
work). Consider for example, the computation of the divergence constraint,

Bij =
∫

T

div Ni Lj dx,

where Ni and Lj are the basis functions for the velocity and pressure elements,
respectively, and T is a polygonal domain. This matrix can be computed as
follows (see also div global.py):

... construct the element

for i in range(0,v_element.nbf()):
for j in range(0,p_element.nbf()):

integrand = div(v_element.N(i))*p_element.N(j)
Bij = polygon.integrate(integrand)

Another example that demonstrates the power of this approach, in which we
utilize a symbolic mathematics engine, is the computation of the Jacobian of the
nonlinear convection-diffusion equations that typically appear in incompressible
flow simulations. Let

Fi =
∫

T

(u · ∇u) · Ni + ∇u : ∇Ni dx,

where u =
∑

k ukNk. Then,

Jij =
∂Fi

∂uj
=

∂

∂uj

∫
T

(u · ∇u) · Ni + ∇u : ∇Ni dx. (2)

The computation of such Jacobian matrices and the implementation of corre-
sponding simulation software are usually tedious and error-prone. It seems that



706 K.-A. Mardal

one main reason for this difficulty is the gap between the computations done by
hand and the corresponding numerical algorithm to be implemented. After all,
the computation of (2) only involves straightforward operations. SyFi aims at
closing this gap. We will now show the code for computing (2) with SyFi. The
complete source code is in conv-diffusion.py. First, we compute the finite
elements as shown in the previous example. Secondly, we compute the Fi and
differentiate to get the Jacobian:

u, ujs = sum("u", fe)

for i in range(0,fe.nbf()):

# compute diffusion term
fi_diffusion = inner(grad(u), grad(fe.N(i)))

# compute convection term
uxgradu = (u.transpose()*grad(u)).evalm()
fi_convection = inner(uxgradu, fe.N(i), True)

# add together diffusion and convection
fi = fi_diffusion + fi_convection

# compute the integral
Fi = polygon.integrate(fi)

for j in range(0,fe.nbf()):
# differentiate to get the Jacobian
uj = ujs.op(j)
Jij = diff(Fi, uj)
#print out the Jacobian
print "J[%d,%d]=%s;\n"%(i,j,Jij)

The output from conv-diffusion.py is:

J[0,0]=1+1/24*u2-1/12*u1-1/24*u5-1/6*u0-1/24*u4-1/24*u3;
J[0,1]=-1/12*u0+1/12*u4;
J[0,2]=-1/2+1/12*u2+1/24*u0+1/24*u4;
J[0,3]=-1/24*u0+1/24*u4;
J[0,4]=-1/2+1/24*u2+1/12*u1+1/24*u5-1/24*u0+1/24*u3;
...

We can now extend the above code such that it also can include the Ostwald–
de Waele power-law viscosity model, i.e.,

F p
i =

∫
T

(u · ∇u) · Ni + μ(u)∇u : ∇Ni dx,

where μ = μ0‖∇u‖n. The Jacobian matrix is then

Jp
ij =

∂F p
i

∂uj
.

The only thing we need to change then in the above script is the diffusion
term (see also conv-diffusion-power-law.py):
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# nonlinear power-law diffusion term
mu = inner(grad(u), grad(u))
fi_diffusion = mu0*pow(mu,n)*inner(grad(u), grad(fe.N(i)))

In addition, we also need to declare n and μ0 to be either symbols or numbers.

3 Code Generation for Quadrature Based FEM Systems

SyFi can also be used to generate C++ code for other FEM systems. We will here
consider code generation for finite element basis functions in a format specified by
the user. Other code generation examples can be found in the SyFi tutorial and
source code, where code for creating both PyCC and Epetra matrices for various
problems are generated. Furthermore, notice that one can print the expressions
out in either of the formats: ASCII, C, LATEX, and Python.

The following code demonstrates how C code for the basis functions is gener-
ated (see also code gen simple.py):

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,2)
fe.compute_basis_functions()

N_string = ""
for i in range(0,fe.nbf()):

N_string += " N[%d]=%s;\n"% (i, fe.N(i).printc())

c_code = """
void basis2D(double N[%d], double x, double y) {
%s
} """ % (fe.nbf(), N_string)

print c_code

Notice that C code for the expressions is generated with the function printc.
The output from code gen simple.py is:

void basis2D(double N[6], double x, double y) {
N[0]=pow(-y-x+1.0,2.0)-(-y-x+1.0)*y-(-y-x+1.0)*x;
N[1]=4.0*(-y-x+1.0)*x;
N[2]=-y*x+(x*x)-(-y-x+1.0)*x;
N[3]=4.0*(-y-x+1.0)*y;
N[4]=4.0*y*x;
N[5]=-y*x+(y*y)-(-y-x+1.0)*y;

}

Finally, notice that to change the above code to produce code for, e.g., 5th order
elements all you need to do is change the degree of the element i.e.,

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,5)
fe.compute_basis_functions()

...
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4 Defining a Finite Element in SyFi

Defining a finite element may of course be more technical than using it, in
particular for advanced elements. Furthermore, the implementation shown below
involves more of GiNaC and SyFi than the earlier examples, so the reader should
have access to both the SyFi and GiNaC tutorial. The elements implemented
in SyFi so far have mostly been implemented in C++ since they then will be
available in both C++ and Python (by using SWIG).

We will describe the implementation of an element recently added to SyFi.
The element was introduced in [10]. The special feature of this element is that
it works well for both Darcy and Stokes types of flow.

The definition of the element is as follows,

V (T ) = {v ∈ P
2
3 : div v ∈ P0, (v · ne)|e ∈ P1 ∀e ∈ E(T )},

where T is a given triangle, E(T ) is the edges of T , ne is the normal vector on
edge e, and Pk is the space of polynomials of degree k and P

d
k the corresponding

vector space. The degrees of freedom are,
∫

e

(v · n)τk dτ, k = 0, 1, ∀e ∈ E(T ),
∫

e

(v · t) dτ, ∀e ∈ E(T ).

The definition of the element is more complicated than most of the common
elements. Still, we will show that it can be implemented in SyFi in about 100
lines of codes. We will compute this element in four steps:

1. Constructing the polynomial space V (T ).
2. Specifying the constraints.
3. Specifying the degrees of freedom.
4. Solving the resulting linear system of equations.

Considering the first step, SyFi implements the Bernstein polynomials (in
barycentric coordinates) with the functions bernstein and bernsteinv, for
scalar and vector polynomials, respectively. The bernstein functions returns
a list (lst) with the items:

– The polynomial (a0x + a1y + a2(1 − x − y) + . . .).
– The variables (a0, a1, a2, . . .).
– The polynomial basis (x, y, 1 − x − y, . . .).

In the following we construct P
2
3:

Triangle triangle
ex V_space = bernsteinv(2, 3, triangle, "a");
ex V_polynomial = V_space.op(0);
ex V_variables = V_space.op(1);
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Here V space is the above mentioned list, V polynomial contains the polyno-
mial, and V variables contains the variables.

In the second step we first specify the constraint div v ∈ P0:

lst equations;
ex divV = div(V);
ex_ex_map b2c = pol2basisandcoeff(divV);
ex_ex_it iter;
// div constraints:
for (iter = b2c.begin(); iter != b2c.end(); iter++) {

ex basis = (*iter).first;
ex coeff= (*iter).second;
if ( coeff != 0 && ( basis.degree(x) > 0

|| basis.degree(y) > 0 ) ) {
equations.append( coeff == 0 );

}
}

Here, the divergence is computed with the div function. The divergence of a
function in P

2
3 is in P2. Hence, it is on the form b0+b1x+b2y+b3xy+b4x

2+b5y
2.

In the above code we find the coefficients bi, as expressions involving the above
mentioned variables ai and the corresponding polynomial basis, with the function
pol2basisandcoeff. Then we ensure that the only coefficient which is not zero
is b0.

The next constraints (v ·ne)|e ∈ P1 are implemented in much of the same way
as the divergence constraint. We create a loop over each edge e of the triangle and
multiply v with the normal ne. Then we substitute the expression for the edge,
i.e., in mathematical notation |e, into v ·n. After substituting the expression for
these lines to get (v · ne)|e , we check that the remaining polynomial is in P1 in
the same way as we did above.

// constraints on edges:
for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);
symbol s("s");
lst normal_vec = normal(triangle, i);
ex Vn = inner(V, normal_vec);
Vn = Vn.subs(line.repr(s).op(0)).subs(line.repr(s).op(1));
b2c = pol2basisandcoeff(Vn,s);
for (iter = b2c.begin(); iter != b2c.end(); iter++) {

ex basis = (*iter).first;
ex coeff= (*iter).second;
if ( coeff != 0 && basis.degree(s) > 1 )
{

equations.append( coeff == 0 );
}

}
}

In the third step we specify the degrees of freedom. First, we specify the
equations coming from

∫
e(v · n)τkdτ, k = 0, 1 on all edges. To do this we need

to create a loop over all edges, and on each edge we create the space of linear
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Bernstein polynomials in barycentric coordinates on e, i.e., P1(e). Then we create
a loop over the basis functions τk in P1(e) and compute the integral

∫
e
(v·n)τk dτ .

// dofs related to the normal on the edges
for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);
lst normal_vec = normal(triangle, i);
ex P1_space = bernstein(1, line, istr("a",i));
ex P1 = P1_space.op(2);
ex Vn = inner(V, normal_vec);

ex basis;
for (int j=0; j< P1.nops(); j++) {

basis = P1.op(j);
ex integrand = Vn*basis;
ex dofi = line.integrate(integrand);
dofs.insert(dofs.end(), lst(line.vertex(0),

line.vertex(1), j));
ex eq = dofi == numeric(0);
equations.append(eq);

}
}

Finally, the degrees of freedom
∫

e(v · t)dτ can be implemented in basically the
same fashion as the previously described degrees of freedom. To summarize, we
have now specified 20 equations which is precisely the number of unknowns in
P

2
3. Hence, the space V (T ) is uniquely defined, what remains is simply to solve

a linear system with 20 equations and 20 unknowns. The complete source code
is in Robust.cpp.

5 Summary

In this paper we have tried to demonstrate that symbolic mathematics com-
bined with code generation can be an alternative to the traditional numerical
approach for implementing finite elements and finite element methods. By com-
bining Python, C++ and legacy libraries we have created a library which is both
easy to use and powerful enough for advanced methods and complicated PDEs.
Furthmore, the generated code is often efficient compared to the traditional
quadrature based approach.
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11. Nédélec, J.-C.: Mixed finite elements in R3 35(3), 315–341(October 1980)
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Abstract. This article presents an overview of a unified framework for
finite element and spectral element methods in 1D, 2D and 3D in C++

called Life. The objectives of this framework are quite ambitious and
could be expressed in various ways: (i) the creation of a versatile math-
ematical kernel allowing for easily solving problems using different tech-
niques thus allowing testing and comparing methods, e.g. cG versus dG,
(ii) the creation of a small and manageable library which shall never-
theless encompass a wide range of numerical methods and techniques,
and (iii) build mathematical software that follows closely the mathe-
matical abstractions associated with the partial differential equations to
be solved.

1 Introduction and Basic Principles

This article presents an overview of a unified framework for finite element and
spectral element methods in 1D, 2D and 3D in C++, called Life. The objectives of
this framework is quite ambitious and could be expressed in various ways such as
(i) the creation of a versatile mathematical kernel easily solving problems using
different techniques thus allowing testing and comparing methods, e.g. contin-
uous Galerkin (cG) versus discontinuous Galerkin (dG) , (ii) the creation of a
small and manageable library which shall nevertheless encompass a wide range
of numerical methods and techniques, (iii) build mathematical software that
follows closely the mathematical abstractions associated with partial differential
equations (PDE) — which is often not the case, for example the design could be
physics oriented, — and (iv) the creation of a library entirely in C++ allowing to
create complex multi-physics applications such as fluid-structure interaction or
mass transport in haemodynamics — the rationale being that these applications
are computing intensive and the use of an interpreted language such as Python
would not be satisfying though in many simpler cases that would simplify and
accelerate the development.

Now we describe a few requirements or features and general considerations
that the library tries to satisfy:

B. Kågström et al. (Eds.): PARA 2006, LNCS 4699, pp. 712–721, 2007.
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– The syntax, the semantics and the pragmatics of the library are very close
to the mathematics; the design and implementation should be mathematics
oriented. C++ supports very well multiple paradigms design and offers a wide
range of solutions for a given problem. Generic programming, OO program-
ming, meta-programming are such paradigms and they are definitely very
useful when dealing with mathematical abstractions.

– The library shall remain small and manageable and make use wherever pos-
sible of established libraries. In particular, it uses most of the Boost1 li-
braries. To name but a few: ublas, lambda, mpl, preprocessor, serialization,
multi index.

– The library should compare reasonably well with other similar frameworks
performance wise. Partial specialization in C++ [2] allows to select efficient
algorithms at compile time. Proper benchmarking shall be available soon.

– The library should achieve a certain level of numerical type independence:
that is being able to use different numerical types such as the standard
ones — float, double, long double or std::complex , — double-double and
quad-double, see [13], arbitrary precision, see [6] or interval arithmetic; nu-
merical classes are then parametrized by the numerical type and mathe-
matical functions are available in a unified way. To achieve this, it uses the
Boost.preprocessor library and provides through a math:: namespace a set of
mathematical functions for all supported numerical types. One should note
that the library takes care of type deduction in operations using different
numerical types.

– Wherever geometry is concerned, the dimension — up to 3D for now, but it is
open to higher dimensions — is a template parameter of the data structures.

– Wherever possible, computing intensive operations are expressed in an alge-
braic way and use when possible appropriate efficient libraries, the compu-
tations should be mostly driven by linear algebra. For standard numerical
types, libraries like BLAS and LAPACK can then be used for efficient cal-
culations. Again partial specialization in C++ [2] is at work here.

– The library delegates linear algebra in the sense that well maintained third
party libraries are used through unified interfaces using the Facade design
pattern, see [10]. At the moment, the library supports gmm [24], Boost.ublas,
PETSc [7] and Trilinos [12].

– The library should provide the tools to generate parallel applications. The
parallelisation of the library is built on top of the PETSc and Trilinos frame-
works, (Par)METIS [15] and it provides iterators over the partitioned mesh.

There are many freely available libraries which offer the capabilities described
previously to a certain extent. To name but a few: the Freefem software fam-
ily [11,22], the Fenics project [19,18], Getdp [9] or Getfem++ [24], or libraries or
frameworks such as LifeV (C++) [1,21], deal.II(C++) [8], Sundance (C++) [20],
Analysa (Scheme) [5]. Either they rely on a domain specific language (Python,
the freefem language, ...) when it comes to describe the PDE to solve, or they

1 http://www.boost.org

http://www.boost.org
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are geometry or dimension dependent, or they are not so expressive with respect
to the mathematics, i.e. the mathematics are hidden by programming details.

The main part of the article will describe the general ideas in various areas
that drove the design and implementation: first we shall present the polynomial
library, then the function spaces, the operators or forms and the domain specific
language embedded into C++ for variational formulations.

2 A Polynomial Library

The polynomial library is composed of various bricks: (i) the geometrical en-
tities or convexes (ii) the prime basis in which we express subsequently the
polynomials, (iii) the definition and construction of point sets in convexes such
as quadrature point sets and finally (iv) polynomials and finite elements.

2.1 Convexes

The supported convexes are the simplices and quadrilaterals in nD ,n = 1, 2, 3.
Higher dimensions will eventually be implemented. Prisms and pyramids are not
yet supported. The convexes are described geometrically in a standard way in
terms of their subentities vertices, edges, faces, volumes. Then they are wrapped
around two classes Reference and Real which define the interface for the
reference convex and the convex in the real space. Again, the crucial albeit
standard point is the decomposition in subentities and the capacity to iterate
over the entities of a convex or of the same topological dimension inside a convex,
e.g. iterate over the edges of a tetrahedron.

2.2 Prime Basis: L2 Orthonormal Polynomials

In order to express polynomials, we need to choose a prime basis. Often one
chooses the canonical one — also known as the moment or monomial basis. —
Recent work by R.C. Kirby [16,17] proposed to use the Dubiner polynomials as a
prime basis on the simplex. We extended these ideas on the quadrilaterals using
the Legendre polynomials. Other examples of prime basis being used are the
Bernstein polynomials. Our framework uses the Dubiner or Legendre basis as
the default prime basis. This choice simplifies the construction of finite elements
thanks to the L2 orthogonality property of these polynomials which allows for:
(i) easily extracting a basis spanning a subspace of a polynomial space — which
corresponds to extract a range of coefficients, — (ii) simplifying some operations
like numerical integration or the L2 projection which is now explicit and (iii)
better numerical stability.

A brief digression on the Dubiner and Legendre polynomials: they are
constructed by taking the products of principal functions based on the Jacobi
polynomials denoted Pα,β

p on [−1; 1] where α, β > −1 and satisfying the L2
orthogonality relationship:∫ 1

−1
(1 − x )α(1 + x )βPα,β

p (x )Pα,β
q (x ) = Cα,βδpq (1)
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The case α = β = 0 recovers the Legendre polynomials. The Dubiner polyno-
mials are constructed by introducing a collapsed coordinate system and proper
weighting functions associated with some Jacobi polynomials to recover the L2
orthogonality, see [14] page 101 for more details. In practice, the prime basis is
normalized.

2.3 Point Sets on Convexes

Now we turn to the construction of point sets in the reference convex. Point sets
are represented by a matrix, they are parametrized by the associated convex
and the numerical type. Recall that the convex is decomposed in vertices, edges,
faces, volumes, a similar decomposition is done for the point sets: points are
constructed and associated to their respective entities on which they reside.
This is crucial when considering continuous Galerkin formulations for example.

The type of point sets supported are (i) the equidistributed point set, (ii) the
warpblend point sets on simplices proposed by T. Warburton [25], (iii) Fekete
points in simplices, see [14], (iv) standard quadrature rules in simplices and
finally (v) Gauss, Gauss Radau and Gauss Lobatto and combinations in simplices
and quadrilaterals. It should be noted that the last family is constructed from
the computation of the zero of the Legendre polynomials on [−1; 1] including
eventually the boundary vertices −1, 1 for the Radau and Lobatto flavors. The
kernel of the polynomial library is the construction of Jacobi polynomials and
the computation of their zeros.

Warpblend and Fekete points are used with nodal basis which, when con-
structed at these points, present much better interpolation properties — lower
Lebesgue constant, see [14] — Note that the Gauss-Lobatto points are Fekete
points in the quadrilateral — i.e. they maximize the determinant of the associ-
ated generalized Vandermonde matrix.

2.4 Polynomial Set

After introducing the ingredients in the previous sections necessary to the con-
struction of polynomials on simplices and quadrilaterals, we can now focus on
the polynomial abstraction.

They are template classes parametrized by the prime basis in which they are
expressed and the field type in which they have their values: scalar, vectorial or
matricial. Their interface provides a number of operations such as evaluation and
derivation at a set of points, extraction of polynomials from a polynomial set or
components of a polynomial or polynomial set when the FieldType is Vectorial
or Matricial.

One critical operation is the construction of the gradient of a polynomial or a
polynomial set expressed in the prime basis. This usually requires solving a linear
system where the matrices entries are given by the evaluation of the prime ba-
sis and its derivatives at a set of points. Again the choice of set of points is crucial
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here to avoid ill-conditioning and loss of accuracy. We choose Gauss-Lobatto
points for quadrilaterals and Warpblend or Fekete points for simplicies as they
provide a much better conditioning for the Vandermonde matrix. A trick is to
do these computations using higher precision types, e.g. dd_real, and then fall
back in the end to the required numerical type, e.g. double. This trick provides
a appreciable gain in accuracy.

2.5 Finite Elements and Other Polynomial Basis

Now we turn to finite elements(FE) which we define and construct in a reference
element. The reference FE are usually described by the triplet (K , P, Σ) where K
is a convex, P the polynomial space and Σ the dual space. We have already seen
the ingredients for K and P, it remains to describe Σ. Σ is a set of functionals —
degrees of freedom — taking their values in P with values in a scalar, vectorial
or matricial field.

Several types of functionals can then be instantiated which merely require ba-
sic operations like evaluation at a set of points, derivation at a set of points, exact
integration or numerical integration. Here are some examples of functionals:

– Evaluation at a point x ∈ K , �x : p → p(x )

– Derivation at a point x ∈ K in the direction d , �x ,d : p → ∂p
∂xd

(x )

– Moment integration associated with a polynomial q ∈ P(K ), �q : p →
∫
K pq

A functional is represented algebraically by a vector whose entries result from
the application of the functional to the prime basis in which we express the
polynomials. Then applying the functional to a polynomial is just a scalar prod-
uct between the coefficient of this polynomial in the prime basis by the vector
representing the functional.

For example the Lagrange element is the finite element (K , P, Σ = {�xi , xi ∈
X ⊂ K}) such that �xi (pj ) = δij where pj is a Lagrange polynomial and
X = {xi} is a set of points defined in the convex K , for example the equis-
paced, warpblend or Fekete point sets. Other FE such as P1,2-bubble, RTk , Nk
or polynomials are constructed likewise though they are more complex.

3 Meshes, Function Spaces and Operators

In the previous section, we have described roughly the mono-domain construction
of polynomials, now we turn to the ingredients for the multi-domain construc-
tion. We start with some remarks on the mesh data, then the function spaces
abstraction and finally the concept of forms.

3.1 Mesh Data Structures

While performing integration and projection, it is common to be able to extract
parts of the mesh. We wish to extract easily subsets of convexes out of the total
set constituting the mesh.
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The mesh data structure uses the Boost.Multi index library2 to store the ele-
ments, elements faces, edges and points. This way the mesh entities are indexed
either by their ids, the process id — i.e. the id given by MPI in a parallel con-
text, by default the current process id — to which they belong, their markers
— material properties, boundary ids. . . , — their location — whether the en-
tity is internal or lies on the boundary of the domain. — Other indices could
certainly be defined, however those previous four already allow a wide range of
applications.

Thanks to Boost.Multi index, it is trivial to retrieve pairs of iterators over the
entities — elements, faces, edges, points — containers depending on the usage
context. The pairs of iterators are then turned into a range, see Boost.Range3,
to be manipulated by the integration and projection tools.

A number of free functions are available that hide all details about the mesh
class to concentrate only on the relevant parts, here are two examples:

– elements(<mesh>,<pid>) the set of convexes constituting the <mesh> asso-
ciated with the current process id

– markedfaces(<mesh>,<marker>,<pid>) the set of faces marked by <marker>
of the <mesh> and belonging to the process id <pid>

3.2 Function Spaces and Functions

Recall that we want the framework to follow the mathematical abstraction as
closely as possible. We therefore introduce naturally the FunctionSpace abstrac-
tion which is parametrized by the mesh type, the basis type and the numerical
type, see listing 1.1. Its role is to construct the degrees of freedom table, embed
the creation of elements of the space, and store interpolation data structures
such as localization trees.

Functions spaces can be also defined as a product of other function spaces.
This is very powerful to describe complex multiphysics problems when coupled
with operators/forms described in the next section. Extracting subspaces or
component spaces are part of the interface. The most important feature is that
it embeds the definition of element which allows for strict definition of an Element
of a FunctionSpace and thus ensures the correctness of the code.

An element has its representation as a vector — also in the case of product
of multiple spaces. — The vector representation is parametrized by one of the
linear algebra backends presented in the introduction — gmm, PETSc or Trili-
nos — that will then be subsequently used to solve the PDE. Other supported
operations are interpolation and extraction of components — be it a product of
function spaces element or a vectorial/matricial element, — see listing 1.1 for
an example of FunctionSpace::Element.

2 http://www.boost.org/libs/multi_index/doc/index.html
3 http://www.boost.org/libs/range/index.html

http://www.boost.org/libs/multi_index/doc/index.html
http://www.boost.org/libs/range/index.html
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3.3 Operators and Forms

One last concept needed to have the variational formulation language mathemat-
ically expressive is the notion of forms. They follow closely their mathematical
counterparts: they are template classes with arguments being the space or prod-
uct of spaces they take as input and the algebraic representation of these forms.
In what follows, we consider only the case where the linear and bilinear forms
are represented by vectors and matrices respectively — we could consider also
vector-free and matrix-free representations.

The crucial point is that the linear and bilinear form classes are the glue
between their algebraic representation and the variational formulation which is
stored in a complex tree-like data structure that we denote Expr, it will

– Fill the matrix with non-zero entries depending on the approximation
space(s) and the mathematical expression;

– Allow a per-component/per-space construction(blockwise);
– Check that the numerical types of the expression and the representation are

consistent
– When operator=( Expr const& ) is called, the expression is evaluated and

will fill the representation entries

With the high level concepts described we can now focus on the variational
formulation language.

4 A Variational Formulation Language Embedded in C++

In order to express the PDE problems, libraries or applications rely either on
a domain specific language usually written in an interpreted language such as
Python or a home made one or on high level interfaces. These interfaces or
languages are desirable for several reasons: teaching purposes, solving complex
problems with multiple physics and scales or rapid prototyping of new methods,
schemes or algorithms. The goal is always to hide (ideally all) technical details
behind software layers and provide only the relevant components required by the
user or programmer.

In the library, a domain specific language embedded — later written DSEL
— in C++ has been implemented. This language for numerical integration and
projection has been proposed by the author in [23]. The DSEL approach has
advantages over generating a specific external language like in case (i) : compiler
construction complexities can be ignored, other libraries can concurrently be
used which is often not the case of specific languages which would have to also
develop their own libraries and DSELs inherit the capabilities of the language
in which they are written. However, DSELs are often defined for one particular
task inside a specific domain [26] and implementation or parts of implementation
are not shared between different DSELs. Here, we have a language that shares
the expression tree construction between integration, projection and automatic
differentiation.
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The implementation of the language relies on standard techniques such as
expression templates [26,2,3,4,21] and an involved two stages evaluation of the
expression tree. Without dwelling too much upon the internals of the language,
it is interesting to note that it supports some optimisation with respect to the
product of N function spaces. Indeed let’s consider the statements in listing 1.1:
depending on the block to be filled by the local/global assembly process, some
terms must be equated to 0. The language detects that at compile time and
thanks to the g++ compiler it will not consider the terms which are not applying
to the currently assembled block, see [23] for more details.

5 Example: A Navier-Stokes Solver for the Driven Cavity

We wish to solve the 3D incompressible Navier-Stokes equations [14] in a domain
Ω = [0, 1]3 in parallel with a P2/P1 discretization for the velocity and pressure

Listing 1.1. A 3D incompressible Navier-Stokes example

// mesh of linear tetrahedron
typedef Mesh <Simplex <3,1> > mesh_t;
// define and partition the mesh if in parallel
mesh_t mesh; mesh.partition ();
typedef fusion ::vector <Lagrange <3,2,Vectorial >,

Lagrange <3,1,Scalar > > basis_t;
typedef FunctionSpace <mesh_t ,basis_t > space_type;
space_type V_h( mesh );
space_type ::Element <trilinos > U( V_h ), V( V_h );
// views for U and V: velocity
space_type ::element <0,trilinos >:: type u = U.element <0>();
space_type ::element <0,trilinos >:: type v = V.element <0>();
// views for U and V: pressure
space_type ::element <1,trilinos >:: type p = U.element <1>();
space_type ::element <1,trilinos >:: type q = V.element <1>();
// integration method : Gauss points on the Simplex in 3D
// that integrates exactly polynomials of degree 5
IM <3,5,double ,Simplex ,Gauss > im;
for( double t = dt; t < T; t+= dt ) {

// ops: id , dx ,dy ,dz , grad ...
// when no suffix , it identifies test basis functions
// the t suffix identifies trial basis functions
// the v suffix denotes the interpolated value
// integrate(<set of elements >,<integration >,<expression >);
backend <trilinos >:: vector_type F;
form( V_h , F) f =

integrate( elements(mesh), im ,
(idv(u) - dt*gradv(p))*id(v) );

backend <trilinos >:: matrix_type A;
form( V_h , V_h , A) a =

integrate( elements(mesh), im ,
nu*dt*dot(gradt(u), grad(v)) + idt(u)*id(v) +
dt*(dot( idv(u), gradt(u) ))*id(v)
- idt(p)*div(v) + id(q)*divt(u) )+

on( 10, u, F, oneX() )+ // 10 identifies Γ1

on( 20, u, F, 0 ); // 20 identifies Γ2

A.close (); // final assembly
}
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respectively, that is to say, (u, p) ∈ Xh × Mh such that for all (v , q) ∈ Xh × Mh ,∫
Ω

∂u
∂t

v +ν∇u ·∇v +u ·∇uv −∇·v p = 0 with
∫

Ω
∇·u q = 0, uΓ2 = (1, 0, 0)T on

Γ2 which is the top face of unit domain Ω and uΓ1 = (0, 0, 0)T on Γ1 = ∂Ω\Γ2
and Xh and Mh being adequate spaces the velocity and pressure respectively. As
a parallel linear algebra backend, Trilinos is used.

6 Conclusion and Main Results

Life is a mathematical library with an emphasis on (i) approximation methods
while the linear algebra is delegated to third party libraries and (ii) the ability
to solve partial differential equations using a language embedded in C++ very
close to the mathematics. This allows the user to concentrate on the problem
at hand and manipulate high level abstractions and not being bothered by the
programming details. Life will also become the new mathematical kernel of the
LifeV project (www.lifev.org) whose objective is to develop solvers for multi-
scale multiphysics applications in particular in haemodynamics.
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Abstract. A parallel program complex for 3D viscous gas flow sim-
ulation is presented. This complex is based on explicit finite difference
schemes, which are constructed as an approximation of conservation laws
(control volume method), and oriented towards use of locally refined
grids. A special algorithm and utility for nested grid partitioning was
created. The principles of program construction permits one to intro-
duce new types of boundary conditions and change the finite difference
scheme as well as the governing equation system. Introducing new face
types and writing new subroutines for flux calculations may reach it. The
scalability of the program complex was investigated on different subsonic
and supersonic problems. The calculations were made on different types
of cluster computer systems. The parallelization efficiency was more than
90% for 40 processors and more than 60% for 600 processors.

Keywords: Unsteady viscous gas flows, Parallel program complex, Ki-
netically consistent finite difference schemes, Turbulent flows, Paralleliza-
tion efficiency.

1 Introduction

Essentially unsteady and turbulent regimes of viscous gas flows have received
increasing attention from researchers, motivated in part by the importance of
unsteadiness in industrial problems arising in turbomachinery and aeronautics.
Unsteady flow phenomena which occur frequently behind relatively slender bluff
structures are of great practical interest. First of all this is connected with the
possible destructive influence of the acoustic pressure oscillations occurring in
the gas flow upon mechanical properties of the vehicle construction elements,
especially in the resonant case. Under certain conditions such flows may be
characterized by quasi-regular self-induced pressure oscillations. Their frequency,
amplitude and harmonic properties depend upon the body shape and external
flow conditions. In the case of symmetric geometry at relatively small Reynolds
numbers, numerical simulation based on 2D unsteady Navier - Stokes equations
is quite successful. At high Reynolds numbers, which are more relevant in prac-
tice, 3D stochastic turbulent fluctuations are superimposed on the quasi-periodic
2D unsteady motion. So numerical simulation must be three-dimensional even
for simple flow geometry. The numerical simulation of a detailed structure of

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 722–731, 2007.
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unsteady viscous compressible 3D flows with high Reynolds numbers is possible
only by the use of high performance parallel computer systems. This demands
the development of specialized parallel software. This software must have a good
scalability (with respect to the number of processors and to the problem size),
portability and robustness.

2 Choice of Numerical Method

The use of parallel computer systems with distributed memory architecture de-
termines the choice of numerical method. The opinion is widely spread that we
have to use only implicit schemes for viscous gas flow simulation, because of their
good stability properties. That is quite right for stationary or slow flows. But
in the case of essentially unsteady flows, we have to receive detailed information
about the high frequency oscillations of the gas dynamic parameters. This fact
limits the time step acceptable by the accuracy requirements. For many inter-
esting problems these limitations are very strong, although they may not ensure
the stability of an explicit scheme. On the other hand, each time step of implicit
schemes usually demands much more calculations. Besides, these schemes are
difficult for parallel implementation from the viewpoint of efficiency. All these
factors together may neutralize the advantages of implicit schemes. So for such
problems, the explicit difference schemes seem to be preferable because of their
simplicity. Our program complex is based on explicit finite difference schemes,
which are constructed as an approximation of conservation laws (control volume
method). The explicit kinetically consistent finite difference (KCFD) schemes [1]
were selected for realization.

KCFD schemes belong to the class of kinetic schemes. Nowadays the kinetic or
Boltzmann schemes are very popular in computational fluid dynamics [2] – [4].
The kinetic schemes differ from other algorithms primarily in the fact that the
basis for their derivation is the discrete models for the one-particle distribution
function. Schematically, the process of deriving the kinetic schemes can be rep-
resented as the following chain: the Boltzmann equation – the discrete model for
one-particle distribution function – the averaging of the discrete models with the
collision vector components. As a result we obtain the discrete equations for gas
dynamic parameters. Traditionally, another logical chain is used: the Boltzmann
equation – the averaging of the Boltzmann equation with the collision vector
components and the gas dynamics equations as a result – the discretization of
gas dynamics equations. Compared with the traditional algorithms, the processes
of averaging and discretization are interchanged in the case of kinetic schemes.
The basic assumptions used for KCFD schemes construction are that one particle
distribution function (and the macroscopic gas dynamic parameters too) have
small variations on the distances compatible with the average free path length l,
and the distribution function has Maxwellian form just after molecular collisions.
Proceeding from these assumptions, we may suppose that one particle distribu-
tion function has a Maxwellian form constant on cells of a size equal to the free
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path length. The dissipative terms of KCFD schemes are formed by two different
”half-Maxwellian” distribution functions taken from both sides of a cell face.

The variant of KCFD schemes named Corrected KCFD scheme, may be con-
sidered as an approximation of Navier - Stokes equations with some additional
terms. For 3D case in Cartesian coordinates it can be written in the following
form:

ρ̂ − ρ

Δt
+ (ρuj)◦

xj
= (τj(ρu2

j + p)x̄j )xj ,

ρ̂ui − ρui

Δt
+ (ρuiuj + pδij)◦

xj
=

M
Re

[

(μui)x̄j (1 +
δij

3
)
]

xj

+ (τj(ρuiu
2
j + 3puiδij)x̄j )xj ,

Ê − E

Δt
+(uj(E+p))◦

xj
=

M
2Re

[

μ(u2 +
u2

j

3
)x̄j

]

xj

+
γM

RePr(γ − 1)

[

μ

(

p

ρ

)

x̄j

]

xj

+

+
[

τj

(

u2
j(E + 2.5p)

)

x̄j

]

xj

+
[

τj
p

ρ(γ − 1)
px̄j

]

xj

.

Here i, j = 1, 2, 3, summation by index j is supposed, ρ – density, p – pressure, ui

– three velocity components, E =
p

ρ(γ − 1)
+

u2

2
– total energy, u2 = u2

1+u2
2+u2

3,

γ – specific ratio, μ – viscosity, M, RE, PR – Mach, Reynolds and Prandtl
numbers, A◦

x
, Ax̄, Ax, – central, backward and forward finite difference first

order spatial derivatives, Δt – time step, Â – variable at the next time moment.
All gas dynamic variables are defined in the cell centers.

Additional dissipative terms in these equations contain factor τj = Δxj/(2U),
where Δxj – spatial step along j coordinate and U =

√

γp/ρ + u2. They can
be interpreted as efficient numerical stabilizers which provide smoothness of the
solution on the distance l. It is interesting to remark that analogous stabilizers
were obtained independently in [3]. Multiplying these equations by cell volume
Δx1Δx2Δx3, we may rewrite them in the form of an approximation of conserva-
tion laws. In this form, the variation of gas dynamic parameters in a cell (control
volume) is defined as a sum of fluxes through all cell faces. This scheme has a
Courant-like stability condition (Δt ∼ Δxmin) giving the opportunity to use very
fine meshes to study the fine flow structure. The successful experience in solving
various gas dynamic problems by means of KCFD schemes showed that they
describe viscous heat conducting flows as good as schemes for Navier - Stokes
equations, where the latter are applicable. In addition, this KCFD scheme per-
mits us to calculate oscillating regimes in super- and transonic gas flows, which
are very difficult to model by means of other algorithms.

Modeling some problems of mathematical physics demand high accuracy reso-
lution of the solution particularities in small regions. Such situations may occur,
for example, in detonation or combustion processes, solitons motion, flow around
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a body with shape singularities etc. This problem may be avoided by the use of
unstructured meshes, but the convenience and simplicity of difference schemes
on regular grids enforced us to use multiblock grids where different subregions
have their own grids. A variant of such an approach, namely the use of nested
(or locally refined) grids is chosen. The main idea is to divide one or more cells
of regular (maybe rough) grid into some amount of small cells. These cells are
rectangular too. If these new cells are not sufficiently small, we may repeat the
refining procedure and divide some of them into smaller cells and so on. We use
explicit difference schemes, which are constructed as an approximation of con-
servation laws. So, the main problem is approximation of fluxes between cells
of different sizes. The construction of this approximation and the parallel re-
alization of explicit finite difference schemes for the numerical solution of gas
dynamic problems on nested grids were discussed in [5].

3 Parallel Implementation

The basic idea for the program complex constructed, was ultimately to simplify
the parallel program providing its lucidity. For this reason all complicated but
not time-consuming operations are addressed to sequential preprocessing utilities
as far as possible. The program complex structure is defined by four relatively
independent tasks:

– problem/model formulation, including a description of the computation field
geometry, the initial and boundary conditions specifications and the grid
generation;

– grid partitioning and data preprocessing;
– main computational block execution;
– data postprocessing.

As a rule, only the third of these tasks must be parallel. Separate sequential
programs may execute all other jobs.

Parallel realization is based on a geometry parallelism principle. Each proces-
sor makes calculations in its own separate subdomain. It has to exchange data
with processors working in adjacent subregions. Only information from boundary
cells of each subregion is to be sent, and the exchange is local. In the case when
the difference scheme is written in the form of conservation laws, the approx-
imation of gas dynamic equations comes to the approximation of conservative
variables (density ρ, momentum ρU and total energy E) fluxes through cell faces.
In order to reach the algorithm homogeneity, different types of boundary condi-
tions (no slip, symmetry, impermeability, inlet, outlet conditions etc.) are also
written as fluxes of conservative variables, though region bound. Each cell face
is supplied with an attribute indicating its type: an inner face, various bound-
ary faces, a face between cells of different size (result of local mesh refining), a
ghost face i.e. a face between cells laying outside the computational region. This
attribute determines which subroutine that must calculate the fluxes through
the face. The face attributes, as well as a description of the problem geometry



726 E.V. Shilnikov

and grid information, are contained in a special text file, which is prepared by
sequential preprocessing utility.

Another utility divides the 3D computational region with rectangular bounds
(in i-j-k space) into the required number of rectangular subdomains according
to the multistep algorithm described in [5]. It is based on the utility contained
in the previous version of our program package [6]. This utility divides the 3D
box-shaped region into the required number of rectangular subdomains with
approximately equal volumes. The following modification of this partitioning
algorithm is proposed.

The computational region is expanded up to parallelepiped. Each cell of the
original regular mesh is ascribed a weight 1. Additional cells get zero weights,
and their faces is set to the ”ghost” attribute. Zero weights are also ascribed to
ghost cells which are inside the computational region (cells in the solid body,
for example). If a cell was divided into N small cells during mesh refining, it
is ascribed a weight N . Now we may calculate the number of cells which must
be in each subregion. That is equal to the sum of all weights divided by the
number of processors. After that the computational region is divided into the
needed number of subdomains with approximately equal total weights. If the
mesh refinement is too deep, some of the original cells weights may be too large
for one subdomain. Meeting such a cell, we treat it separately using the same
algorithm again. After allotting the needed number of small cells to a subdomain,
we subtract this number from the weight of the treated large cell. This procedure
is repeated until the residual weight becomes less than the number needed for
one processor. Note that some subregions may contain each other. In this case,
the cell faces of the inner subregion get the attribute of the ghost face in the
outer domain. If subdomains are overlapping, their common faces get the ghost
attribute in one of the regions. The permissibility of overlapping subregions is
useful for achieving equal number of cells when all domains have a box shape.
As a result, this utility creates a text file that describes the 3D subregions in
terms of grid node numbers, it also lists the neighbors to each subregion and the
information needed for the organizing of inter processor communications.

According to this, the main computational module of the parallel program is
uniform for all processors. Each processor calculates fluxes through all faces in its
subregion. Having equal number of faces in each subdomain, the homogeneity of
the algorithm automatically provides load balancing of processors. For a regular
grid, an equal number of cells provides an equal number of faces, except for
faces between cells of different size. The number of such faces, which bound the
zones of local mesh refining, is not very large. Some imbalance is also possible
because different face types demand different amounts of calculations. However,
a large number of cells in subdomains leads to a levelling of these differences. At
last, small differences among weights of subregions are possible. It is unavoidable
because the result of division of the total weight by the number of processors is
not always an integer. These differences do not affect efficiency dramatically, if
the maximum weight is close to average one.
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Note that such program construction permits us to introduce new types of
boundary conditions and change as finite difference scheme as governing equation
system (changing the coordinate system for example).

4 Program Package Testing

The program complex was tested on a problem of supersonic(M∞ = 2) and
subsonic (M∞ = 0.135) viscous compressible gas flow around a square cylinder
at Re = 20000. The inlet of the computational region was located at x/D = −5
and the outlet at x/D = 15, where D = 1 is cylinder diameter. The origin of the
coordinate system was in the center of the cylinder’s front surface. The length of
the cylinder was equal to 4D. The height and width of the computational region
were equal to 20D. A locally refining computational grid was used. The original
coarse grid with a maximum cell size equal to 0.2 was refined near the cylinder
walls so that the minimum cell size was 0.001. The total amount of grid cells was
about 8000000. The no slip conditions were posed on the cylinder walls. The far
field boundary conditions, based on splitting of the convective fluxes by Steger
– Warming [7], were used.

The supersonic flow is stationary in our case. The calculated pressure distri-
bution in the symmetry plane z = 0 for this flow is presented in Fig. 1. The flow
picture is typical and not very interesting.

Fig. 1. Pressure distribution for a supersonic flow

The subsonic flow is much more complicated and interesting. At the beginning
of the calculations the symmetric flow is formed, but after a while this symmetry
is broken, due to vortex shedding from four cylinder’s back edges, and the flow
becomes quasi-periodic. A very complicated flow structure is formed behind
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the rear face of the cylinder. The stream traces near the cylinder in the same
symmetry plane, but for different flow phases, are shown in Fig. 2. The character
of the stream traces in the y = 0 plane is analogous with this. The distance
between time instances approximately corresponds to half a period of the main
oscillation mode. The pressure distribution is plotted in the background.

Fig. 2. Stream traces in the z = 0 section

The pictures in Fig. 2 are quite natural for the flow type under consideration
and are similar to those presented in [8] & [9], where detailed experimental data
for such flow are described.

In [10], the results of numerical simulations of the case studied in [9] are
presented. The comparison of the calculation results obtained with different tur-
bulence models in the 2D problem formulation was also made in this paper.
Our results are in good agreement with these results. The comparison of calcu-
lated and experimental integral characteristics, such as the mean value of the
drag coefficient cD, the amplitude of middle-range oscillations of lift coefficient
c′L and the Strouhal number Sh corresponding to these oscillations are summa-
rized in Table 1. It is necessary to note, that our results were obtained without
introducing any turbulence model.

Table 1. Force coefficients and Strouhal numbers

cD c′
L Sh

Experimental results [9] 2.05 – 2.19 — 0.135 –0.139

Calculated results [10] 1.56 – 2.11 0.30 – 1.18 0.129 – 0.146

Our results 2.09 0.37 0.137
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The amplitude spectrum of the lift coefficient oscillations is presented in Fig. 3.
The largest peak in the plot (at Sh ≈ 0.1) corresponds to the main periodic
component of the flow oscillations.

Fig. 3. Spectrum of the lift coefficient

5 Efficiency Investigation

The scalability of the program complex was investigated on different types of
cluster multiprocessor computer systems (a 768-processor MCS-1000M computer
system equipped with 667MHz 64-bit 21164 EV67 Alpha processors and a 906-
processor MCS-15000 computer system equipped with 2.2GHz PPC970FX pro-
cessors). The parallelization efficiency was measured for different number of pro-
cessors. The results can be found in Table 2.

Table 2. Efficiency (%) dependence on the number of processors

N 1 2 10 40 160 320 600

MCS-1000M — 100 97 92.8 79.9 70.1 61.4

MCS-15000 100 98.5 96.3 92 80.1 72.1 62.7

Because of lack of memory, such a large problem can’t be solved on one pro-
cessor of the MCS-1000M system. That’s why the efficiency for this system was
computed with respect to the calculations made on 2 processors.

The scaling with respect to the problem size was also inspected. Our grid was
doubled in each direction, so the total number of cells became 8 times larger than
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previous and amounted to ∼ 6 × 107. Such a problem is too large even for one
processor of the MCS-15000 system, so we can’t measure efficiency directly. The
following method is used: We specify some test job, for example 2000 time steps
of our program. Let t

(N)
s and t

(N)
l be the calculation times needed for this job

on ”small” and ”large” grids respectively (N is the number of processors). The
total computational work for the large problem is 8 times greater than for the
small one. If the efficiency doesn’t depend on the problem size, we must receive
f = t

(N)
l /t

(N)
s = 8 for each N . The diminishing of this factor corresponds to

the efficiency increase for the large problem. The values of this factor for some
numbers of processors are presented in Table 3.

Table 3. Computational time increase for enlarged grid

N 10 40 100 200 400 600

f 7.96 7.83 7.71 7.48 7.13 6.69

These results show that for N < 100 our factor is really close to 8, but for
greater N it diminishes. This effect is connected with the increase of computa-
tional time with respect to exchange time for each processor. So, the increasing
of the total number of grid nodes leads to efficiency growth. For example, factor
6.69 for N = 600 means a 75% efficiency for the ”large” problem in contrast to
a 62.7% efficiency for the ”small” problem with the same number of processors.
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Abstract. Real world applications often involve several types of physics.
In practice, one often solves such multiphysics problems by using already
existing single physics solvers. To satisfy an overall accuracy, it is critical
to understand how accurate the individual single physics solution must
be. In this paper, we present a framework for a posteriori error estimation
of multiphysics problems and derive an algorithm for estimating the total
error. We illustrate the technique by solving a coupled flow and transport
problem with application in porous media flow.

1 Introduction

Many industrial problems involve several different physical entities. A common
example from engineering is to determine the expansion of a material subject to
temperature change. A problem of this kind is referred to as a multiphysics prob-
lem, because it involves different kinds of physics. In the example, we have heat
conductivity and elasticity theory. Solving multiphysics problems is often done
by connecting existing single physics solvers into a network and applying some
splitting scheme. Although each of the solvers may be optimized with respect to
accuracy and computational resources to perform its task, connecting them does
not necessarily imply global accuracy of the desired quantity, nor efficient use of
resources. The cause of this is the difficulty of choosing suitable discretizations
for each of the involved solvers. To determine an adequate discretization, it is
necessary to understand the interaction of solver errors when connected in a
network.

In this paper, we develop an algorithm to automatically determine individual
and locally adaptive meshes for each single physics solver involved in a general
multiphysics simulation. The analysis is based on a posteriori error estimates
using duality techniques, allowing for error bounds on a user specific, possibly
nonlinear, output functional. The finite element method is used for discretizing
each problem. We illustrate the ideas by solving a coupled time dependent pres-
sure transport problem. We note that such decoupled algorithms are suitable
for implementation in distributed environments where each problem is solved on
separate processors or computers.

Duality based a posteriori error estimates are available for many single physics
problems, see for example [1], [2], and [3]. However, for multiphysics problems,
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a posteriori error estimates are scarce. The reader may cf. [6] by the authors for
a general approach with application to stationary MEMS simulations. See also
[7] and [5] for other applications.

This paper is organized as follows. We introduce the concept of a network
of finite element solvers in Section 2. Error representation formulas are derived
and the algorithm for computing such in a network is presented in Section 3. To
illustrate the use of the algorithm, we close the paper by solving a coupled flow
and transport problem in Section 4.

2 Finite Element Network Solvers

Single Physics Solver. Let P be the set of physics in a multiphysics problem.
We assume that each physics p ∈ P can be described by a well posed abstract
variational problem of the form: Find up ∈ Vp such that

ap(up, v) = lp(v) for all v ∈ Vp, (1)

where Vp is a suitable function space, and ap(·, ·) and lp(·) are possibly time
dependent linear forms. The input to these linear forms are usually parameters
describing the properties of the physics, but very often it is also output from the
other physics. Certainly we cannot expect any of these input data to be exact,
since the physical parameters may be measured only up to a certain level of
accuracy, and since the solution to any other physics is computed and therefore
prone to numerical errors. To take this into account we introduce approximate
forms, ãp(·, ·) and l̃p(·), which are computed using the inexact inputs. As a
consequence, the abstract finite element discretization of the physics reads: Find
uh

p ∈ Vh
p such that

ãp(uh
p , v) = l̃p(v) for all v ∈ Vh

p , (2)

where Vh
p is a suitable finite dimensional subspace of Vp.

Multiphysics Solver. We think of a multiphysics solver as a network of connected
single physics solvers. Assuming we have solvers for each of the physics p ∈ P
of a multiphysics problem, we determine dependencies between the solvers by
defining a directed graph: Let P represent the vertices of a graph and draw
directed edges from physics q to physics p if p depends on q. We will by Dp

denote the set of all in-neighbours to vertex p (i.e., all vertices having a directed
edge to p). To simplify things a bit, we assume that the graph does not contain
any cycles. However, if two physics do form a cycle (corresponding to a mutual
data dependency) we can reduce the graph by considering them as a single
problem, see Figure 1.

3 A Posteriori Error Estimates

A Posteriori Error Estimate for a Single Physics Solver. We now derive an
error representation formula for the error in a nonlinear functional in terms of
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Fig. 1. A network of single physics solvers comprising a multiphysics solver. Each node
represents a single physics finite element solver. Solver p depends on input data, that
is, the solutions uq, from the three solvers in Dp = {q, r, s}. The arrows indicate the
direction of information flow.

the discretization error and the modeling errors caused by erroneous input data.
Let m(·) be a given functional on Vp. We note the elementary identity

m(v) − m(w) = m̄(v − w) ≡
∫ 1

0
m′(vs + w(1 − s))(v − w) ds. (3)

Note also that the functional m̄(·) depends on both v and w, that is, m̄(·) =
m̄(v, w; ·).

To control the error in m(·) we introduce the dual problem: Find φp ∈ Vp

such that
m̄(v) = ãp(v, φp) for all v ∈ Vp. (4)

Using (3) and plugging v = up − uh
p into (4) we obtain

m(u) − m(uh
p) = m̄(up − uh

p) (5)

= ãp(up − uh
p , φp) (6)

= ãp(up, φp) − ãp(uh
p , φp) (7)

= ãp(up, φp) − ap(up, φp) (8)

+ ap(up, φp) − ãp(uh
p , φp)

= ãp(up, φp) − ap(up, φp) (9)

+ lp(φp) − l̃p(φp)

+ l̃p(φp − πpφp) − ãp(uh
p , φp − πpφp),

where we used the definition of the dual problem and the Galerkin orthogonality
property (2) to subtract the interpolant πpφp ∈ Vh

p .
Introducing the residual R̃(uh

p) ∈ V∗
p , where V∗

p is the dual of Vp, as follows

(R̃p(uh
p), v) = l̃p(v) − ãp(uh

p , v) for all v ∈ Vp, (10)

we finally get the following error representation formula

m(u) − m(uh
p) = (R̃(uh

p), φp − πpφp) (11)

+ ãp(up, φp) − ap(up, φp) + lp(φp) − l̃p(φp).
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From (11) it is obvious that the first term, (R̃(uh
p), φp−πpφp), can be interpreted

as a discretization error, while the other terms, ãp(up, φp)−ap(up, φp)+ lp(φp)−
l̃p(φp), are modelling errors due to errors in input data.

In practice, a computable estimate is used to bound the discretization error.
For example, using the dual weighted residual method, see [1], we end up with
the estimate

(R̃(uh
p), φp − πpφp) ≤

∑
K∈Kp

ρp
Kωp

K , (12)

where ρp
K is a computable element residual, ωp

K is a weight accounting for the
effect of the dual problem, and K is a finite element within the mesh Kp. We
return to specific forms of the residual and weight below.

A Posteriori Error Estimate for a Multiphysics Solver. Suppose that we wish
to compute a certain functional mp(up) of the solution up to problem p ∈ P ,
which is part of a multiphysics problem. Then not only do we need to investigate
which problems we have to solve to be able to compute up, but we also need to
know how the error propagates between these problems. We shall now formulate
a simple algorithm for this task.

Recalling that the set of problems feeding data into problem p is given by
Dp, we conclude that the data needed to compute the forms ap(·, ·) and lp(·) are
determined by the solutions uq for q ∈ Dp. Therefore, let vDp be a data entry of
VDp =

⊕
q∈Dp

Vq and define the nonlinear functional Mp : VDp → R, by

Mp(vDp) = lp(vDp ; φp) − ap(vDp ; up, φp), (13)

where up and φp are the solutions to the primal (1) and dual (4) problems,
respectively, and we have also emphasized the dependence on the data vDp . We
then note that the modeling error in (11) can be written

Mp(uDp) − Mp(uh
Dp

) = ãp(up, φp) − ap(up, φp) + lp(φp) − l̃p(φp), (14)

where uDp =
⊕

q∈Dp
uq is a vector containing the solutions to the problems

feeding input data into problem p and uh
Dp

is the vector of corresponding finite
element approximations. Further, using a version of the identity (3) with vector
valued arguments we have

Mp(uDp) − Mp(uh
Dp

) =
∑

q∈Dp

∫ 1

0

∂Mp

∂uq
(suDp + (1 − s)uh

Dp
)(uq − uh

q ) ds (15)

=
∑

q∈Dp

m̄q(uq − uh
q ), (16)

where we have defined the linear functionals m̄q : Vq → R by

m̄q(uq − uq,h) =
∫ 1

0

∂Mp

∂uq
(suDp + (1 − s)uh

Dp
)(uq − uh

q ) ds. (17)
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From this it follows that the modeling error can be expressed as a sum of
functionals of the errors uq −uh

q , q ∈ Dp. Thus to control the overall error in the
functional mp, we need to control the errors in functionals m̄q for q ∈ Dp as well
as the discretization error in problem p. Now each problem q can be handled in
the same way using duality based a posteriori error analysis for functional m̄q.
Iterating the procedure until no problems are left, we obtain a formula for the
error in functional mp in terms of weighted residuals of all problems in Dp. This
reasoning leads us to Algorithm 1.

Algorithm 1
1: Given a functional mp(·) for problem p, set S = {p} and I = (R̃(uh

p), φp − πpφp).
2: Set S = ∪q∈SDq.
3: For each problem in S , compute a functional mq(·) from (17) to be controlled.
4: For each problem q ∈ S compute (R̃(uh

q ), φq − πqφq) corresponding to functional
mq(·) and set I = I + (R̃(uh

q ), φq − πqφq).
5: If S is empty mp(u − uh

p ) = I , otherwise goto 2.

4 A Multiphysics Example

Contaminant Transport in a Darcy Flow. Let us consider a concrete multiphysics
problem taken from porous media flow.

The transport of a contaminant through a porous medium Ω saturated with
fluid is governed by

u̇C + ∇ · (βuC − ε∇uC) + γuC = 0, t > 0, (18)

where uC is the concentration of the contaminant, ε is a diffusion tensor, γ is
the absorption rate of the porous medium, and β is the advection field (i.e., the
velocity of the pore fluid).

We assume (18) to be subject to the natural boundary condition

n · (βuC − ε∇uC) = κ(uC − gC,∞) + gC,0, (19)

where n is the outward unit normal of the boundary ∂Ω, κ is the permeability
of the boundary, gC,∞ is the concentration of the ambient medium, and gC,0 is
the influx.

In this paper we restrict attention to steady state flow fields characterized by
Darcy’s law,

β = −a∇uP , (20)

where a is the permeability of the porous medium and uP is the fluid pressure.
If the fluid is incompressible and if the porous solid is non-deformable, then
∇ · β = 0. It follows that

−∇ · (a∇uP ) = 0. (21)
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In addition to (21) we impose the boundary conditions

uP |Γ D
P

= gP , n · ∇uP |Γ N
P

= 0, (22)

where ΓD and ΓN are two parts of the boundary such that ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅, and gP is a given pressure.

Equations (18) and (21) constitute a weakly coupled multiphysics problem,
since the pressure flux provides the convection field for the advective transport.
The weak coupling stems from the fact that this is a one way exchange of data,
that is, (21) provides data for (18) but not vice versa.

Weak Form of the Multiphysics Problem. The weak formulation of (21) reads:
Find uP ∈ VP,gD

P
= {v ∈ H1(Ω) : v|Γ D

P
= gD

P } such that

aP (uP , v) = 0 for all v ∈ VP,0, (23)

where VP,0 = {v ∈ H1(Ω) : v|Γ D
P

= 0}, and the linear form aP (·, ·) is defined by

aP (v, w) = (a∇v, ∇w). (24)

The weak formulation of (18) reads: Find uC ∈ H1(Ω) × L2(0, T ) such that

aC(uC , v) = lC(v) for all v ∈ H1(Ω) × L2(0, T ), (25)

where space-time linear forms aC(·, ·) and lC(·) are defined by

aC(v, w) =
∫ T

0
((u̇C , v) − (βuC , ∇v) (26)

+ (ε∇v, ∇w) + (γu, v) + (κv, w)∂Ω) dt,

lC(v) =
∫ T

0
(κgC,∞ − gC,0, v)∂Ω dt. (27)

Meshes, Finite Element Spaces, and the Transfer Operator. In order to formulate
the numerical methods we need to define some function spaces. Let K = {K}
be a partition of Ω into hexahedral elements K with longest side hK , and let
Vh = Vh(K) be the space of continuous piecewise trilinear functions defined on
K. Further, let 0 = t0 < t1 < t2 < . . . < tN = T be a uniform partition of the
time interval I = (0, T ) into N subintervals In = (tn − tn−1) of equal length
δt = tn − tn−1, n = 1, 2, . . . , N , and let P q

d and P q
c be the spaces of piecewise

discontinuous and piecewise continuous polynomials of degree q on this partition,
respectively.

We use hanging nodes to accomplished local mesh refinement. In doing so, the
global conformity of the trilinear spaces is preserved by eliminating the hanging
nodes via interpolation between neighboring regular nodes, cf. e.g. [1].

Each single physics problem is discretized using individually adapted meshes,
and data is transferred between these using the transfer operator πpq : Vp,h →
Vq,h, defined by πpqv = πqv, where πq : C(Ω) → Vq,h is the usual trilinear nodal
interpolation operator for continuous functions. In particular πpq is the identity
operator when Vh

p ⊂ Vh
q .
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The Finite Element Methods. The finite element method for (21) reads: Find
uh

P ∈ Vh
P,gD

P
such that

aP (uh
P , v) = 0 for all v ∈ Vh

P,0. (28)

The finite element method for (18) reads: Find uh
C ∈ Vh

T × P 1
c such that

ãC(uh
C , v) = lC(v) for all v ∈ Vh

T × P 0
d , (29)

where ãC(·, ·) is the approximate linear form obtained by approximating the
advection field β, by the computable approximation βh = −aπPC∇uh

P . Note
that πPC is the transfer operator from the pressure mesh to the transport mesh.
In the case of small diffusion ε, we stabilize the above finite element method
with a streamline diffusion term (see e.g. [4]).

A Posteriori Error Estimates. To control the error uC − uh
C at a specific point

X , let ψ be a positive function with localized support around X and define the
linear functional mC(v) =

∫ T

0 (v, ψ) dt. Introducing the dual transport problem

mC(v) = ãC(v, φC), (30)

we have, following (11), the error representation

mC(uC − uh
C) = lC(φC) − ãC(uh

C , φC) + mP (uP − uh
P ), (31)

where, see [7],

mP (uP − uh
P ) = (−a∇(uP − uh

P ),
∫ T

0
(uC∇φC) dt). (32)

The functional mP (·) is the modeling error from the pressure flux (i.e., the
approximative advection field βh). Thus, to control this error, we introduce the
dual pressure problem

mP (v) = aP (v, φP ), (33)

which, following (11) again, gives the error representation

mP (uP − uh
P ) = lP (φP ) − aP (uh

P , φP ). (34)

Note that we do not get any modeling error here since the input data for the pres-
sure solver is assumed to be exact. Of course, we do however get a discretization
error.

As mentioned earlier, one can estimate the discretization error via the dual
weighted residual method. We use this method to compute appropriate element
indicators, which are used to select the most error prone elements for adaptive
mesh refinement.

For the pressure problem we have the element indicator ρP
KωP

K , where

ρP
K(uh

P ) = ‖∇ · a∇uh
P ‖K + 1

2h
−1/2
K ‖[n · a∇uh

P ]‖∂K , (35)
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and
ωP

K(φP ) = ‖φP − πφP ‖K + h
1/2
K ‖φP − πφP ‖∂K . (36)

For the transport problem we consider the time averaged element indicator∫ T

0 ρC
KωC

K dt, where

ρC
K(uh

T ) = ‖u̇h
C + ∇ · (βhuh

C − ε∇uh
C) + γuh

C‖K + 1
2h

−1/2
K ‖ε[n · ∇uC ]‖∂K , (37)

and

ωC
K(φC) = (δt‖φ̇C‖K + hK‖φC‖K). (38)

Thus for this problem the overall solution strategy takes the following form:

1. Compute the pressure uh
P .

2. Compute the concentration uh
C .

3. Compute the dual concentration φh
C .

4. Compute the dual pressure φh
P .

5. Evaluate the element indicators ρC
K(uh

C)ωC
K(φh

C) and ρP
K(uh

P )ωP
K(φh

P ).
6. Refine the meshes for the pressure and transport solvers.
7. Repeat until satisfactory results are obtained.

Numerical Example. To evaluate the method of Algorithm 1, we present the
following numerical example of coupled Darcy flow and contaminant transport.

The computational geometry is a channel with a bend and three obstacles,
see Figure 2. To create a pressure drop and consequently a pressure flux, we
apply a prescribed pressure of gD

P = ±1 on the inflow and outflow boundary of

Fig. 2. The computational geometry, a channel with a bend and three obstacles. The
bounding box is of dimension [0, 8] × [0, 8] × [0, 2]. Arrows indicate regions of inflow
and outflow. The capital letter X denotes the randomly chosen point (4, 5, 1) where we
want to control the contamination concentration uC .
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Fig. 3. The computed pressure uh
P and adapted mesh after five refinements, using the

duality based error indicator ρP
KωP

K

the channel, respectively. For simplicity we assume that the permeability of the
channel is unity (i.e., a = 1).

Taking the gradient of the computed pressure we get the advection field for the
contamination transport. However since we use different meshes for the pressure
and transport solvers, we must first interpolate the pressure to the transport
mesh and then compute the advective field. The transport solver implements
a Crank-Nicolson time stepping scheme combined with a streamline diffusion
stabilized finite element method. The stabilization enables us to choose ε = 0.01
and γ = 0. At the inflow we prescribe a net influx of gC,0 = 1, and at the outflow
we use a transparent, outflow boundary condition with κ = β ·n, gC,∞ = gC,0 =
0. All other boundaries are assumed to be totally absorbing, which corresponds
to letting κ → ∞. In practice this is implemented by setting κ to a big number.
The evolution of the contaminant is started from a zero initial condition for uC

and simulated until final time T = 100, when a steady state occurs. Figure 4
show a series of snapshots of the computed contamination concentration uh

C .
The aim of the computation is to control the time average error around the

point X = (4, 5, 1), which lies in the vicinity of the center obstacle. Therefore,

Fig. 4. Snapshots of the contamination concentration uh
C at times t = 5, 25, and 50
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Fig. 5. Snapshots of the transport dual φh
C at times t = 50, 25, and 0

we let ψ = exp(−c|X − x|2), where c = 100 is a constant. Solving the dual
transport problem, which runs backwards in time, we get the transport dual φh

C

of Figure 5.
Given the dual transport solution, we solve the dual pressure problem for φh

P ,
see Figure 6.

Fig. 6. Slice plot of the (time independent) dual pressure φh
P . Note that φh

P has a rather
localized support indicating that the region where the pressure must be accurately
computed is quite small.

Given the primal and dual solutions we compute the element indicators, refine
the meshes, and start the simulation again from the initial time t = 0.

As is evident from Figures 3 and 4, our duality based adaptive algorithm
is able to identify and refine the regions relevant for accurate computation of
the contamination concentration around the point X . The dual pressure, for
instance, clearly indicates the inflow region and the region around the first ob-
stacle as important to get a correct pressure flux for the subsequent advective
transport while the other areas are of less importance and thus a coarse grid can
be used there.

5 Conclusions

In this paper we have developed a framework for adaptive simulation of multi-
physics problems based on available adaptive single physics finite element solvers.
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We assume that the single physics solvers are adaptive and can control the ac-
curacy in given functionals of the solution using duality based a posteriori error
estimates together with mesh refinement. Given an output quantity of interest
in the multiphysics problem the framework identifies functionals for the involved
single physics solvers that need to be controlled to achieve overall accuracy in
the quantity of interest. Note, in particular, that different quantities of interest
result in different accuracy requirements on the individual single physics solvers.

We illustrate our technique on a coupled time dependent pressure transport
problem. The example illustrates a simple coupling and the use of individual
mesh refinement in the two involved solvers with the overall goal of computing
a localized weighted average of the solution.

So far only a few works have been published on adaptive methods for mul-
tiphysics applications and therefore many problems still remain. For instance,
further extensions to more challenging applications involving different scales in
space and time, where adaptivity is crucial, should be investigated.
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Juan A. Acebrón1, Raúl Durán2, Rafael Rico2,
and Renato Spigler3

1 Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract. In this paper, we describe a new kind of domain decom-
position strategy for solving linear elliptic boundary-value problems. It
outperforms the traditional ones in complex and heterogeneous networks
like those for grid computing. Such a strategy consists of a hybrid nu-
merical scheme based on a probabilistic method along with a domain
decomposition, and full decoupling can be accomplished. While the de-
terministic approach is strongly affected by intercommunication among
the hosts, the probabilistic method is scalable as the number of sub-
domains, i.e., the number of processors involved, increases. This fact is
clearly illustrated by an example, even operating in a grid environment.

1 Introduction

It is well-known that a number of applications can benefit from operating in
a grid environment [4,5,18]. A grid system could be exploited for solving very
large problems, which are otherwise intractable even with the existing super-
computers, but latency will be a crucial issue. All experiments show this. The
most successful case of grids is that of handling huge amounts of data, as in the
celebrated example of the SETI project (SETI@home), and other similar to it.
In these applications latency does not play any negative role. Due to the high
degree of system heterogeneity and high latency, however, only few applications
seem to be computationally advantageous. Indeed, parallel scientific computing
to handle problems based on the solution of partial differential equations (PDEs)
is currently at a crossroad. Among the several numerical methods proposed in
the literature for solving boundary-value problems for PDEs, domain decom-
position methods seem to be particularly well-suited for parallel architectures.
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The main idea consists in decoupling the original problem into several subprob-
lems. More precisely, the given domain is divided into a number of subdomains,
and the task of the numerical solution on such separate subdomains is then as-
signed to different processors or computational sites. However, the computation
cannot run independently for each subdomain, because the latter are coupled
to each other through internal interfaces where the solution is still unknown.
Therefore, the processors have to exchange data along these interfaces at each
computational time step, resulting in a degradation of the overall performance.
In fact, due to the global character of the PDE boundary-value problem, the
solution cannot be obtained even at a single point inside the domain prior to
solving the entire problem. Consequently, certain iterations are required across
the chosen (or prescribed) interfaces in order to determine approximate values
of the solution sought inside the original domain. There exist two approaches for
a domain decomposition, depending on whether the domains overlap or do not
overlap; see [16,17], e.g. Given the domain, the subproblems are coupled, hence
some additional numerical work is needed, and therefore it is doubtful whether
full scalability might be attained as the number of the subdomains increases
unboundedly.

Moreover, implementing such a method on a parallel architecture involves
partitioning the given mesh into the corresponding subdomains, balancing the
computational load as well as minimizing the communication overhead at the
same time. For this purpose, traditionally, graph partitioning strategies have
been used [10,11]. Such strategies rest on considering the problem’s domain as a
graph made of weighted vertices and communication edges. Then, the balancing
problem can be viewed as a problem of partitioning a graph by balancing the
computational load among subdomains while minimizing the communication
edge-cut. However, most of the traditional partitioners are no longer suitable
for the emerging grid strategies [12]. In fact, these algorithms only consider
balancing computational load and reducing communication overhead, while in
practice the data movement cost may be a crucial issue in view of the high
communication latency on a grid.

In order to overcome this drawback, several strategies have been already pro-
posed. In [14,15], an unbalanced domain decomposition method was considered.
The idea there consists of hiding communication latency by performing useful
computations, and assigning a smaller workload to processors responsible for
sending messages outside the host. This approach goes in the right direction,
but other ways are currently in progress. For instance, two graph partitioners,
suited for grid computing, i.e., capable to take into account the peculiarities of
grid systems, with respect to both, CPUs and network heterogeneity, are Mini-
Max [8] and PaGrid [9]. These algorithms try to minimize the overall CPU time
instead of balancing computational load, minimizing intercommunication at the
same time. In a homogeneous environment, these two actions are equivalent, but
in the heterogeneous case, things are very different. A parallel version of METIS,
ParMETIS [10,11], is only capable to handle CPUs heterogeneity.
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In this paper, we propose a method recently developed by some of the au-
thors and others [1,2]. It has been proven to be rather successful in homogeneous
parallel architectures. In Section 2, some generalities about the method are dis-
cussed. In Section 3, a numerical example is shown, where the performance in a
grid environment was tested. In the final section, we summarize the high points
of the paper.

2 The Probabilistic Method

The core of the probabilistic method is based on combining a probabilistic rep-
resentation of solutions to elliptic or parabolic PDEs with a classical domain
decomposition method (DD). This approach can be referred to as a “probabilis-
tic domain decomposition” (for short, PDD) method. This approach allows to
obtain the solution at some points, internal to the domain, without first solv-
ing the entire boundary-value problem. In fact, this can be done by means of
the probabilistic representation of the solution. The basic idea is to compute
only few values of the solution by Monte Carlo simulations on certain chosen
interfaces, and then interpolate to obtain continuous approximations of it on
such interfaces. The latter can then be used as boundary values to decouple
the problem into subproblems, see Fig. 1. Each such subproblem can then be
solved independently on a separate processor. Clearly, neither communication
among the processors nor iteration across the interfaces are needed. Moreover,
the PDD method does not even require balancing. In fact, after decomposing
the domain into a number of subdomains, each problem to be solved on them
will be totally independent of the others. Hence, each problem can be solved
by a single host. Even though some hosts may end the computation much later
than others, the results obtained from the faster hosts are correct, and can be
immediately used, when necessary.

Fault tolerance of algorithms is an essential issue in grid environments, since
a typical characteristic of a grid is to allow dynamically aggregation of resources
what results in a strong modification of the structure of the system itself. Hence,
all classical methods, which require continuous communications among the vari-
ous processors involved, will be seriously affected and the overall performance in
general degraded. Even a single processor exiting the system at some point, will
in general abort the running process, since all the remaining processors must wait
for the results expected from such processor. The probabilistic method, instead,
is unaffected by this kind of events, since all subproblems are fully decoupled
and the unaffected processors may continue processing their task.

3 Numerical Examples

Here we present some numerical examples, aiming at comparing the performance
achieved by a classical deterministic domain decomposition method and the PDD
method, in a grid environment. To this purpose, the Globus Toolkit’s services
and the Globus-based MPI library (MPICH-G2) [7,19] have been used. We built
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Fig. 1. Sketchy diagram illustrating the numerical method, splitting the initial domain
Ω into four subdomains, Ω1, Ω2, Ω3, Ω4

the highly heterogeneous computing system sketched in Fig.2, made with 16 PCs
AMD Duron processors (below referred to as of type Cluster A), 1.3 GHz, linked
to each other through a Fast Ethernet connection, plus 2 other PCs, one being
an AMD Athlon XP 2400+ (type B), the other an AMD-K6, 500 MHz (type C).
These two PCs are also linked through a Fast network, but they are linked to
the previous group of 16 PCs through a 10 Ethernet connection (which is much
slower than the other, as is well known). We chose the example of the Dirichlet
problem

uxx + (6x2 + 1)uyy = 0 in Ω = (0, 1) × (0, 1) (1)

with the boundary data

u(x, y)|∂Ω =
[
(x4 + x2 − y2)/2

]
∂Ω

(2)

the solution being u(x, y) = (x4 + x2 − y2)/2.
This problem has been solved discretizing it by finite differences with size

Δx = Δy = 1/N , N = 1200.
In Fig. 3(a) and 3(b), the pointwise numerical error is shown, made corre-

spondingly to the DD and the PDD methods. For the former, only two nodes on
which interpolation was made have been used on each interface. Parameters were
chosen conveniently in order to attain a comparable error for both methods.

The deterministic algorithm we adopted is extracted from the numerical pack-
age pARMS [13], where the overlapping Schwarz method with a FGMRES it-
erative method has been chosen [6,13]. This was preconditioned with ILUT as
local solver. To split the given linear algebraic system corresponding to the full
discretized problem into a number of subproblems, and solve them indepen-
dently, in parallel, it is necessary to accomplish a mesh partitioning. This should
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Fig. 2. Diagram showing the Grid environment in which the algorithms have been
tested

be done balancing the overall computational load (according to the processors’
heterogeneity), minimizing, at the same time, the intercommunication occurring
among the various processors. As already pointed out, operating in a grid en-
vironment, this task is by far more challenging than in a homogeneous hosts
setting.

At this point, we used ParMETIS as a partitioner, configuring it according to
the characteristics of the particular grid we adopted. For instance, it is possible
to assign the computational load according to the CPU performance of each
available processor. With this, the CPU heterogeneity is taken into account. As
for the intercommunication problem, we observe that minimizing communica-
tions overhead may not correspond to minimizing graph’s edge-cuts, since one
should weight somehow the importance of every specific edge connecting pairs
of nodes of the mesh. This importance depends on the specific problem to be
solved, i.e., on the physics embodied in the problem, besides the geometry of the
domain and the discretization underlying the chosen algorithm (such as finite
differences, finite elements, etc.). Clearly, different partitions of the given domain
lead to different linear algebraic problems on each subdomain. In particular, us-
ing iterative methods, the local problems will be characterized by matrices with
different condition numbers.

On each subdomain, the time required for the computations is proportional to
the size of the problem, i.e., to the number of nodes or the square of the matrix
dimension, times the condition number of such a matrix. The latter determines
the number of iterations required to achieve a prescribed accuracy in the iterative
local solution. Recall that the time spent for computations on each subdomain
(i.e., due to a given processor) is that spent per iteration times the number of
iterations, and the former is proportional to the number of nodes. Of course,
using direct (instead of iterative) methods, the condition numbers of the local
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Fig. 3. Pointwise numerical error in: (a) the DD algorithm, and (b) the PDD algorithm

matrices, Ai in Aixi = bi, i = 1, . . . , p (p being the number of subdomains) are
only important in the amplification of errors in the entries of Ai and bi. Direct
methods, however, are used only when the local problems are small, typically
with Ai of dimension not larger that few hundreds.

The number of nodes in each subdomain could be chosen according to the spe-
cific performance of each CPU (the more powerful the CPU is, more nodes are
assigned to it). The condition number of Ai is a much more delicate issue, since it
also depends on the physics, i.e., in our problems, on the coefficients of the PDE.
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Fig. 4. Partitions of the given domain into 8 subdomains, and assigned to 8 processors
for two different configurations: (a) Only geometry was taken into account, (b) Both
geometry and physics was considered
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Table 1. CPU time in seconds for the heterogeneous system

Processors PDD(unbalanced) PDD(balanced) DD(A) DD(B)
8 88.67 43.18 372.72 282.73
16 46.36 25.67 300.86 221.30
18 32.52 18.44 270.21 302.75

In the specific example above, in view of the asymmetry in x and y, the particular
partition of the domain is very relevant, requiring very different iteration num-
bers. In Fig. 4(a), numerical experiments pertaining to the example below, show
a partition which takes into account only the geometry of the problem. In Fig.
4(b), instead, a different partition has been obtained which takes into account the
physics as well, having introduced such dependence in the weights of the edges.
These weights increase with x, in the y direction. Therefore, in the configuration
underlying Fig. 4(b), the total number of iterations required is smaller than in case
of Fig. 4(a) (we needed 220 versus 294 iterations). From this example it appears
clearly that minimizing the edge-cuts as in the configuration in Fig. 4(a) does not
minimize the overall computational time, since the iteration number in such a case
is larger than that needed in Fig. 4(b), see Table 1.

Table 2. CPU time in seconds for the homogeneous subsystem (Cluster type A)

Processors PDD DD(A) DD(B)
8 38.78 169.71 132.35
16 20.82 242.01 197.49

In the PDD approach, we discretized the local problems by finite differences,
and solved the corresponding linear algebraic systems by the same iterative
method. Here, the partitioning has been done as shown in Fig. 1, which corre-
sponds, somehow, to the optimal one found above for the DD.

As in the deterministic DD, CPU heterogeneity can be taken into account,
hence all subdomains may have different area (and thus are characterized by
different computational load). Moreover, in this case, due to the full decoupling
among the various subdomains, the iteration times as well as the iteration num-
bers pertaining to every subdomain are easily computable. This is clearly shown
in Fig. 5, where 16 processors have been used: all but the processors labelled by
p = 2 and p = 3 correspond to type B and C, respectively. Note that the type C
processor is the slowest one, hence the time needed is longer, and on the other
hand to obtain the entire solution one has to wait for it to finish. However, other
than in the deterministic DD, the PDD allows to use the solution computed in
the various subdomains as soon as the corresponding processors complete their
task. In addition, being now the subdomains fully uncoupled from each other,
this allow us to minimize easily the overall CPU time, assigning a higher com-
putational load to the faster processors, and reducing that to the slower ones.
In Fig. 5, the iteration times and the number of iterations required by the local
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Fig. 5. Iteration times and number for each subdomain in the PDD algorithm, being
computed with 16 processors

solver (labelled by p), have been displayed in case of 16 processors. A comparison
is made balancing the computational load, according to the heterogeneity of the
system, and without any balancing.

Table 1 shows the performance of both methods, the PDD, and DD. For the
latter, two different partitions, labelled by A and B (see Fig. 4), have been used.
The results for the PDD algorithm were obtained, balancing or not balancing the
computational load. The two methods have been compared correspondingly to
about the same maximum error, 10−3 (see Fig. 3). Note that the PDD algorithm
scales well, as well as the DD in configuration A. However, the performance of
the DD algorithm seems to be much better in configuration B, for a low number
of processors, degrading when more processors are included in the system. In
any case, the PDD always outperforms the DD method, the results being even
more striking when the number of processors is higher. This fact is clearly due
to the high intercommunication overload inherent to the DD algorithm.

In Table 2, the CPU times required to solve the problem in the subsystem Clus-
ter of type A by the PDD and by the DD method, are shown for two different num-
ber of processors.Note that DD does not scale for both partitioning configurations,
in contrast to the results shown in Table 1 for the whole heterogeneous system. The
advantage in terms of CPU time achieved with the PDD method in comparison to
the DD scheme, has now been reduced, even though is still important.

4 Observations and Conclusions

In view of the previous results, grid computing can be considered as an emerging
alternative system, that could compete with the most powerful supercomputers
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[3], in both, data parallelization and scientific computing. In the latter case,
however, the development of suitable algorithms is still in its infancy. The prob-
abilistic domain decomposition proposed in this paper is a simple but promising
method, going in this direction. Monte Carlo methods, which are one of the in-
gredients of our approach, are known to be “embarrassingly parallel”, but more,
they seem to be fully scalable, fault tolerant, and well suited to heterogeneous
computing, in particular to that special case represented by grid computing.
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Abstract. The Finite Difference Element Method (FDEM) program
package is a robust and efficient black-box solver. It solves by a Finite
Difference Method arbitrary non-linear systems of elliptic and parabolic
partial differential equations under arbitrary non-linear boundary condi-
tions on arbitrary domains in 2-D and 3-D, given by a FEM mesh. From
formulas of different order, we get an easy access to the discretization
error. By the knowledge of this error, the mesh may be refined locally to
reduce the error to a prescribed relative tolerance.

For the refinement of the elements, we first determine the refinement
nodes because of either error or data organization reasons. The refine-
ment of an element is based on halving its edges. We explain the difficul-
ties in parallelizing the mesh refinement algorithm on distributed mem-
ory parallel computers where the processors have only local data and the
refinement must be synchronized by the message passing paradigm.

Keywords: Finite difference method, Unstructured grid, Non-linear
PDEs, Error estimate, Mesh refinement, Black-box solver, Paralleliza-
tion.

1 Introduction

From recent textbooks about the numerical solution of partial differential equa-
tions (PDEs) (cf. [1], [2]), we learn that there are basically three main methods
for the numerical solution of PDEs: The first method is the finite difference
method (FDM) that dominated the early development of numerical analysis of
PDEs. In the 1960s, the finite element method (FEM) was introduced by engi-
neers, and over the last decades this method has become a widely used numerical
method for PDEs. The third method is the finite volume method that is between
the FDM and the FEM (widely used in CFD). We use an FDM on an unstruc-
tured FEM mesh which we call Finite Difference Element Method (FDEM).

Based on a 1-D domain decomposition of the grid, we are able to state clear
rules that fix the ownership of the nodes and elements by the processors. The
passing of messages to a neighbour processor during the mesh refinement is
always split up into two parts.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 754–763, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The organization of this paper is as follows: In Section 2, the details of FDEM
are presented, Section 3 describes the mesh refinement algorithm and its paral-
lelization and, in Section 4, we present some results.

2 The Finite Difference Element Method

We want to solve elliptic and parabolic non-linear systems of PDEs in 2-D and
3-D with arbitrary non-linear boundary conditions (BCs) where we use an un-
structured mesh on an arbitrary domain. The domain may be composed of sev-
eral subdomains where we may have different systems of PDEs. The solutions of
the subdomains are coupled by coupling conditions. We want a robust black-box
solver with a reliable error estimate that we also use for the order control and
for a local mesh refinement.

We discuss the solution method in 2-D; the extension to 3-D is too extensive
so that we refer to [5] for details. The most general operator that we admit for
the PDEs and BCs in 2-D, with the unknown solution u(t, x, y), has the form

Pu ≡ P (t, x, y, ut, ux, uy, uxx, uyy, uxy) = 0 (1)

where u and Pu are vectors with l components (system of l PDEs). If we include
t and ut, the system is parabolic, otherwise it is elliptic.

A basic paper on FDEM is [3], a progress report is [4]. A detailed report is
available online, see [5].

2.1 The Generation of Difference and Error Formulas

For the generation of the difference and error formulas, we make use of a finite
difference method of order q which means local approach of the solution u by a
polynomial of consistency order q. The 2-D polynomial of order q is

Pq(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + · · · + am−1y

q (2)

This polynomial has m coefficients a0 to am−1 where m = (q + 1) · (q + 2)/2.
For the determination of these m coefficients, we need m nodes with coordinates
(x0, y0) to (xm−1, ym−1). For example, for q = 2 we need m = 6 nodes.

In order to get explicit difference formulas, we make use of the principle of
the influence polynomials. For a node i the influence polynomial Pq,i of order q
is defined by

Pq,i(x, y) =
{

1 for (xi, yi)
0 for (xj , yj), j �= i

(3)

This means that the influence polynomial Pq,i has function value 1 in node i and
0 in the other m − 1 nodes. Then the discretized solution u which we denote by
ud (the index d means “discretized”) can be represented by

ud(x, y) := Pq(x, y) =
m−1∑
i=0

ui · Pq,i(x, y) (4)
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By the evaluation of Pq,i for a grid point x = xj , y = yj , we obtain the coefficients
of an interpolation polynomial at a node j. The difference formulas are the partial
derivatives of the interpolation polynomial Pq, i.e. we have to differentiate (4).
For example, for the difference formula for ux which we denote by ux,d we get

ux,d :=
∂Pq(x, y)

∂x
=

m−1∑
i=0

ui · ∂Pq,i(x, y)
∂x

(5)

One of the most critical sections is how we choose the m nodes on an unstructured
FEM mesh. The nodes are collected in rings around the central node, see Fig. 1.
Here we use logical masks to get the next neighbour ring of a given ring from
the element list (gives nodes of an element) and the inverted element list (gives
elements in which a node occurs). We do not only collect m nodes up to the

�

q=2

q=4

q=6

Fig. 1. Illustration for ring search

consistency order q but m+r nodes up to order q+Δq because there may be linear
dependencies. A second criterion is that we collect at least q + 2 rings (because
of the error formula). This results in m + r equations for the m coefficients. We
want to have nodes in the difference stars that are close to the central node.
Therefore, we arrange the equations according to the ring structure and allow
the crossing of a ring limit only if the current pivot element |pivot| ≤ εpivot.
The parameters Δq and εpivot determine the quality of the difference and error
formulas and therefore are the key for the whole solution process. As we must
determine m influence polynomials that generate the unit matrix as the right-
hand sides, we must invert the matrix in reality, see [3, eqs. (27), (28)].

2.2 The Estimate of the Discretization Error

As we have formulas of arbitrary order q, we get an easy access to the estimate
of the discretization error. If we denote e.g. the difference formula of order q for
the derivative ux by ux,d,q, the error estimate dx is defined by

dx = ux,d,q+2 − ux,d,q (6)
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i.e. by the difference to the order q + 2. Because the exact discretization error is
the difference of the derivative and the difference formula of order q, we see that
the derivative is replaced by a “better” formula for the estimate which holds only
for sufficiently fine grid. Equation (6) is the key for our explicit error access.

2.3 The Error Equation

Pu (1) is an arbitrary non-linear function of its arguments. Therefore, we lin-
earize system (1) with the Newton Raphson method and then discretize the
resulting linear Newton-PDE replacing e.g.

ux ⇐ ux,d + dx (7)

and analogously the other derivatives. After linearizing also in the discretization
errors, we finally get the error equation for the overall error Δud:

Δud = ΔuPu + ΔuDt + ΔuDx + ΔuDy + ΔuDxy (level of solution)

= Q−1
d · [(Pu)d + Dt + {Dx + Dy + Dxy}] (level of equation)

(8)

Here, Qd denotes the large sparse matrix resulting from the discretization. The
inverse Q−1

d is never explicitly computed as it is a full matrix. Instead, the
system is solved iteratively. (Pu)d is the discretized Newton residual and the Dμ

are discretization error terms that result from the linearization in the dμ, e.g.

Dx =
∂Pu

∂ux
· dx +

∂Pu

∂uxx
· dxx (9)

In the parentheses of the second row of (8) we have error terms that can be
computed “on the level of equation” and that are transformed by Q−1

d to the
“level of solution”. These corresponding errors on the solution level are arranged
above their source terms. So the overall error Δud has been split up into the
parts that result from the corresponding terms on the level of equation.

The only correction that is applied is the Newton correction ΔuPu that results
from the Newton residual (Pu)d. It is computed from

QdΔuPu = (Pu)d (10)

The other error terms in the first row of (8) are only used for the error control.
If we applied these terms, we had no error estimate any more. This approach
also implies that we can explicitly follow the effect of a discretization error to
the level of solution.

2.4 Parallelization

The numerical solution of large PDE problems needs much computation time
and memory. Therefore, we need an efficiently parallelized program that is ex-
ecuted on distributed memory parallel computers with message passing (MPI).
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a) b)
proc.

1 2 3 4

proc. ip-1 ip ip+1

overlap overlapown

necessary nodes on proc. ip

ip-1, ip+1: overlap processors of proc. ip

Fig. 2. Illustration for 1-D domain decomposition with overlap

In FDEM, we re-sort the nodes for their x-coordinate and distribute them in np
equal parts on the np processors which results in a 1-D domain decomposition,
see Fig. 2a). The elements are distributed correspondingly: an element is owned
by the processor that owns its leftmost node. If we want to execute the gener-
ation and evaluation of the difference and error formulas and the computation
of the matrix Qd and the r.h.s. (Pu)d purely local without communication, we
also have to store on processor ip node and element information of its left and
right neighbour(s) which is indicated as overlap, see Fig. 2b).

3 The Algorithm of the Mesh Refinement

For the structure of the space, we use linear triangles in 2-D and tetrahedrons in
3-D. The mesh refinement consists of two main parts. First, we have to determine
all elements that have to be refined, either because of the error or because of
the refinement cascade that becomes necessary for data organization reasons.
The second part consists of the refinement of the chosen elements. We first halve
the edges of each refinement element by creating a mid-point on the edge and
afterwards combine the nodes of an element to 4 new elements in 2-D and 8 new
elements in 3-D, respectively.

3.1 Refinement Nodes and Elements

The user prescribes a global relative tolerance tol for the solution, and the re-
finement process is stopped if

‖Δud‖/‖ud‖ ≤ tol (11)

holds. For the control of the solution process, we need a corresponding value tolg
on the level of equation: We transform tol to tolg like the Newton correction to
the Newton residual. The value of tolg is compared to the maximum of the space
key error terms of the l components of a node. If for a node i

l
max
ν=1

|{Dx + Dy + Dxy}i,ν | ≤ sgrid · tolg (12)
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with a safety factor sgrid does not hold, the node becomes a refinement node.
All elements a refinement node belongs to become refinement elements. We enter
the value true into a logical array refel in the row of the local number of the
refinement element and the column corresponding to its refinement stage (the
original elements have refinement stage 0, the refinement stage is increased by 1
with each refinement), see Table 1. The array refel is the key for the whole
refinement process.

Table 1. Shape of the logical array refel

element belongs to refel
number ref. stage stage 0 stage 1 stage 2 stage 3

1 1 false true false false
2 0 true false false false
3 3 false false false true
...

...
...

...
...

...
nel 0 true false false false

For reasons of data organization, we allow only 3 nodes on an edge of an
element, so we must avoid that in an element a fourth node is generated on an
edge by the refinement of a neighbour element. This is done by the preceding
refinement of the concerned element and is denoted by refinement cascade. The
difficulties of the refinement cascade result from the parallelization of FDEM.
An element is refined by the processor that owns the element, and an element
is owned by the processor that owns the leftmost node of this element. As the
refinement nodes or the elements that evoke the refinement cascade may not
be owned by the same processors that own the resulting refinement elements,
communication becomes necessary, see Fig. 3. Here, node 1 on processor ip4 is

�1

�2
Ref.
node

D

C

B

A

Ref. of B
→ Ref. of D

ip1 ip2 ip3 ip4

Fig. 3. Illustration of the refinement cascade on np = 4 processors
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a refinement node because of the error. Therefore, elements A, B and C (solid
lines) have to be refined. By the refinement of element B, there would be created
a fourth node (node 2) on the right edge of element D. As the refinement node 1
is owned by processor ip4, but neither element A nor B nor C are elements
owned by processor ip4, this processor has to send the information about the
necessary refinement of the three elements to processor ip3 (for element A) and
processor ip2 (for elements B and C). If we look for the neighbours of element B
on processor ip2, we see that the neighbour element D has a lower refinement
stage and therefore has to be refined because of the refinement cascade. But
element D is on processor ip1, so that processor ip2 has to send the information
about the refinement of element D to processor ip1.

So obviously a sophisticated algorithm is necessary for two reasons: first, data
exchange may be necessary not only to the direct neighbour processors but to
several of the overlap processors whose data are also stored on the own processor.
Second, the elements that have to be refined because of the refinement cascade
may evoke new refinement elements, i.e. the cascade may continue. This may
cause further communication.

We proceed as following: Each processor determines the elements that must
be refined because of the error. Then we determine the elements that are owned
by overlap processors. The element numbers of these elements are collected in
an array and afterwards sent to the corresponding processors. There they are
entered into the local refel array, and we determine the new refinement elements
that have to be refined because of the refinement cascade. Again, the refinement
elements that are owned by overlap processors are determined, and the element
numbers are sent to the corresponding overlap processors. This process stops if
there are not any refinement elements at the processor borders that are owned
by an overlap processor.

After the last step of the refinement cascade, all refinement elements are
known, and during the refinement process no new refinement elements are added.

3.2 Refinement of the Elements

The refinement of the elements is carried out in refinement stages. We start
with the largest elements, after their refinement the second largest elements
are refined etc. As the refinement of an element is based on the halving of its
edges, we first have to transform the refinement element list into a refinement
edge list where the information for a refinement edge consists of the following
data: local node numbers of the endpoints, local element number, local position
within the element, number of neighbour elements at the edge, local numbers
of the neighbour elements and (to be added later) the new node number of the
mid-point. The reason why we need all this data for an edge is that the unit
“edge” does not exist in FDEM. An edge is identified by its two endpoints, and
the new mid-point is generated by the processor that owns the edge, i.e. the
processor that owns the leftmost endpoint of the edge.

We have two arrays for the refinement edge information, one for the local
edges and one for the edges that are in the overlap, i.e. that are owned by a
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neighbour processor. For each neighbour processor, there is one column in this
array. Here, we have to enter global node and element numbers.

Therefore, we need communication again, i.e. the information needed for the
generation of a new mid-point must be sent to the processor that owns the refine-
ment edge. Having generated the mid-points of all received edges, this processor
sends back the new node numbers. After the mid-points of the refinement edges
in the overlap have got their node numbers, the new mid-points are generated
for the refinement edges that are owned by the processor that also owns the
refinement element. Afterwards each of the newly-created nodes gets assigned
coordinates, consistency order and function values, and we check if there have
been created any new boundary nodes.

Each refinement element then has 3 (4) corner nodes and 3 (6) mid-points on
the edges in 2-D (3-D). We separate an element in such a way that 4 (8) new
elements result, see Fig. 4.

In each refinement stage, the information what happened to the refinement
elements of the previous stages must be available on the concerned processors.
Therefore, we have a sophisticated communication algorithm to provide the nec-
essary information for each processor.

The mesh refinement algorithm is described in detail in [6].

1.

2.

3.

1. 2.

3. 4.

a) 2-D b) 3-D

Fig. 4. Illustration of the separation of an element

3.3 Communication Patterns

We developed communication patterns that allow a very efficient data exchange.
The data transfer is split up into two parts. First we only send the number of
nodes, elements etc. to the overlap processors so that on each processor the send
and receive commands can be set in such a way that it is known on each processor
from which processor it will receive a message and that we may also compute
the corresponding message length. We are also able to allocate the length of the
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ip4

ip3

ip2

ip1 Send data

Receive data

Store data

Cyc.1 Cyc.2 Cyc.3

Fig. 5. Illustration of the passing of the message lengths to the right for np = 4
processors and npmax,r = 3

receive buffer by the required length so that we save storage. This preparing
step needs npmax,r − 1 cycles at most, see Fig. 5 for the communication to the
right, where npmax,r is the maximum number of right overlap processors. Then
the information from a processor ipj has arrived at processor ipj+npmax,r .

In a second step, the actual data exchange takes place. We only send mes-
sages to overlap processors data must be sent to, and by individual message
lengths we save further communication time. We also save computation time
because we avoid that those overlap processors receiving a superfluous message
would try to extract some useful data from that message afterwards. This second
part also consists of npmax,r steps, where we send the necessary messages from
processor ipj to processor ipj+i in step i if j ≤ np − i holds.

Moreover, instead of sending an individual message for each piece of informa-
tion, we do not start the communication between two processors until we have
collected in a buffer all data that has to be sent to the target processor. This
reduces the consumed startup time drastically.

4 Results

In order to see the influence of the grid, we make a series computation with
6 different grids on a 4 × 1 domain. The characteristics of the 6 grids are shown
in Table 2. The number of grid points in x- and y-direction is doubled from
one grid to the other. This results in the fourfold number of total grid points
and approximately the fourfold number of elements. After the first computation
cycle, the mesh is completely refined. As we quadruple the number of nodes,
we also quadruple the number of processors so that the number of nodes (and
elements) on a processor is the same for each computation.

The computations have been carried out on the IBM Blue Gene/L at the For-
schungszentrum Jülich, Germany, with 700MHz PowerPC440 processors with a
peak performance of 2800MFLOPS.

In the last column of Table 2, the CPU sec. of master processor 1 for the pure
mesh refinement is given. One can see that the mesh refinement scales well, but
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Table 2. Characteristics of the 6 grids for the mesh refinement

Original grid Refined grid CPU
Grid Number of Number of Number of Number of No. of sec.
no. Dimension nodes elements nodes elements proc. for ref.
1 512 × 128 65,536 129,794 260,865 519,176 1 1.95
2 1,024 × 256 262,144 521,730 1,046,017 2,086,920 4 1.93
3 2,048 × 512 1,048,576 2,092,034 4,189,185 8,368,136 16 2.04
4 4,096 × 1,024 4,194,304 8,378,370 16,766,977 33,513,480 64 2.13
5 8,192 × 2,048 16,777,216 33,533,954 67,088,385 134,135,816 256 2.20
6 16,384 × 4,096 67,108,864 134,176,770 268,394,497 536,707,080 1024 2.28

for higher numbers of processors the communication overhead gradually affects
the performance as time increases slightly. On the other hand, the number of
nodes in y-direction is doubled from one grid to the other. However, a higher
number of grid points in y-direction means increasing message lengths during the
mesh refinement as there are more edges at the processor borders for which we
have to exchange the refinement edge information so that the results in Table 2
are acceptable.
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Abstract. In this paper, we simulate the performance of a load balanc-
ing scheme. In particular, we study the application of the Extrapolated
Diffusion(EDF) method for the efficient parallelization of a simple at-
mospheric model. It involves the numerical solution of the steady state
Navier-Stokes(NS) equations in the horizontal plane and random load
values, corresponding to the physics computations, in the vertical plane.
For the numerical solution of NS equations, we use the local Modified
Successive Overrelaxation (LMSOR) method with local parameters thus
avoiding the additional cost caused by the global communication of the
involved parameter ω in the classical SOR method. We have implemented
an efficient domain decomposition technique by using a larger number
of processors in the areas of the domain with heavier work load. With
our balancing scheme, a gain of approximately 45% in execution time is
achieved, in certain cases.

1 Introduction

In this paper we study the application of the Diffusion method for the effi-
cient parallelization of a simple model. It involves the numerical solution of the
steady state Navier-Stokes(NS) equations in the horizontal plane and random
load values, corresponding to the physics computations, in the vertical plane.
Our intention is to study the performance of a load balancing scheme under
more realistic conditions than in previous studies [12,13]. Up to now the prob-
lem of load balancing has been studied solely, namely without any combination
of horizontal and vertical computations. In this paper it is the first time, where
(i) an optimal version of the diffusion method is used and (ii) the migration of
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load transfer is also implemented using only local communication as opposed to
schedules which require global communication.

The paper is organized as follows. In Section 2 we present the Extrapolated
Diffusion(EDF) method, which possesses the fastest rate of convergence among
its other counterparts [16]. In Section 3 we describe our simple atmospheric
model and we present the use of the local Modified Successive Overrelaxation
(LMSOR) method for the numerical solution of NS equations. In Section 4 we
describe a domain decomposition technique, which initially assigns a square do-
main to each processor in a mesh network. However, load balancing imposes a
modified domain decomposition. As this increases the communication complex-
ity, we propose a load transfer to balance the load along the row processors only.
This domain decomposition technique assigns a larger number of processors in
the areas of the domain with heavier load, thus increasing the efficiency of load
balancing. Finally, in section 5 we present our simulation results.

2 The Extrapolated Diffusion (EDF) Method

Let us consider an arbitrary, undirected, connected graph G = (V, E). This graph
represents our processor network, where its nodes, namely the processors, are
denoted by vi ∈ V and its edges (links) are (vi, vj) ∈ E, when vi, vj are neigh-
bors. Furthermore, we assign a weight ui ≥ 0 to each node, which corresponds to
the computational load of vi. The processor graph reflects the inter-connection
of the subdomains of a mesh that has been partitioned and distributed amongst
processors (see Figure 1). In this graph each node represents a subdomain and
two nodes are linked by an edge if the corresponding subdomains share edges of
the mesh.

The Extrapolated Diffusion (EDF) method for the load balancing has the
form [1,4]

u
(n+1)
i = u

(n)
i − τ

∑

j∈A(i)

cij

(
u

(n)
i − u

(n)
j

)
(1)

where cij are diffusion parameters, A(i) is the set of the nearest neighbors of
node i of the graph G = (V, E), u

(n)
i , i = 0, 1, 2, . . . , |V | is the load after the

n-th iteration on node i and τ ∈ R\{0} is a parameter that plays an important
role in the convergence of the whole system to the equilibrium state. The overall
workload distribution at step n, denoted by u(n), is the transpose of the vector
(u(n)

1 , u
(n)
2 , . . . , u

(n)
|V |) and u(0) is the initial workload distribution. In matrix form

(1) becomes
u(n+1) = Mu(n) (2)

where M is called the diffusion matrix. The elements of M , mij , are equal
to τcij , if j ∈ A(i), 1 − τ

∑
j∈A(i) cij , if i = j and 0 otherwise. With this

formulation, the features of diffusive load balancing are fully captured by the
iterative process (2) governed by the diffusion matrix M . Also, (2) can be written
as u(n+1) = (I − τL)u(n), where L = BWBT is the weighted Laplacian matrix of
the graph, W is a diagonal matrix of size |E| × |E| consisting of the coefficients



766 G. Karagiorgos et al.

cij and B is the vertex-edge incident matrix. At this point, we note that if τ = 1,
then we obtain the Diffusion (DF) method proposed by Cybenko [4] and Boillat
[1], independently. If W = I, then we obtain the special case of the DF method
with a single parameter τ (unweighted Laplacian). In the unweighted case and
for network topologies such as chain, 2D-mesh, nD-mesh, ring, 2D-torus, nD-
torus and nD-hypercube, optimal values for the parameter τ that maximize the
convergence rate have been derived by Xu and Lau [21,22]. However, the same
problem, in the weighted case was solved recently [16]. Next, we consider the
weighted case. The diffusion matrix of EDF can be written as

M = I − τL, L = D − A (3)

where D = diag(L) and A is the weighted adjacency matrix. Because of (3), (2)
becomes u(n+1) = (I − τD) u(n) + τAu(n) or in component form

u
(n+1)
i =

⎛

⎝1 − τ
∑

j∈A(i)

cij

⎞

⎠u
(n)
i + τ

∑

j∈A(i)

ciju
(n)
j , i = 1, 2, . . . , |V | (4)

The diffusion matrix M must have the following properties: nonnegative, sym-
metric and stochastic [4,1]. The eigenvalues of L are 0 = λ1 < λ2 ≤ . . . ≤ λn. In
case cij = constant, the optimum value of τ is attained at [20,23]

τo =
2

λ2 + λn

and the corresponding minimum value of the convergence factor

γ(M) = max{|1 − τλn|, |1 − τλ2|}

is given by

γo(M) =
P (L) − 1
P (L) + 1

, where P (L) =
λn

λ2

which is the P -condition number of L. Note that if P (L) � 1, then the rate of
convergence of the EDF method is given by

R(M) = − log γo(M) � 2
P (L)

which implies that the rate of convergence of the EDF method is a decreas-
ing function of P (L). The problem of determining the diffusion parameters cij

such that EDF attains its maximum rate of convergence is an active research
area [5,9,16]. Introducing the set of parameters τi, i = 1, 2, . . . , |V |, instead of
a fixed parameter τ in (4), the problem moves to the determination of the pa-
rameters τi in terms of cij . By considering local Fourier analysis [15,16] we were
able to determine good values (near the optimum) for τi. These values become
optimum(see Table 1) in case the diffusion parameters are constant in each di-
mension and satisfy the relation c

(2)
j = σ2c

(1)
i , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2,
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Table 1. Formulae for the optimum τo and γo(M) ( E: Even, O: Odd )

N1 N2 Case τo γo(M)

E E 1
„

3 + 2σ2 − cos
2π

N1

«−1 1 + 2σ2 + cos 2π
N1

3 + 2σ2 − cos 2π
N1

O O 2
„

2 + σ2(1 + cos
π

N2
) + cos

π

N1
− cos

2π

N1

«−1 cos π
N1

+ cos 2π
N1

+ σ2(1 + cos π
N2

)

2 + σ2(1 + cos π
N2

) + cos π
N1

− cos 2π
N1

E O 3
„

3 − cos
2π

N1
+ σ2(1 + cos

π

N2
)
«−1 1 + cos 2π

N1
+ σ2(1 + cos π

N2
)

3 − cos 2π
N1

+ σ2(1 + cos π
N2

)

O E 4
„

2 + 2σ2 + cos
π

N1
− cos

2π

N1

«−1 2σ2 + cos π
N1

− cos 2π
N1

2 + 2σ2 + cos π
N1

− cos 2π
N1

where σ2 =
1−cos 2π

N1
1−cos 2π

N2

and c
(1)
i , c

(2)
j are the row and column diffusion parameters,

respectively, of the torus [16]. Also, in [16] it is proven that at the optimum
stage1

RR∞(EDF ) � 2RR∞(DF )

which means that EDF is twice as fast as DF for stretched torus, that is a torus
with either N1 � N2 or N2 � N1.

In order to further improve, by an order of magnitude, the rate of convergence
of EDF we can apply accelerated techniques (Semi-Iterative, Second-Degree and
Variable Extrapolation) following [20,19,14].

2.1 The Semi-iterative method

We now consider iterative schemes for further accelerating the convergence of
EDF. It is known [20,23] that the convergence of (2) can be greatly accelerated
if one uses the Semi-Iterative scheme

u(n+1) = ρn+1(I − τoL)u(n) + (1 − ρn+1)u(n−1)

with

ρ1 = 1, ρ2 =
(

1 − σ2

2

)−1

, ρn+1 =
(

1 − σ2

4
ρn

)−1

, n = 2, 3, . . . ,

and
σ = γo(M) (5)

It is worth noting that σ is equal to γo(M), which is the minimum value of
the convergence factor of EDF. In addition, γo(M) and τo, for EDF, are given
by the expressions of Table 1 for the corresponding values of N1 and N2. It can
be shown [20,23] that

RR∞(SI − EDF ) � 1√
2
RR∞(SI − DF )

1 RR(.) = 1
R(.) .
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which indicates that the number of iterations of SI-EDF will be approximately
30% less than the number of iterations of SI-DF in case of stretched torus.

3 The Atmospheric Model

As a case study we will consider the simulation of a simple atmospheric model.
The atmospheric models of climate and weather use a 3-dimensional grid to rep-
resent the atmosphere’s behavior. The involved computations in these grids are of
two kinds: dynamics and physics [13,12]. The dynamics calculations correspond
to the fluid dynamics of the atmosphere and are applied to the horizontal field.
These calculations use explicit schemes to discretize the involved partial differ-
ential equations because they are inherently parallel. Alternatively, the physics
calculations represent the natural procedures such as clouds, moist convection,
the planetary boundary layer and surface processes and are applied to the ver-
tical level. The computations of a vertical column are local, that is, they do not
need data from the neighboring columns and are implicit in nature.

As far as our simulation study is concerned, we will model the computations
in the horizontal plane by solving the Navier-Stokes equations and the computa-
tions in the vertical plane with random load values, corresponding to the implicit
physics calculations.

3.1 Numerical Solution of the Navier-Stokes(NS) Equations

The model problem considered here is that of solving the 2-D incopressible
Navier-Stokes (NS) equations. The equations in terms of vorticity Ω and stream
function Ψ are

ΔΨ = −Ω, u
∂Ω

∂x
+ v

∂Ω

∂y
=

1
Re

ΔΩ (6)

where Re is the Reynold number of the fluid flow and u, v are the velocity
components in the y and x directions, respectively. The velocity components
are given in terms of the stream function Ψ by u = ∂Ψ

∂y and v = −∂Ψ
∂x . If the

computational domain is the unit square, then the boundary conditions for such
flow are given by Ψ = 0, ∂Ψ

∂x = 0 at x = 0 and x = 1, Ψ = 0, ∂Ψ
∂y = 0 at

y = 0 and Ψ = 0, ∂Ψ
∂y = −1 at y = 1. The 5-point discretization of NS

equations on a uniform grid of mesh size h = 1/N leads to

1
h2 [−4Ψij + Ψi−1,j + Ψi+1,j + Ψi,j+1 + Ψi,j−1] = Ωij (7)

and

Ωij = lijΩi−1,j + rijΩi+1,j + tijΩi,j+1 + bijΩi,j−1 (8)

with lij = 1/4 + 1/16Reuij, rij = 1/4 − 1/16Reuij, tij = 1/4 − 1/16Revij,
bij = 1/4 + 1/16Revij, where uij = Ψi,j+1 − Ψi,j−1, vij = Ψi−1,j − Ψi+1,j . The
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boundary conditions are also given by Ωi,0 − 2
h2 Ψi,1 = 0, ΩN,j − 2

h2 ΨN−1,j = 0

and Ω0,j − 2
h2 Ψ1,j = 0, Ωi,N − 2

h2 (h − Ψi,N−1) = 0

3.2 The Local Modified SOR Method

The local SOR method was introduced by Ehrlich [7,8] and Botta and Veldman
[2] in an attempt to further increase the rate of convergence of SOR. The idea is
based on letting the relaxation factor ω vary from equation to equation. Kuo et.
al [18] combined local SOR with red black ordering and showed that is suitable
for parallel implementation on mesh connected processor arrays. In the present
study we generalize local SOR by letting two different sets of parameters ωij , ω

′

ij

to be used for the red (i + j even) and black (i + j odd) points, respectively. An
application of our method to (7) and (8) can be written as follows

Ω
(n+1)
ij = (1 − ωij)Ω

(n)
ij + ωijJijΩ

(n)
ij , i + j even

Ω
(n+1)
ij = (1 − ω

′

ij)Ω
(n)
ij + ω

′

ijJijΩ
(n+1)
ij , i + j odd

with

JijΩ
(n)
ij = l

(n)
ij Ω

(n)
i−1,j + r

(n)
ij Ω

(n)
i+1,j + t

(n)
ij Ω

(n)
i,j+1 + b

(n)
ij Ω

(n)
i,j−1

and l
(n)
ij = 1/4+1/16Reu

(n)
ij , r

(n)
ij = 1/4−1/16Reu

(n)
ij , t

(n)
ij = 1/4−1/16Rev

(n)
ij ,

b
(n)
ij = 1/4 + 1/16Rev

(n)
ij where u

(n)
ij = Ψ

(n)
i,j+1 − Ψ

(n)
i,j−1, vij = Ψ

(n)
i−1,j − Ψ

(n)
i+1,j . A

similar iterative scheme holds also for Ψij . If μij are real, then the optimum
values of the LMSOR parameters are given by [3]

ω1,i,j =
2

1 − μijμij
+

√
(1 − μ2

ij)(1 − μ2
ij

)
, ω2,i,j =

2

1 + μijμij
+

√
(1 − μ2

ij)(1 − μ2
ij

)

where μij and μ
ij

are computed by μij = 2
(√

�ijrijcosπh +
√

tijbijcosπk
)
,

μ
ij

= 2
(√

�ijrijcosπ(1−h)
2 +

√
tijbijcosπ(1−k)

2

)
, with h = k = 1/

√
N

If μij are imaginary, then the optimum values of the LMSOR parameters are
given by

ω1,i,j =
2

1 − μijμij
+

√
(1 + μ2

ij)(1 + μ2
ij

)
, ω2,i,j =

2

1 + μijμij
+

√
(1 + μ2

ij)(1 + μ2
ij

)

If μij = μRij + iμIij are complex, we propose the following heuristic formulas

ω1,i,j =
2

1 + μRμ
R

− μIμI
(1 − (μ

R
μR)2/3)−1 +

√
MR,I

and ω2,i,j =
2

1 − μRμ
R

+ μIμI
(1 − (μ

R
μR)2/3)−1 +

√
MR,I

where MR,I = [1 − μ2
R + μ2

I(1 − μ
2/3
R )−1][1 − μ2

R
+ μ2

I
(1 − μ

2/3
R )−1]
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4 Domain Decomposition and Load Transfer

Let us assume the domain for the solution of the NS equations is rectangular.
Initially, we apply a domain decomposition technique which divides the original
domain into p square subdomains, where p is the number of available proces-
sors(see Figure 1). This decomposition proved to be optimal, in case the load
is the same on all mesh points [3], in the sense of minimizing the ratio commu-
nication over computation. Next, each subdomain is assigned to a processor in
a mesh network. The parallel efficiency depends on two factors: an equal dis-
tribution of computational load on the processors and a small communication
overhead achieved by minimizing the boundary length. If the latter is achieved
by requiring the minimization of the number of cut edges i.e. the total interface
length, the mesh partitioning problem turns out to be NP-complete. Fortunately,
a number of graph partitioning heuristics have been developed (see e.g. [6,10]).
Most of them try to minimize the cut size which is sufficient for many applica-
tions but this approach has also its limitations [11]. To avoid these limitations we
apply a load balancing scheme such as to maintain the structure of the original
decomposition. This is achieved by reducing or increasing, according to a sim-
ple averaging load rule, the width of each row. Although this approach reduces
the effectiveness of the method, as will not achieve full balance, it proves to be
efficient. Next, we consider a load balancing scheme, which employs the above
feature. Let us assume the situation as illustrated on the left of Figure 1. The
shaded area denotes the physics computations, i.e. the load distribution. In an
attempt to balance the load among the processors we decompose the load area
into smaller domains as this is illustrated on the right of Figure 1. We will refer
to this partitioning as nesting. The advantage of nesting is that the structure
of the domain decomposition graph remains unchanged, thus minimizing the
interprocessor communication at the cost of imbalance. The problem now is to
determine the width of each row and column. Let us consider the case presented
in Figure 2, where we have four processors a, b, c, d, each one assigned initially
a square with the same area. Further, we assume that the result of the EDF

Fig. 1. Domain decomposition by nesting
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Fig. 2. Column transfer according to the weighted average method

algorithm is that processor a must receive two columns of mesh points from
processor b and processor c must send one column to processor d (Figure 2(a)
dotted arrows). But if these transfers are carried out, they will destroy the mesh
structure of the domain decomposition graph as now processor d will have two
neighbors a and b. In order to avoid this phenomenon we allow the weighted
average number of columns to be transferred among the processors a, b and c, d,
where weighted average= � 2+(−1)

2 	 = 1. This means that processor a will receive
one column(instead of two) and processor c will also receive one column(instead
of sending one). After the load transfer is carried out, the domain graph remains
a mesh as is depicted in Figure 2(b) with the solid lines. This process requires
communication between processors along two successive rows of the mesh net-
work of processors. A similar procedure for the processors along the columns
will fix the width of each column. For a

√
p × √

p mesh this process requires a
total O(

√
p) communication.

5 Simulation Results

To evaluate the effectiveness of our load balancing algorithm, we ran some tests
for the considered model. In these tests we examined two cases each time: the
model running without the load balancing algorithm against to its periodical use
for a specific time interval.The method used was the SI-EDF [17] for different
mesh sizes. For the physics computations we assumed a normal distribution of
loads superimposed on the given mesh for solving the NS equations. In fact, we
used a scale factor M , which determines the imbalance of computational vertical
load and obtained results for different values of this parameter. So, we were able
to examine the behavior of our load balancing algorithm in different scenarios
between the physics and dynamics calculations. Our results, summarized in Ta-
ble 2, indicate that when the vertical load is small in relation to the horizontal,
then load balancing should be avoided. On the other hand, as the load increases,
we may reach an improvement of nearly 45% when using the SI-EDF load bal-
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Table 2. Simulation Results. L/B =Load Balancing. Numbers in 2nd and 3nd columns
are secs. The last column shows the percentage improvement.

mesh size
44 processors

Without L/B With L/B
Total Total Improvement

M = 1
20x20 46.932 50.551 −7.71%
40x40 149.88 117.306 21.73%
80x80 366.119 287.374 21.51%

100x100 499.268 394.327 21.02%
M = 100

20x20 4689.879 4652.724 0.79%
40x40 15517.46 9654.508 37.78%
80x80 37866.911 20745.52 45.21%

100x100 48499.712 26434.305 45.50%
M = 10000

20x20 489042.981 461727.89 5.59%
40x40 1499122.957 1112865.135 25.77%
80x80 3767658.518 2186112.869 41.98%

100x100 4700380.338 2834764.494 30.69%

ancing algorithm. Even though we kept the structure of the application graph
unchanged with the cost of approximate balance, the gain is satisfactory.
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Abstract. We present adaptive coarsening, a multi-resolution lossy
compression algorithm for scientific datasets. The algorithm provides
guaranteed error bounds according to the user’s requirements for sub-
sequent post-processing. We demonstrate compression factors of up to
an order of magnitude with datasets coming from solutions to time-
dependent partial differential equations in one and two dimensions.

1 Introduction

A current challenge in large scale computing is how to compress, without los-
ing valuable information, the prodigious output of simulations of ever increas-
ing fidelity. Compression is traditionally applied to data visualization [11,5,9,6].
However, analysis and post-processing of scientific data often entails taking spa-
tial derivatives, and the required tolerances usually exceed that of visualization
itself. Not surprisingly, users are reluctant to compress data in the spatial do-
main. Instead, they often compress by sub-sampling in the time domain. While
such sub-sampling introduces aliasing errors, users seem less concerned about
the artifacts introduced in the temporal domain than in the spatial domain. An
alternative is to use lossless compression [8,4]. But owing to the presence of noise
in floating point data, compression is modest—often far less than a factor of two.

We present a lossy compression strategy called adaptive coarsening which
coarsens data selectively and locally according to how the user intends to sub-
sequently process the data. Our algorithm produces a compact representation
providing guaranteed error bounds for the designated post-processing opera-
tions. An adaptively coarsened dataset includes geometric meta data describing
the structure of the multi-resolution mesh. This information may be used to
optimize subsequent data access and analysis.

We discuss preliminary results with two data sets coming from solutions to one
and two dimensional partial differential equations. Using Adaptive Coarsening,
we obtained compression factors of up to 11 and 15, respectively. Like wavelet

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 774–780, 2007.
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compression [9], adaptive coarsening is a multi-resolution technique; however, it
does not represent data progressively.

This paper makes two contributions: (1) it offers an adaptive sub-sampling
procedure for scientific data represented as uniform arrays, and (2) a framework
that takes into account the context in which the data is subsequently post-
processed.

2 Adaptive Coarsening

Consider the numerical solution to a time-dependent partial differential equation
in one dimension shown in Fig.1, which has been computed on a uniform mesh
using a finite difference method. Owing to the irregularity of the solution, some
portions of the mesh may be stored at a lower resolution than others without
significant loss of accuracy. As a result we may approximate the uniform mesh
with a mesh with variable spacing as shown in Fig.2.

Adaptive coarsening works by coarsening a mesh, re-constructing the result
back to the original mesh’s index domain, and coalescing (coarsening) those
points where the re-constructed data approximates the original data with suf-
ficient accuracy. This process is carried out recursively on the newly generated
coarse mesh(es) until it is no longer possible to coarsen the data: either further
coarsening would violate a specified error bound, or the resultant new coarse
meshes fall below some minimal size threshold. As previously mentioned, the
notion of “sufficient accuracy” is measured with respect to the designated post-
processing operations. For example, if we are interested in accurately reconstruct-
ing second derivatives from compressed data, then we measure the accuracy in
terms of the second derivative of the input, rather than the input itself.

Adaptive coarsening employs the following error estimation procedure to de-
termine which points may be safely stored at a lower resolution. Let Gh be a
set of points defined uniformly over a discrete index space, which is a set of
contiguous integers in one dimension. (In general we have a regularly spaced set
of points in d dimensions.) Let u(Gh) or, by an abuse of notation, uh, represent
the data on Gh. Define the sub-sampling operator R : uh → u2h which maps
values from a mesh defined on Gh onto a coarsened index domain G2h, which,
in one dimension, has half as many points.1 Define the up-sampling operator
P : u2h → uh, that maps values from a coarse index domain G2h onto the
refined domain Gh.

As previously mentioned, compression will be carried out in the context of
post-processing. Let Φ be the post-processing operator. We compress the data,
post-process it, and then re-construct the original by up-sampling, i.e. interpo-
lation. That is, we compute P ◦Φ◦R (uh). Noting that P ◦R is not the identity
operator, we define the error operator E = Φ − P ◦ Φ ◦ R. Now, for a given
relative error threshold ε << 1, we may coarsen the mesh without a significant
loss of accuracy where |E(uh)/Φ(uh)| < ε, and | · | is the absolute value taken

1 The coarsening factor may be greater than two.
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Fig. 1. The solution to a time dependent partial differential equation
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Fig. 2. An adaptively coarsened mesh

point-wise2. We carry out this procedure recursively on the newly coarsened
portions of the mesh until it is no longer possible to coarsen the data.

The adaptive coarsening algorithm appears as pseudo code in Fig. 3. The al-
gorithm proceeds one level at a time (line 2), starting from the initial (finest)
level 0. Line (5) estimates the error and coarsens the mesh accordingly, gener-
ating a list of intervals (rectangles in 2D, etc.). Since there may be more than
one subdomain at the parent’s level, we augment the existing coarse grids at the
current level with a union ∪ operation (6). We also remove from the previous
finer level any points that have been coarsened, since each point may appear in
at most one level.3 We perform this operation using set difference (7).

Adaptive coarsening requires rules for coarsening and refining the data, that
is, the operations P and R. These rules may be defined by the user, in particular,
to customize them to the data and the postprocessing operator Φ. At present
we use simple sub-sampling for R, that is, selecting every Cth point, where C is
the sub-sampling rate. Our up-sampling operator P currently uses a piecewise
cubic Hermite interpolating polynomial4.

1. let level[0] = uh

2. for i := 1 to maxLev
3. let hi := discretization at level i
4. foreach subdomain uhi−1

j ∈ level[i-1]
5. where E(uhi−1

j ) < ε, create a new coarse domain uhi

6. level[i] := level[i] ∪ uhi

7. level[i-1] := level[i-1] \Puhi

8. end foreach
9. end for

Fig. 3. The adaptive coarsening algorithm. The operations \ and ∪ are set union and
set difference operations.

3 Results

We present results for 1D and 2D datasets obtained by solving time-dependent
partial differential equations.

2 Clearly the significance of “loss of accuracy” depends on the choice of an appropriate
definition of ε.

3 By comparison, progressive methods would represent values at all levels, up to the
coarsest one.

4 Matlab pchip, www.mathworks.com/access/helpdesk/help/techdoc/ref/pchip.html
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1D Dataset. We solved a variant of the Burger’s equation on a mesh with 16,385
points over a series of 163,840 timesteps. The dataset consists of 81 snapshots
spaced at equal intervals in time, including the initial data. We take the second
derivative as the post-processing operation.

We applied adaptive coarsening to the 81 snapshots, using relative error
thresholds of 10−3 and 10−4. We obtained compression factors of 11.4 and 3.86,
respectively.

If we do not take into account the context of post-postprocessing, i.e., we set
Φ to the identity operation, compression increases significantly: in our case to
53.8 and 19.6, respectively. Thus, we reduce compression effectiveness when we
take into account how the data will be subsequently analyzed. However, this
tradeoff is essential: it gives us the assurance that we will incur only modest, i.e.
acceptable, errors when we take second derivatives of the compressed data.

In order to compensate for the decreased spatial sampling rate in coarsened
data, we computed the 2nd derivative post processing operation using a higher
order (4th order) 5-point centered-difference formula. Compared with the 3-point
2nd order formula, the higher order formula boosts compression by about 20%
[10]. The added cost of this higher order stencil is modest. While the number
of floating point operations increases, the number of memory accesses stays the
same, and these largely determine the cost of taking spatial derivatives. More-
over, the cost of the I/O dominates the cost of CPU processing,

Adaptive coarsening is similar to adaptive sub-sampling employed in High
Definition TV signal processing [1], which splits the index domain into fixed
size pieces and sub-samples each piece separately. This strategy results in a
more regular structure, and lower software bookkeeping overheads, than adaptive
coarsening. Owing to additional constraints on the sub-sampling process, we
expect that adaptive sub-sampling will yield a lower compression factor than
adaptive coarsening. Indeed, the simplicity of adaptive sub-sampling comes at a
cost. Compared with adaptive coarsening, compression drops to 7.56 and 3.33,
respectively. At a threshold of 10−3, adaptive coarsening is about 40% more
effective than adaptive sub-sampling. The added flexibility offered by adaptive
coarsening fits the sub-sampling pattern more tightly to the measured error in
the data, leading to a higher degree of compression.

2D Data Set. The 2D data set was obtained by solving the Navier Stokes
equations.5 There were 51 snapshots, each comprising an array of 1020 × 1020
floating point numbers. These data carry a differentiated quantity (vorticity),
and hence have already been post-processed. We have preliminary results for
just one threshold: 10−3. We applied adaptive sub-sampling in two dimensions,
obtaining a compression factor of 14.9.

We then selected the parts of the mesh that could not be compressed at all,
unraveling them in row major order into 1D arrays and applying 1D adaptive
coarsening to the result. Because the data are smoother in the X direction than
the Y, this optimization increased compression by about 10% to 16.4. However,

5 http://www.math.ucla.edu/∼anderson/270e.1.04f/Assignment8/Assign8.html.
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knowing which direction to compress along requires some user intervention. We
are currently extending adaptive coarsening to multiple dimensions, and pursu-
ing automated strategies for anisotropic compression.

4 Conclusions and Future Work

We have demonstrated a multi-resolution compression technique called adaptive
coarsening. Our approach is based on the philosophy that technological factors
present an opportunity to employ plentiful processing cycles to reduce the space
required to store massive data sets. We have been able to achieve an order of
magnitude in compression for uniform mesh data sets. The effect is to signifi-
cantly reducing the time to transfer data from off-line storage, and to process the
data in subsequent analysis. Moreover, this level of compression was obtained
while retaining engineering precision. Compression drops rapidly as the number
of digits increases. To this end we are investigating more sophisticated sampling
and interpolation procedures. Our ultimate target is three dimensional data, and
work is currently in progress.

Although Adaptive Coarsening was applied to data arranged on a regular
array of points, the technique is applicable to irregular data sets, e.g. arising
in finite element methods, so long as there exist appropriate sub-sampling and
up-sampling procedures [7].

Adaptive coarsening parallelizes readily. Sub-sampling and up-sampling op-
erations require nearest neighbor communication only. Some collective commu-
nication is required to ensure that the irregular mesh structure makes balanced
use of parallel I/O, but the cost is modest compared with that of the I/O.

Multiresolution compression techniques have been employed for several years
in computer graphics, signal processing, and efficient mesh generation
[11,5,9,6,9]. A complete list of references is too lengthly to include here. Hi-
erarchical triangulations have been applied to the visualization of geophysical
data [6]. Adaptive coarsening is similar in spirit to this technique, though the
goal is to conserve space rather than bandwidth. By conserving space, adaptive
coarsening also conserves bandwidth.

Our approach permits the direct manipulation of the compressed data sets;
that is, without the need to reconstruct the original data. This capability is de-
sirable because it enables data analysis to proceed within the reduced footprint
of the compressed data and promotes the reuse of existing analysis code bases,
simplifying post-processing application development. A framework may be con-
structed to apply the analysis code to each mesh component. This frees the user
from having to manage the details. In general, the user needs to provide ap-
plication dependent coarsening and refinement modules along with appropriate
metrics for estimating the error. While such operations are often application-
dependent, strategies based on Richardsonian extrapolation, for example, are
robust in Structured Adaptive Mesh Refinement [3,2]. Thus, there is hope that
they may prove equally useful in adaptive coarsening. These issues await further
study.
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Abstract. We present a complete topological framework that is able to
provide incidence traversal operations for various topological elements.
This enables one to perform the necessary topological operations for
several discretization schemes. A combination of incidence information
combined with an archetype concept enables one to optimize traversal
operations of inter-dimensional objects without explicitly storing them.
Access to topological structures is provided using a generalized iterator
concept.

1 Introduction

The field of scientific computing often imposes highly complex formulae with
quantities on different topological elements. For example, some discretization
schemes require the scalar solution to reside on vertices, while the projections
of the vector-valued fluxes are stored on edges. Many applications require such
a discretization of partial differential equations (PDE) as well as interpolation
mechanisms and thus strongly depend on the base traversal mechanisms provided
by the environment. It is quite common for a discretization scheme to require
quantities originally associated with a vertex on an edge and vice versa. The
projections of fluxes on edges also need to be assembled to truly vector-valued
quantities associated with a vertex and an edge. In order to accomplish this, the
required information has to be collected by traversing the local neighborhood of a
vertex or an edge. To this date, data structures and algorithms are implemented
in a heavily application and discretization scheme specific way, making their
reuse practically impossible.

We present a set of base traversal operations that is sufficient for many ap-
plications. This approach results in a rigorous implementation of topological
structures, which covers all types of topological elements such as vertices, cells
and general inter-dimensional elements called faces. The expressiveness of source
code is increased, because we do not need to explicitly write traversal algorithms
for each of the elements, such as edge-cell traversal, because this information can
be derived from a subset of highly optimized operations automatically.

The iterator concept allows to formulate algorithms based on this interface
independently of the actual implementation of the topological data structure
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including dimension and archetype. The consequent use of this interface leads to
dimensionally and topologically independent formulations of algorithms, e.g. a
finite volume discretization scheme can be formulated independently of the type
of cell complex and the dimension.

2 Motivation and Related Work

The motivation for developing a topological framework is derived from the need
for flexibility in high performance applications in the field of scientific comput-
ing, especially in Technology Computer-Aided Design (TCAD). With a growing
number of different simulation tools [1,2,3,4,5] and various requirements on the
underlying data structures the question arises which part of an application can
be re-used, if it is properly implemented. The main aim of our work is to pro-
vide a library that offers the functionality common to many different kinds of
simulation tools in the field of scientific computing. This is especially true for
functions which are evaluated on a topological cell complex.

In the last decade many approaches towards implementing a general pur-
pose simulation environment for the solution of partial differential equations
have been taken. Most of the tools resulting from these attempts use topological
structures which are specialized to a particular discretization scheme. This re-
duces resource use, but it comes at the cost of greatly diminishing the flexibility
of topological traversal. As an example, the finite volume method does not re-
quire vertex-faces traversal. However, for some reasons it might be advantageous
to implement discretization equations based on a mixed finite element/finite vol-
ume scheme which requires such traversal operations.

The major step towards a more flexible use of topological structures is pre-
sented in [6]. The grid algorithm library (GrAL) introduces the first generalized
iterator concept [7] based on multi-dimensional data structures.

Most of the other environments completely veil the topological information
by formalisms such as element matrices [8] and control functions [9]. Some com-
mercial simulation tools, such as FEMLab, accept the input in the form of a final
PDE. For this reason calculations which use non-standard traversal mechanisms
are cumbersome or impossible to specify.

3 Framework and Interfaces

The main aim of the topological container interface is to provide mechanisms
for construction, modification and traversal. The most important conceptual
requirement for the topological data structure is the retrieval of incidence infor-
mation. We define the incidence relation in the following manner:

inc(a, b) ↔ a ⊂ b ∨ a ⊃ b (1)

where a and b denote different topological elements. In the following table (Fig. 1)
we list all different methods of incidence which are possible between topological
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elements of different dimension. It can be seen easily that the incidence relation
of elements of the same dimension can be modeled by the equality relation. The
first row shows all edges, faces as well as cells which are incident with the same
base vertex. The first column shows vertices which are incident with one base
edge, faces or cell.

Fig. 1. Traversal methods induced by the incidence relation. horizontal: traversal
schemes of the same base element. vertical: traversal scheme of the same traversal
elements.

3.1 Topological Container Concept

The topological container covers the basic information of the topological cell
complex. Our concept provides a subset of the required methods (Fig. 1) from
which all further information can be obtained. According to the concepts of the
standard template library (STL [10]), we provide iterators for the cells as well as
the vertices of the cell complex. In analogy to the STL we use a formulation with
begin() and end(). In order to obtain the base traversal mechanisms between
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Name Description Requirements
vertex iterator iterator over vertices iterator concept

vertex begin(), vertex end() iterator range const
cell iterator iterator over cells iterator concept

cell begin(), cell end() iterator range const
cell vertex local traversal iterator constructable with cell
vertex cell local traversal iterator constructable with vertex

Fig. 2. Concepts for the topological base structure

vertices and cells we define traversal iterators. These traversal iterators perform
the operations shown in Fig. 1, (c) and (j).

Due to the concept definition (Fig. 2) of the cell complex container we can for-
mulate algorithms conveniently. As an example we present an algorithm which
traverses all vertices as well as all cells.

Global Traversal

c e l l c omp l e x t cc ;
c e l l c omp l e x t : : v e r t e x i t e r a t o r v i t ;
for ( v i t = cc . v e r t ex b eg in ( ) ;

v i t != cc . vertex end ( ) ; ++v i t )
{

// do something on v e r t i c e s
}

c e l l c omp l e x t : : c e l l i t e r a t o r c i t ;
for ( c i t = cc . c e l l b e g i n ( ) ;

c i t != cc . c e l l e n d ( ) ; ++c i t )
{

// do something on c e l l s
}

A direct consequence of the use of the iterator ranges vertex begin(),
vertex end() is that standard algorithms such as for each are automatically
supported.

3.2 Topological Elements and Handles

The data structures for single topological elements is kept to a bare minimum.
In general, each topological data structure covers a so called handle in order
to be distinguishable from other topological elements. Basically any type can
be used for these handles, which allows to uniquely identify the element within
all elements of the same dimension. The value of such handles itself does not
have any semantic meaning apart from being equal. The only valid operation on
handles is, therefore, the equality relation.

For inter-dimensional topological elements a unique identification can be
found either via storing all the vertices or storing a cell and a local index which
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determines the element within the cell. We discuss vertex based indexing in the
following. A handle of an inter-dimensional element is uniquely constructed by
the vertex handles, e.g. hF = hv1 + n · hv2 where the following abbreviations are
used:

– hF : the handle used by a faces
– hvi : the handle from each vertex
– n: the number of vertices

For this reason the reconstruction of vertex information from the handle is
straightforward. This covers incidence operations (Fig. 1 (d) and (g)).

3.3 Archetypes

As we only store incidence information between cells and vertices (Fig. 1 (c) and
(j)) the incidence relation between inter-dimensional elements is still undefined.
There are many methods to specify this kind of information, for instance to use
containers and explicitly storing this information. Even though this is possible
and can be used in cases where high performance is required, such methods
result in a high memory consumption, because most of the information has to
be duplicated.

In the following we take advantage of the fact that all elements within the
container have the same shape (e.g. tetrahedral elements). If this is not the case
(e.g. we have a small number of elements of different shape), we have to perform
a dispatch operation in order to obtain the correct shape.

The concept that provides the internal structure of the cells within the cell-
complex is called an archetype. The archetype [6] introduces local inter-
dimensional elements within a cell. A topological 2-simplex, for example, consists
of three vertices and three 1-faces (edges). The archetype can be shown either
as simple graph or Hasse diagram (Fig. 3).

Using the archetype concept as well as the vertex on cell relation (Fig. 1 (j))
we can derive further traversal mechanisms (Fig. 1 (k) and (l)) as each cell is
aware of its covered vertices.

Fig. 3. The graph as well as the Hasse Diagram of the 2-simplex as well as a 2-cuboid
archetype
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3.4 Traversal Operations

Once the archetype as well as the vertex-cell incidence information is available,
all incidence relations between arbitrary elements of the cell complex can be cal-
culated. The topological framework stores vertex-cell incidence relations within
the container which can be seen in Fig. 1 (c) and (j).

We present an example using the simplex archetype to introduce the com-
putational operations that complete the traversal operations. All other relations
((a,b)(d,e,f,)(g,h,i)(k,l)) in Fig. 1 are taken care of by the framework. From topo-
logical handles of inter-dimensional elements vertex on element iteration can be
obtained (Fig. 1 (d) and (g)). Due to the archetype information we obtain the el-
ement on cell traversal (Fig. 1 (k) and (l)). These base relations are sufficient for
the construction of all other element-element incidence relations. The following
algorithm gives a generic implementation for obtaining the traversal information
via the base operations.

Incidence traversal

get a l l v e r t i c e s which belong to the element (d ) ( g ) ( j )
get a l l c e l l s which belong to these v e r t i c e s ( c )
get a l l n−dimens ional sub−e lements on those c e l l s ( j ) ( k ) ( l )
s e l e c t the i n c i d en t e lements ( by vertex−comparison )

We show the application of this algorithm using the example of faces on
edge traversal (Fig. 4, Fig. 1 (e)). From the initial edge we obtain the vertices
which are located on the edge using the basic traversal mechanism (d). Using
the vertex-cell (c) information we obtain all cells which cover the vertices. We
obtain all faces which are on these cells by method (k). From this set we select
only the faces which are incident with the initial edge.

Fig. 4. Construction of the faces on edge traversal set. (left) The initial edge. (middle)
The vertices on the initial edge. (right) Incident faces.

As all of these operations are local, we do not need to iterate all elements
of a cell complex in order to perform an incidence traversal operation. This
construction method is superior to an explicit search of topological elements
within the complete cell complex for large meshes.
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3.5 Generalized Iterator Concept

In order to allow an arbitrary number of nested traversal operations, which is
often required in applications, it is necessary to have appropriate data structures
for traversal in order to keep the program code as concise as possible. For this
reason we use the random access iterator concept in order to provide access to
the topological elements. We refine the iterator concept [7] for data structural
convenience (Fig. 5). In contrast to the STL iterator concept, dereferentiation
of this generalized iterator does not provide the data content but a handle, that
is used as a key to access a property map or quantity [11] in order to obtain
the contained data. Our iterator concept is a refinement of the random access
iterator concept and introduces the following additional concepts.

Name Description Requirements
bool valid() validity of iterator (not end) const

iterator end() past end of iterator validity const
void reset() set to the start point const

Fig. 5. Concept refinement for the generalized iterator within the topological frame-
work

To demonstrate the application of the valid() predicate we show a simple
example of two nested iterations. We traverse from a base vertex to all incident
edges and from these edges to incident vertices. (Fig. 1, (a) and (d))

The validity concept and its application

c e l l v e r t e x v o c i t ( c e l l ) ;
while ( v o c i t . v a l i d ( ) )
{

ver t ex edge e o v i t (∗ v o c i t ) ;

while ( e o v i t . v a l i d ( ) )
{

// opera t i ons on edges
++eov i t ;

}
++voc i t ;

}

In the first traversal state, a cell is used to perform an iteration over all its
incident vertices. Each incident vertex *voc it is available in the outer loop. The
inner traversal loop is initiated using the actually traversed element of the outer
loop. From this vertex we obtain all incident edges using the dereferentiation of
the inner iterator.

In order to use standard algorithms of the STL, a data structure has to provide
an initial as well as a terminal element. For this reason the end() function can
be employed.
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The iterator end functionality and its application

struct func ob j {
void operator ( ) ( c e l l t c e l l ) { cout << c << end l ;}
} ;

c e l l v e r t e x v o c i t ( c e l l ) ;
f o r e a ch ( v oc i t , v o c i t . end ( ) , func ob j ( ) ) ;

As many of the iterators require a non-negligible time for construction, it
is often more efficient to use an iterator twice rather than creating a second
instance for the same purpose. For this reason we introduce the reset function
that enables us to reset an iterator to the beginning of the iteration range.

Usage of the reset function

c e l l v e r t e x v o c i t ( c e l l ) ;
for ( ; v o c i t . v a l i d ( ) ; ++vo c i t )
{ // . . . some opera t i on
}
v o c i t . r e s e t ( ) ;
for ( ; v o c i t != v o c i t . end ( ) ; ++vo c i t )
{ // . . . some opera t i on
}

4 Generalized Data Access

The topological data structure itself, however, is not sufficient to perform com-
plex calculations on such a structure. For this reason we provide means for the
storage of values on the topological container. Each of the topological elements
such as vertices or edges can be associated with one or more values.

In our approach, the property map concept [7] is adopted, which offers the
possibility of accessing the quantities in a functional way by a mechanism called
quantity accessor. The quantity accessor implementation also takes care of ac-
cessing quantities with different data locality, e.g., quantities on vertices, edges,
faces, or cells. The quantity accessor is initialized with a domain. During ini-
tialization, the quantity accessor quan is bound to a specific domain with its
quantity key. The operator() is evaluated with a vertex of the cell complex as
argument and returns a reference to the stored value.

Quantity assignment

s t r i n g key quan = ” u s e r quan t i t y” ;
quan t quan = sca la r quan ( domain , key quan ) ;

quan ( ver t ex ) = 1 . 0 ;

In the following code snippet a simple example of the generic use of this
accessor is given, where a scalar value is assigned to each vertex in a domain. The
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quantity accessor creates an assignment which is passed to the std::for each
algorithm.

Quantity assignment

s t r i n g key quan = ” u s e r quan t i t y” ;
quan t quan = sca la r quan ( domain , key quan ) ;

f o r e a ch ( cc . v e r t ex b eg in ( ) , cc . vertex end ( ) , quan = 1 . 0 ) ;

5 Conclusion

A computational mechanism was introduced for completing traversal operations
obtained from the archetype’s structure and a minimum of explicitely stored
information. As a result we presented a framework that provides a complete
means of topological traversal operations based the concept of archetypes.

Our framework presented here integrates well into existing software compo-
nents such as the STL.

The use of clean, well defined iterator interfaces alongside generalized stan-
dard routines makes it possible to develop orthogonal and modular software.
Futhermore the provided means are not only sufficient to build a homoegenous
interface but can also be used to implement several discretization schemes.
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Abstract. The potential for Grid technologies in applied bioinformatics
is largely unexplored. We have developed a model for solving compu-
tationally demanding bioinformatics tasks in distributed Grid environ-
ments, designed to ease the usability for scientists unfamiliar with Grid
computing. With a script-based implementation that uses a strategy of
temporary installations of databases and existing executables on remote
nodes at submission, we propose a generic solution that do not rely on
predefined Grid runtime environments and that can easily be adapted to
other bioinformatics tasks suitable for parallelization. This implementa-
tion has been successfully applied to whole proteome sequence similarity
analyses and to genome-wide genotype simulations, where computation
time was reduced from years to weeks. We conclude that computational
Grid technology is a useful resource for solving high compute tasks in
genetics and proteomics using existing algorithms.

1 Introduction

Bioinformatics is a relatively new field of biological research involving the in-
tegration of computers, software tools, and databases in an effort to address
biological questions. Areas include human genome research, simulations of bio-
logical and biochemical processes, and proteomics (for example protein folding
simulations). With an increasing amount and complexity of data in genomics
and genetics generated by today’s high-throughput screening technologies and
the development of advanced algorithms for mining complex data, computational
power now sometimes defines the practical limit. High performance computing
or alternative solutions are required to undertake the intensive data processing
and analysis. Grid computing [1], offers a model for solving massive computa-
tional problems by subdividing the computation in a set of small jobs, executed
in parallel on geographically distributed resources.

However, the current job management process on Grid environments is rel-
atively complex and non-automated. Biologists who want to take advantage of
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Grid resources face a process of having to manually submit their jobs, periodi-
cally check the resource broker for the status of the jobs (“Submitted”, “Ready”,
“Scheduled”, “Running”, or “Finished” status), and finally get the results with
a raw file transfer from the remote storage area or remote worker to the local file
system of their user interface. Different solutions for increasing the usability, scal-
ability and stability in computational Grids have recently been proposed [2], [3].

The presented implementation represents a model by which access and uti-
lization of Grid resources is greatly facilitated, allowing biologist and other non-
Grid-experts to exploit the Grid power without necessarily having knowledge
of Grid related details and procedures. The utility of this implementation is
demonstrated by application to two computationally expensive bioinformatics
tasks: Whole proteome sequence similarity analysis and genotype simulations
for genome wide linkage analysis

2 Methods

In order to make the interaction with the complex computational environments
on Grids more straightforward to the biologically oriented scientists, the fol-
lowing tasks were automated: Proxy setup handles the user authentication as a
member of a Virtual Organization (VO) and grants the user access to the Grid
resources. By default, twelve hours is the time for the proxy to be in effect. After
the proxy expires, the task of re-creating new proxy is automatically scheduled
in the local Grid client. Job submission involves the remote distribution of the
split input data files or databases, as well as the executable binary files to the
Grid workers. For each Grid job submitted, a Grid job specification is created
using the Resource Specification Language (RSL). Processing. After job submis-
sion, a local temporary installation of datasets and executables in the allocated
remote nodes is performed. After that, parallel execution is started in remote
nodes, and a constant monitoring of the current job’s status is performed. Job
re-submission in case of job failure or excessive delay in Grid queue systems is
also handled. Job collection. When specific Grid jobs are finished, partial results
are downloaded from the remote Grid workers to the local computer. This mod-
ule is also able to handle parallel retrieval of several finished jobs. The figure 1
shows a graphical description of the Grid framework configuration used for this
implementation.

3 Implementation

A Perl script based Grid broker that ensure unique user authentication was
implemented, allowing the user to remotely deploy and execute pre-existing al-
gorithms or software across available Grid resources at submission time. The
presented solution is adjusted to NorduGrid ARC [4], but can be easily adapted
to any Globus based Grid middleware.
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Fig. 1. Grid computing Framework for application in Bioinformatics

This implementation can be adapted to tasks suitable for parallelization where
an existing Linux executable exists. The implementation consists of two Perl
scripts:

gridjobsetup.pl. Manages two main tasks. Firstly, the “big” computationally
expensive task is partitioned into a user-selected number of smaller equally sized
atomistic jobs, each corresponding to a fraction of the total data. Secondly,
for each datra fraction, a Grid job specification is created using the resource
specification language (RSL).

gridbroker.pl. This is the Grid broker. Its function is to manage the submis-
sion, monitoring and collection of the Grid jobs. Following node allocation and
job submission, gridbroker.pl performs temporary installations of the deployed
executable on the Grid nodes/remote workers, and parallel execution of the Grid
jobs is started. gridbroker.pl constantly monitors the parallel execution of the
distributed tasks, and in the case of job failure or if a job or set of jobs are
excessively delayed in the work-queue scheduler, gridbroker.pl manages the re-
submission of this job or set of jobs to different available Grid workers. When
jobs reach the status of “finished”, forked download of specific job-results to the
user local file system is performed. The partial Grid job results are finally con-
catenated to generate the output file. A fraction of the Perl implementation of
the broker is shown below. The code shows a loop that manages the submission
of a user defined number of Grid jobs; a vector of Grid job identifiers is created
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in memory and in an archive. This vector will then be used to mange the mon-
itoring and downloading of the jobs. A log file that registers submission start
and finish times is also created.

Fraction of the Algorithm that Manage the Submission of Grid Jobs

Input: XRSL-specification(s) of a number of Grid jobs;
for each Grid job,a set of specific input parameters.
Action: Submit the given number of Grid jobs.
Output: Vector of Job’s id and file with timings.
1. Process XRSL-specification
2. Create a time-log-file and register the start of

submission
3. Create and open a job-id-file
4. For each job

(a) Select the cluster(s) to which the job will be
Submitted

(b)Submit the job
(c)Collect the retrieved job-id
(d)Push the collected job-id in a vector
(e)Push the collected job-id in a job-id-file

5. Register in time-log-file the end of submission
6. Close time-log-file
7. Close job-id-file

Fraction of Algorithm that Manage the Monitoring and Downloading
of Finished Grid Jobs

(The following algorithm shows the constantly monitoring of job’s status using the
previously created vector of jobs identifiers; in case of job “failure”, re-submission of
jobs is performed, jobs that have successfully reached the status of “finished” are down-
loaded.)

Input: job-id vector and job-id-file.
Action: Monitoring and collection of Grid jobs and resubmission if
"job-failure".
Output: Collection of finished Grid Jobs and time-log-file.

1. While number of downloaded jobs <= number of total
Grid jobs submitted

2. For each job:
(a)Monitoring status of vector job-id[i]
(b)If status of job-id[i] is "FAILURE" then:

i. Re-submit job- id[i] to available Grid cluster
ii. Delete old and push new retrieved job-id
iii. Delete old and push new job-id in job-id File
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iv. Register re-submission time in the log-file
(c)If satus of job-id[i] is "FINISHED" then:

i. Collect job-id[i] and register time
ii. Push job-id[i] from vector of Job’s id
iii. Push job-id[i] from file of Job’s id
iv. Increase the counter of downloaded jobs
3. Register end of job-collection and close log-file

4 Results

XWe have aimed to develop a generic Grid implementation for solving bioinfor-
matics tasks suitable for parallelization where neither pre-selection of available
Grid nodes nor pre-installation of software or databases will be necessary. Ex-
isting Linux-based executables can be used when scaling up tasks prohibitively
time-consuming to perform in single work stations, as our solution will not re-
quire re-codification or programming modifications. The implementation is also
applicable in situations where the source code is not available. To streamline
the process we chose the strategy of making temporary installations of the ex-
ecutable and databases locally at each remote node at submission, followed by
un-installation after download and collection of the results. By avoiding the need
of predefined run-time environments, this implementation limits the interaction
with Grid administrators for installation of applications/software and updates,
thereby accommodating for dynamic Grid environments in which available nodes
change between submissions. This strategy is however not applicable for instance
in cases when a database management system (DBMS) is required, typical ex-
amples of DBMSs like Oracle, Microsoft SQL Server or MySQL, will necessary
need the use of a specific run-time environments.

Our implementation was evaluated in two highly computer intensive real ap-
plications in proteomics and genetics:

The first application deals with whole proteome protein similarity analysis
using a sliding window algorithm [5]. In contrast to ordinary blastp queries
aligning full length query protein sequences, the sliding window approach re-
sults in a significantly higher number of blast searchers. Using a sliding win-
dow size of 51 amino acids, the number of blastp searches for a 1000 amino
acid protein increase from 1 to 950. For the entire human Ensembl database
[http://www.ensembl.org] of close to 34,000 human proteins, this corresponds
to about 15,000,000 blastp searches. The time needed to run this number of
blastp searches on a single computer was about eight weeks. As the Ensembl
database is constantly evolving and being updated, where protein sequences are
added, changed or deleted, frequent reprocessing of the database becomes neces-
sary in the HPA program [http://www.proteinatlas.org] in order to work with
the most accurate data at any one time. Once a new version of the database is
released, the sequence similarity data on which the epitope design is based needs
also to be updated. The computational requirements for this task were exceed-
ing in-house resources if the processed results of a database update were to be

[
[
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delivered before it was already obsolete. With a Grid implementation where lo-
cal installations of both the blastp executable and the entire Ensembl database
was performed on each node (a total package of a size of 16 MB)[5], runtime
was reduced from about eight weeks on one single up-to-date computer, to less
than 24 hours using 300 Grid nodes in Swegrid [http://www.swegrid.se]. The
absolute speed-up for this application was calculated as:

Sp =
T s

1

Tp
(1)

Where T s
1 is the sequential run-time, and Tp is the execution time in p Grid

nodes. Using the complete human Ensembl database as input, speed-up of 56
fold was archived, this was calculated by dividing T s

1 = 1344 hours by Tp = 24
hours (the Grid run-time with same data as input in 300 Grid processors in
Swegrid). The expected linear speed-up (300 fold in 300 nodes) was not archived,
mainly due to Grid latency. By making a local installation of a database at each
submission, the speed of running queries against a local database was obtained
together with running against the most recent update. The alternative strategy
of storing the database in one single “Grid storage resource” accessed by all
the other nodes, proved to create an I/O overload in the Grid storage server,
resulting in a significant increase of the total runtime.

The second application was facilitating computer simulations of genotypes
using a HMM based software [6], in order to evaluate the significance of genome-
wide linkage data. This was applied in a study aimed to identify novel genes
involved in the pathogenesis of Alzheimers disease (AD) by performing a non-
parametric multipoint linkage analysis on AD families from the relatively genet-
ically homogeneous Swedish population. On a genome-wide scale, this task is
extremely computationally intensive. In the absence of sufficient computational
resources the number of simulations would therefore have to be limited, which
could lead to the estimation of insufficient global significance levels and false
positive linkage claims. We developed Grid-Allegro [7] which was used in the hy-
pothesis testing to evaluate the statistical significance of the linkage data under
the null hypothesis of no linkage using a set of 109 AD families. Serial execu-
tion time required to perform the minimum required 22000 genotype simulation
analyses was reduced from the projected time, more that 3 years on a single
up-to-date CPU, to less than 3 days when distributed computing was performed
in 600 Grid workers in Swegrid [7].

5 Discussion

There are several computationally demanding algorithms and tasks in bioin-
formatics that may cause a computational overload when scaled up. To the
researcher without access to expensive resources in-house such as dedicated clus-
ters or computer farms, Grids represents a cost-effective and powerful resource.
However, a current obstacle especially to the biologically oriented researcher
is managing the middleware that is still raw and hardly accessible. For the

[
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non-computer scientist, more user-friendly alternative solutions are necessary.
One alternative is to develop web-based user front-end services of underlying
Grid implementations, which are accessed by third party users. This is the most
accessible alternative of exploiting Grid resources, as it is associated with min-
imal complexity where no necessary previous knowledge of distributed comput-
ing is required by the user. Grid resource brokers and job submission services
based on Grid and Web services have been previously proposed [8]. However,
for our specific purposes, we decided to use a generic, script-based strategy for
implementing Grid-aware applications of bioinformatics task that are suitable
for parallelisation. Our major concerns were related with security, stability and
usability. Although Grid security is based in public key infrastructure (PKI)
and this architecture offers strong security levels for the Grid end-user, current
PKI implementations suffer from serious usability issues, especially when applied
to web-based Grid-services. [9] Strong efforts are required in searching for new
mechanisms for increasing the usability of Grid security. [10]

Web-based implementations also confine the input submission format to those
defined or envisioned by the provider/developer, which may reduce the flexibil-
ity for the third party user. Furthermore, Web-based Grid implementations may
require re-codification of previously existing single CPU-oriented algorithm im-
plementations. The developer assumes the administrator responsibility for main-
taining the availability and updating of the resource. When web-based services
are developed and provided through large initiatives [11], this indeed represents
a transparent and user-friendly solution. However, new applications depend on
continued development and implementation by these providers, and are hence
not always available to meet the specific needs in individual third party projects.
The alternative generic strategy, although requiring basic computer knowledge
by the user, greatly increases the flexibility by enabling the implementation to
be applied to similar distributable computation-demanding tasks.

In conclusion, our implementation facilitates the biologically oriented
scientist’s remote deployment and execution of pre-existing codifications of bioin-
formatics algorithms across multiple Grid resources. By applying this implemen-
tation in solving two data and CPU intensive tasks, we have demonstrated the
potential utility of Grid technology for addressing highly computational demand-
ing bioinformatics task.
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Abstract. OGSA-DAI (Open Grid Services Architecture - Data Ac-
cess and Integration) provides an extensible software framework allow-
ing data resources, such as files, relational and XML databases, to be
exposed through Web services acting within collaborative Grid environ-
ments or, more modestly, in stand-alone mode. OGSA-DAI may be de-
ployed to WSRF-based platforms, such as the Globus Toolkit 4, as well
as non-WSRF based ones, such as the UK OMII Server or standard
versions of Tomcat and axis. Regardless of the platform, the core func-
tionality provided remains the same. OGSA-DAI allows data resources
to be accessed and integrated into the main infrastructures presently
being used to construct Grids. OGSA-DAI provides a number of optimi-
sations that reduce unnecessary data movement by shifting work to the
Web service and encapsulating multiple client-Web service interactions
into a single one, and allows for functionality to be added or customised
based on the application. OGSA-DAI is widely used and is available from
www.ogsadai.org.uk. It is also bundled with the OMII-UK and Globus
Toolkit distributions. This paper gives an overview of what OGSA-DAI
is, how it works, presents some usage scenarios, and outlines future en-
hancements.

Keywords: Data, Databases, Grid, OGSA-DAI.

1 Introduction

With current advances in technology and the decreasing cost of storage, increas-
ingly large amounts of data are being produced, maintained, kept on-line, and
shared within communities. For instance, astronomers are collecting data to-
gether, such as surveys of the sky made at different wavelengths and resolutions,
and making it collectively available through Virtual Observatories [1]; biologist
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are gathering DNA and genomic data from different species and making this
data available to biologists through data stores, providing a rich source of data
to pursue insights into biological systems [2] and in the health sector, digital
medical data are being collected and maintained by hospitals allowing experts
to collaborate in patient diagnosis and providing case histories that can be used
to inform a prognosis for patients suffering from similar maladies [3,4].

The need to access disparate data sources, often spanning multiple institu-
tions, can lead to new insights and discoveries to be made. By combining different
wavelength data for the same patch of sky, astronomers have been able to make
new discoveries that would not have otherwise been possible from a single survey
[5,6]. Biologists now have the capability of performing cross-species comparisons
to determine new genes and their function [7]. Doctors can improve the diagnosis
of breast cancer by comparing current mammographs with old mammographs in
combination with the associated patient histories [8]. The advantage being able
to share data and resources in a controlled manner within a collaborative envi-
ronment is clear. The provision of generic middleware to facilitate this process
is the ethos that is currently driving the evolution of the Grid and, in the data
area, OGSA-DAI (Open Grid Services Architecture - Data Access and Integra-
tion) provides software which makes it easy to publish and share data across
organisational boundaries, and develop applications which use both public and
personal data resources, through a secure, extensible framework based on web
service standards.

OGSA-DAI is not the only solution currently available for data in the Grid
space. Storage Resource Broker (SRB) [9], developed by the San Diego Super-
computer Center, provides access to collections of data primarily using attributes
or logical names rather than using the data’s physical names or locations. SRB
is primarily file oriented, although it can also work with various other data ob-
ject types. OGSA-DAI on the other hand takes a database oriented approach to
its access mechanisms. WebSphere Information Integrator (WSII), a commercial
product from IBM, provides data searching capabilities spanning organisational
boundaries, provides a means for federating and replicating data, as well as al-
lowing for data transformations and data event publishing to take place [12]. A
more detailed comparison between OGSA-DAI and WSII can be found in [10].
Mobius [11], developed at Ohio State University, provides a set of tools and
services to facilitate the management and sharing of data and metadata in a
Grid environment. To expose XML data in Mobius, the data must be described
using an XML Schema, which is then shared via their Global Model Exchange.
Data can then be accessed by querying the Schema using, for example, XPath.
OGSA-DAI, in contrast, does not require an XML Schema to be created for
each piece of data; rather, it directly exposes that information (data and meta-
data/schema) and relies on the resource’s intrinsic querying mechanisms to query
its data. These three products all provide mechanisms to share data across or-
ganisational boundaries, however they complement the functionality provided
by OGSA-DAI.
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In the remainder of this paper OGSA-DAI will be examined in more detail.
Section 2 gives an overview of the current release of OGSA-DAI explaining the
underlying components and how they operate. Section 3 describes some common
patterns of use for OGSA-DAI, and Section 4 describes some of the future work
planned for the next release. Finally conclusions are provided in Section 5.

2 An Overview of OGSA-DAI

The first thing to note about OGSA-DAI is that it is not targeted directly at
the end user, but rather it gives service providers the base functionality which
they can use to create their own services and clients to expose data tailored
to their own communities. OGSA-DAI has been made extensible by design so
that any missing functionality can be developed and grafted to work within
the same framework. In addition, different security models may be employed,
static metadata can be exposed via configuration files, and dynamic metadata
can be created and exposed at the service via the use of call back functions.
OGSA-DAI may also be extended to support new types of data resources that
are not already supported by the OGSA-DAI distribution. For example, the
WebDB project has extended OGSA-DAI to cater for RDF based data [13]. Use
of OGSA-DAI allows service providers to develop and deploy their own Grid
solutions much more quickly and effectively than might otherwise be the case.

OGSA-DAI is tested and operates well with two current Grid fabric providers,
the Globus Toolkit1 and the OMII-UK2 and there are plans to port OGSA-DAI
to work with UNICORE3 and gLite4 under the OMII-Europe project [14]. This
ensures that, if any of the above toolkits is to be used, that the OGSA-DAI
services will meet user and developer needs in a wide variety of environments.

In OGSA-DAI data resource and service capabilities are exposed through the
use of activities, the basic unit of work within OGSA-DAI. At the server, an
activity is described by a piece of XML Schema specifying the syntax of an
XML fragment that is used to activate an associated Java implementation class
that performs the desired task at the server. Different XML activity fragments
may be composed together in a perform document which contains one or more
activities linked together through a named set of inputs and outputs describing
the data flow between them. For example, an XPath query activity can wrap
an XPath expression which then acts on an XML database, the results of this
can then be transformed using XSLT activity and finally the transformed results
may be delivered to a specified third party using a delivery activity. It is this
ability to encapsulate multiple interactions in a single Web service interaction,
through the use of perform documents, which otherwise would require multiple
distinct client-service interactions, coupled with the fact that activities provide
a framework for moving computation close to the data that is seen as one of
1 www.globus.org/toolkit
2 www.omii.ac.uk
3 www.unicore.org
4 www.glite.org
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the advantages of using OGSA-DAI. More complex behaviour may be obtained
by composing OGSA-DAI services together and using these to provide more
sophisticated capabilities such as Distributed Query Processing as provided by
the OGSA-DQP project [16].

The OGSA-DAI Client Toolkit (CTk) provides a programmatic interface that
facilitates programming interactions with OGSA-DAI services. The CTk has an
activity representation for each of the server side activities – these representa-
tions are essentially used to produce the XML fragment, within the context of
a perform document, to trigger the corresponding server side activity. The CTk
also provides a programmatic means for composing the client-side activities to-
gether to construct the desired perform document – in this way the user does
not need to have to deal with any of the underlying XML. In addition, the CTk
also handles the interactions with the service and provides methods to add (or
extract) data from the request (or result) messages, respectively. Moreover, the
CTk is agnostic as to whether a WSRF or non-WSRF service is being accessed
providing an additional abstraction layer hiding the particular flavour of OGSA-
DAI service that is being contacted. The overall aim of the CTk is to facilitate
the provision of clients to interact with OGSA-DAI services.

Putting the above into context a schematic representation of an OGSA-DAI
service is shown in Figure 1. A client, built using the CTk, sends a perform
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Data Service
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Accessor

XMLDB
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Data Resource 
Accessor
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Role Mapper

Fig. 1. A schematic representation of an OGSA-DAI service
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document to an OGSA-DAI data service, which in the instance shown has three
types of data resource associated with it. In the WSRF version of OGSA-DAI
WS-Addressing end point references are used to specify the data resource being
targeted by the client [17]. For the non-WSRF version the data resource name,
specified at deployment time, is appended to the service URL, for example

http://myhost:8080/MyService

would become:

http://myhost:8080/MyService/MyDataResource.

Once a message is accepted by the service interface, the functionality for
both flavours of OGSA-DAI is the same. A perform document and any Grid
credentials are passed through the service layer to the Engine of the targeted
data resource. The Engine coordinates the running of the activities in the per-
form document. A Data Resource Accessor (DRA) wraps the underlying data
resource: this abstraction facilitates the addition of new types of data resources
to OGSA-DAI. The Engine passes any Grid credentials to the DRA and, if these
are valid, the DRA returns an open connection to the data resource that can
then be used by any activity that interacts with the data resource. The DRA
consults a Role Mapper that maps Grid credentials, essentially the distinguished
name, to a database role that can be used to access the database. OGSA-DAI
comes with a basic role mapper that attempts to match a database role (repre-
sented as simple username and password pairs) within an XML file for a given
a set of Grid credentials, thus allowing database systems which do not use Grid
credentials to be accessed, albeit not in a scalable fashion. This is another ex-
tensibility point where service providers would wish to develop their own role
mapper and substitute the existing one: two groups have developed different
solutions to this.

The OGSA-DAI Engine ensures that all activities run correctly and coordi-
nates the passing of data from one to the other. Failure in one activity signifies
failure in the execution of the whole perform document. As yet there is no trans-
actional behaviour, including rollback mechanisms, although this is planned for
a future release. Data may be piped in from a third party using a delivery from
activity or sent to a third party using a delivery to activity, both of these can
use other transport protocols to pipe data into or out of a service obviating the
requirement for SOAP and using, for example, GridFTP, FTP or HTTP to fetch
data or send it to a third party. If the processing completes successfully the data
or status of the processing is sent back to the client in a response document.

From this brief overview we can see that OGSA-DAI is a sophisticated piece
of middleware that provides a uniform access interface to various types of data.
It partially virtualises data: intrinsic connection mechanisms to the underlying
data resource are no longer a concern but a client still needs to know the under-
lying type of data model that is being used – for instance SQL queries need to
be targeted at a relational data resource and will make no sense when targeted
at an XML database. Moreover, query expressions targeted at a particular data
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resource are not inspected so any vendor specific language extensions must also
be appropriate for the underlying data resource used. A client is able to deter-
mine the type of the underlying data resource via metadata available through
the service interface that then allows it to direct the appropriate type of queries
for that type of data resource. However, OGSA-DAI does provide the basis for
providing data model integration, through the use of transformation activities
which e.g. translate the results of queries to XML and relational data resources
into WebRowSet before aggregating them. This then outlines the basics of the
OGSA-DAI framework. The next section briefly outlines a couple of usage sce-
narios.

3 Deployment Scenarios

OGSA-DAI provides a versatile framework which can be used to provide data
access capabilities within Grid infrastructures. Many projects already use OGSA-
DAI, primarily in research areas such as GIS and bioinformatics. An up to date
list can be found on the OGSA-DAI website5.

Five basic common usage patterns are illustrated in Figure 2.

OGSA-DAIClient 1

Redirector

Client 2

OGSA-DAIClient

Simple Intermediary

OGSA-DAIClient

Persistent Intermediary

OGSA-DAIClient

Coordinator

Client

OGSA-DAI

OGSA-DAI

Assembly Network

OGSA-DAI

Fig. 2. OGSA-DAI scenarios

The simple intermediary is the simplest archetypal usage scenario supported
by OGSA-DAI, and is the basis for many of the higher-level scenarios. This
scenario consists of an OGSA-DAI service interposed between client applications
5 See http://www.ogsadai.org.uk/about/projects.php
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and a data resource providing a consistent interface for different kinds of data
and supporting a rich, extensible set of operations that can be performed on that
data. Using this base scenario one can envisage many discoverable OGSA-DAI
services listed in third party registries and used by clients to retrieve data for
their specific ends, all different types of data shared and made available through
a common interface. In addition, examination of this basic usage pattern has
also led to various optimisations being made for the 2.2 release of OGSA-DAI,
see [18] for more details.

The persistent intermediary scenario illustrates the use of mechanisms for stor-
ing intermediate results which can then be used by subsequent requests. These
intermediate results could be stored transparently in memory, a local database,
the local file systems or some other suitable means on behalf of the OGSA-DAI
service clients. This scenario currently is partially supported by using the OGSA-
DAI dataStore activity which currently holds results in memory, although this
can be extended to hold results in more permanent storage. It can also be im-
plemented using OGSA-DAI by storing data temporarily in a scratch database
accessible by the service. This functionality allows a coordinating service to hold
temporary data to perform data joins from multiple data resources.

The redirector scenario allows data to be sent to a third party, including
the originator, as opposed to embedding it in the response. Moreover the third
party delivery protocol does not have to be SOAP based – data can be delivered
using GridFTP, ftp, or some other delivery means. In this instance SOAP is
effectively being used as the control channel while the data channel is done via a
more efficient transport protocol. OGSA-DAI supports this scenario by allowing
a number of alternative data transport mechanisms that can also be used to
transfer data into OGSA-DAI services.

In the coordinator scenario, an OGSA-DAI service interfaces to an arbitrary
number of data resources and presents them as a composite resource to its clients,
producers, and consumers. This means that data can be routed between data
resources or combined from those resources within a single request or session
without routing data via the client. There is already some support for this type
of scenario in OGSA-DAI as multiple data resources can be configured per data
service and used with specialised query activities to provide resilient querying of
a set of data resources sharing a common schema. This presents the set of data
resources as a single virtualised data resource.

In the network assembly scenario an OGSA-DAI service uses an arbitrary
number of other OGSA-DAI services as well as data resources already curated
by the service in order to collect together data. This type of service coordination
successively adds facilities that may be used in combination towards achieving
a data-oriented workflow. The invoked services in this workflow do not have
to be OGSA-DAI services. The multiple services may form a pipeline in order
to draw on additional computation facilities or a tree in order to place parts
of a total query close to the data sources. As this permits arbitrary fan out
and arbitrary recursive composition, many architectures are possible: a sim-
ple example is shown above. OGSA-DQP provides an instance of the assembly
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network pattern using OGSA-DAI services as well as some of their own service
types.

In general the documentation of scenarios like those described above is bene-
ficial as a means of providing best practice and guidelines for using the features
and components of OGSA-DAI. There is insufficient space here to go into more
depth but best practice and guidelines are being documented in the OGSA-DAI
Web pages6. These scenarios, as well as other inputs such as performance studies
[19], are being used to motivate the future directions being taken by OGSA-DAI
which are briefly outlined in the next section.

4 Future Directions

A number of architectural changes are about to be introduced into the next
OGSA-DAI release and following releases. Some of the highlights are:

– Improved scalability by providing load balancing capabilities to dispatch in-
coming request to different JVMs, potentially running on different machines,
to execute perform documents. Initial policies will be simple, eg. round-robin,
but additional more complex policies will be enabled as well.

– Improved robustness by allowing requests to run on different JVMs so if that
a request has aberrant behaviour it does not bring down the whole container
and compromise other jobs.

– Improved activity model to make it easier to develop and maintain activities
while at the same time providing more powerful mechanisms to dynamically
configure activities.

– Improved sessions handling will allow activities to store and retrieve data
from an existing session, which could span multiple requests.

– A new resource model will allow perform documents to contain activities that
can access more than one resource exposed by an OGSA-DAI service (cur-
rently a perform document can only target a single data resource). This new
model will thus allow more powerful user-driven data integration scenarios to
be enacted by an OGSA-DAI service between multiple resources. It will also
allow other OGSA-DAI components to be treated as WSRF-resources. For
example, sessions, requests, and data sinks/sources (input/output streams)
can be modelled as resources which then allows these to be endowed with
mechanisms for lifetime management and authorisation as available in other
resources.

– New data integration activities taking advantage of the new resource model a
new set of data integration activities are being designed that should facilitate
the enactment of data integration scenarios.

– Distributed Query Processing capabilities are being introduced through the
absorption of the OGSA-DQP project, currently distributed separately from
OGSA-DAI, into the OGSA-DAI product itself.

6 See www.ogsadai.org.uk/documentation/scenarios for details.
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– A new tuple intermediate data format for relational data, called an ODTuple
(for OGSA-DAI Tuple), will provide a common way for connected activities
to exchange data. This will minimise the amount of data conversion that is
required take place between activities. This format is:

• light-weight,
• able to stream well within and between processes,
• efficient for single types, elements, and tuples,
• able to support base types plus String, File, BLOB, and NULL,
• able to supports warnings, errors and exceptions, and
• easily extensible.

This relational structure can be used to represent the majority of the cur-
rent data formats used within OGSA-DAI, such as WebRowSet and CSV
(Comma Separated Values).

These additions to the next release will make OGSA-DAI a more powerful
framework and increase the support for data integration as well as making the
scenarios described in the previous section easier to implement and extend.

5 Conclusions

This paper has provided motivation for the production of middleware to facili-
tate the sharing of data within established communities to enable new insights
and discoveries to be produced. The provision of middleware that facilitates this
process is the underlying motivation for OGSA-DAI. OGSA-DAI is not targeted
directly at the end-user but rather it provides a framework that has to be cus-
tomised for a given user-community by its own developers. Through the use of
OGSA-DAI the amount of effort required to produce these targeted data services
and applications should be greatly reduced. A snapshot overview of OGSA-DAI
has been given and some indicators of the future directions that are being taken
to enhance the product and provide additional capabilities for those that rely
on OGSA-DAI for their data access and integration base requirements. More
information about OGSA-DAI and the software may be downloaded from the
project Web site at www.ogsadai.org.uk.
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Abstract. We present a new infrastructure for high performance
streaming in OGSA/WSRF compliant grid. The UniGrids Streaming
Framework (UGSF) works with UnicoreGS as WSRF hosting environ-
ment. The paper discusses the advantages of mixed SOAP based control
with highly efficient streaming. The UGSF components, streaming server
and WSRF web service are described along with a detailed performance
analysis including comparison to standard solutions. Some applications
based on the UGSF are also presented.

1 Introduction

Current trends in grid technology is clearly focused on OGSA (Open Grid Ser-
vices Architecture) [1] which implies usage of the web services. The detailed
guidelines on how to build grid services are given by the WSRF specifications
[2]. The consensus about the importance of such approach was motivated by
many reasons. Here we can point to an interoperability as the most significant
one. The WSRF as well as other specifications allow developers to easily create
grid software compatible with other WSRF implementations. Moreover, as web
services technology is widely adopted in B2B applications, one can make use of
existing experiences and adopt available solutions. A good example is the BPEL
[3] specification defined for business processes, which is now being used as the
tool to define grid workflows. These reasons form a solid base for OGSA which
plays a vital role in grids nowadays. But we can not forget that web services also
have disadvantages. Here we will focus on two of them that are crucial for data
streaming.

The first and the most important drawback of web services is efficiency. Web
services technology is based on the SOAP protocol. This results in extensive
usage of XML. The obvious consequence is a large overhead for even a simple op-
eration: the SOAP engine has to perform a lot of XML parsing or encoding. More-
over, XML data encoding is very verbose, thus ineffective. In the most streaming
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applications such data overhead is undesirable. The other problem is data stream-
ing: SOAP is message driven and XML to be parsed must be fully read.1

Presented disadvantages cause that web services technology can not be seen
as suitable for any interactive, real-time application. It is hard to imagine a sci-
entist steering an interactive device with latency of every operation measured in
seconds. Of course, various XML technologies like binary encodings, aforemen-
tioned streaming processing of XML, MTOM [6] or TCP bindings can be used
to boost the performance of web services. We are sure that in some cases it is
possible to build streaming technology on top of such optimised web services.
An obvious advantage of such approach, is better integration with existing web
services agents (like new UniGrids gateway) and not much more. It is also clear
that such solutions can be useful only for less demanding streaming applications.

To solve the problem we have developed a hybrid system which is a platform
to build any type of streaming services managed in WSRF compliant way on.
The solution is highly responsive and efficient.

2 System Design

The UGSF system is based on the WSRF’s compliant version of the well rec-
ognized UNICORE middleware [8]. The UnicoreGS [7] is used as the WSRF
hosting environment.

The aim of the UniGrids Streaming Framework (UGSF) is to provide direct
data streaming and steering for applications. The main part of UGSF is UGSF
core which is a middleware that allows developers to create dedicated streaming
solutions.2 Substantial effort was made to prepare a system where the creation
of a specialized solution is as easy and quick as possible. Every system based on
the UGSF will use the core together with some application dependent code. The
UGSF core provides basic functionality common for all streaming applications.
This includes creation or shut-down of a connection. The system is designed
in such a way that a group of versatile software pieces can be reused. A good
example is the component to locate UnicoreGS job’s working directory and access
it’s contents.

The UGSF core consists of a UGSF Web Service part, a Streaming Server part
and a library to create clients. The usage of the last component is optional. The
UGSF Web Service takes advantage of WSRF capabilities. It is used to control
a set of available stream types, to create new streams and to manage already
created ones. The Streaming Server part is managed by a UGSF Web Service
and performs streaming. The cClient library is used to simplify the creation of
the client-side software. Overall architecture is shown in Figure 1.

1 It is worth to note that currently there are intensive efforts to eliminate this issue and
hopefully new generations of SOAP engines (as AXIS 2 [4] or XFire [5] with support
for StaX) will solve it.

2 We will use this therm whenever we will refer to basic framework, without actual
stream implementations which are also included in UGSF distribution.
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Fig. 1. The general architecture of UGSF

The UGSF core is complemented with stream implementations. These consists
of two parts: the streaming server and the web service modules. The web service
module implements control operations specific to the stream implementation.
The streaming server module deals with a wire streaming protocol and data
consumption/acquisition.

The general pattern of UGSF usage is as follows:

– The UGSF installation is configured by the system administrator, who de-
fines so called stream types. Every stream type is one stream implementation
with some configuration parameters (which can’t be modified by users).

– The user chooses the stream type and creates its instance. If the implemen-
tation stipulates that some user’s parameters are needed, then the user must
supply them. As a result a reference to the newly created stream manage-
ment WS-Resource is returned.

– The user can invoke any common (provided by UGSF core) or special (stream
implementation defined) operation on the WS-Resource assigned to the cre-
ated stream. The resource properties contain (among others) information
about how to connect to the UGSF streaming server to start streaming.

– The user connects to the UGSF streaming server and starts the data transfer.
It is possible to control the connection via the web service interface.

The Streaming Server and the clients built for UGSF are grid-enabled. There-
fore, the UGSF can be used to let legacy applications benefit from the grid
technology (e. g. grid authorization), using already developed stream implemen-
tations.

To accomplish general overview of the UGSF we present details about the
underlying transport level protocol. In principle, the UGSF is highly flexible and
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can be used for any application level protocol. Currently there is no possibility to
use any protocol than TCP. This decision was motivated by multiple factors. Our
first aim was to support tunneling of streamed data with the UNICORE gateway,
which can operate only on TCP connections. Another reason is that the usual
use of grid middleware requires high security and reliability of connections (e.g.
scientific applications which stream video must not loose any frames contrary
to typical multimedia situations when such loss is acceptable). This is much
easier to implement in general framework based on TCP/TLS. Nevertheless, in
the future versions of the UGSF the UDP entry points can be added. This will
involve some redesign of the UGSF Streaming Server.

2.1 UGSF Web Service

The UGSF Web Service component consists of two kinds of web services. A
base one (called StreamingFrameworkService) is responsible for the connection
authorisation, the creation of stream and its setup. During this process the new
WS-Resource (called StreamManagementService) is created with a dedicated
web service interface. This WS-Resource acts as a controller of an active stream-
ing connection.

The StreamingFrameworkService is a WS-Resource which maintains lists of
StreamManagementServices. It can be argued that this is a perfect case for the
WSRF Service Group which is a federation of WS-Resources. Unfortunately, the
Service Group can’t be used here due to the security restrictions. The WSRF
specification doesn’t permit filtering the Service Group’s content. As a result
every user would have the possibility to see other users streams.

The StreamingFrameworkService allows users to get a list of available stream-
ing services and setup a connection to the specific streaming service. The list of
both owned and accessible streams is available (see section 2.3 for details). In
addition, the StreamingFrameworkService has an administrative interface, which
empowers a system administrator to enable and disable particular stream types
on the fly. The service reconfiguration such as addition or removal of stream
types is also possible.

For each created stream, an instance of the StreamManagementService allows
the user to perform universal operations for all streams. This includes shut-
ting the stream down (by means of WS-Lifetime interface), getting status and
statistics of the connection, as well as pausing or resuming streaming. This func-
tionality can be easily enriched by the developer. He can extend StreamMan-
agementService with additional operations. The enriched implementations are
free to consume any special XML configuration supplied to the StreamingFrame-
workService and required for service setup and creation.

We have also developed an additional service called StreamingFrameworkFac-
tory, which allows site administrators to create base UGSF services and configure
them initially. The developed service follows the pattern of the UniGrids atomic
services [7].
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Fig. 2. Services and modules of UGSF components

2.2 UGSF Streaming Server

The UGSF Streaming Server is a stand-alone, modular application, which per-
forms streaming to and from the target system. The server is tightly connected
to the UGSF Web Service which maintains stream definitions. The communi-
cation is done with Java RMI. The server is modular, and highly configurable.
The dedicated modules were created to access the actual streaming data source.
Such a module also gives access to the running job’s outcome. It can also pro-
vide it with input, if required. On the other hand there are stream modules that
don’t need any job to cooperate with. A module which gives access to physical
resources like a video camera is a good example. Another one is a module which
enables grid usage of the legacy TCP or UDP servers. There is also a whole class
of auxiliary modules which acts without any external resources. These modules,
for example, convert input data from one format to another.

For a particular site, there can be more than one Streaming Server, oper-
ated by only one UGSF Web Service. Each server is able to handle multiple
stream modules. There is also the possibility to configure another setup: one
single Streaming Server can be managed by more than one UGSF Web Service.
However, such a scenario is of little practical value.

The access to the UGSF Streaming Server is accomplished with a special
protocol. Currently the protocol is trivial but it may be developed to a more
complicated one when new features are needed. The access to the Streaming
Server is done by means of exchangeable entry modules. More than one entry
module can be turned on simultaneously. Every stream can be accessed by many
entry protocols and the application can choose the one it prefers or understands.
Currently there are available HTTP and HTTPS entry points with simple POST
based protocols (in fact there is one entry point which can be configured to use
or not to use TLS). The system is ready to use the other protocols as well.
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2.3 Advanced Features and Security

In addition to the basic infrastructure for streaming connection creation, the
UGSF provides a set of advanced stream related operations. These operations
focus on a sophisticated data flow creation. By the term data flow we mean the
here composition of one or more streams between servers and/or clients created
for one application.

Every stream implementation can contain more than one flow. Flow is a syn-
onym to a connection, e.g. if one stream maintains three flows then it is possible
to open three concurrent connections to this stream. This provides an opportu-
nity to create more advanced streams with a clear separation of logical ”flows“
of data, including separation of input and output.

The UGSF streams have metadata attached. For every flow there are defined,
among others, supported formats. It is possible to specify more than one format
for a single flow, as well as express the only supported format combinations.
Any flow can have two-way traffic, but it is suggested that a flow should only
use input or output whenever possible (so to be one directional). When two-way
traffic is required, two flows are preferred. Streams designed this way are much
more effortlessly integrated into data flows.

In order to enable composition of other than trivial data flows (i.e. client ↔
server), UGSF offers a connect operation. It instructs an already created flow of
one stream to exit its passive state and to actively initiate connection to another
flow.

There is also a possibility to create a flow with ”cloning“ ability. Such a flow
can be used to dynamically create new flows in a stream implementation. A
good example of the cloning feature is a multiplexer, which basically manages
two flows, the input and output. The output flow has cloning ability and the
user can clone the output flow multiple times. As a result he can fork the input
into arbitrary number of outputs.

Up to now, we haven’t covered one significant aspect of the UGSF system:
security. The main question here is: What are the requirements to open connec-
tion to the Streaming Server? The simplest approach is to enable access to the
stream only to its owner. Unfortunately, such a method is not sufficient for more
complicated scenarios, such as server ↔ server connections. To give an example;
Let’s consider a data flow where server A is the source of data. This data should
be processed by a server B and finally the output should be received by the user
U . If U creates appropriate stream instances on A and B, B will not be allowed
to access A’s stream - only U will be.

To solve this problem, every flow is assigned a token, which is the identity of
its owner and its access policy. The token is a large unique number. The access
policy is defined by the creator of the stream and describes who is authorised
to contact the flow. The default policy is ”owner-only“. In this case only users
with a certificate matching the flow owner’s certificate can open a connection.
He has also to present the flow token for identification purposes. Please note that
the token value is not sensitive as it is valid only after a connection is established
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using a valid certificate. Policy can allow public (non restricted) access and also
an explicitly specified entity to access the stream.

In the matter of UGSF security we still have some work to do. We would like
to provide XACML [9] support for policy description. Also some trust delega-
tion should be supported to achieve better integration with standard grid trust
delegation (but this is a matter of better system cohesion).

3 Applications

The UGSF system includes several basic stream implementations.
The first one is TCPStream, which can be seen as a grid version of the SSH

tunnel. It has a similar functionality to such a tunnel and an obvious advantage is
that users don’t need shell access to the grid site. Moreover, they are authorised
in the same way as for any other UniGrid services.

Using available client software for creating TCP tunnels in the UGSF pack-
age, we have used UGSF to steer an Advantech’s ADAM/5000TCP device with
an existing application. The ADAM/5000TCP is a Modbus [10] Ethernet de-
vice. The UGSF is very useful because Modbus Ethernet devices are in general
insecure and must be protected by firewalls. This example shows that by using
UGSF, the whole range of Ethernet devices can be secured and grid enabled
only by putting in a few lines in the UGSF configuration file.

The TCPStream is accompanied by UDPStream which does a task not widely
available by any other software. It tunnels UDP datagrams over the TCP pro-
tocol, maintaining UDP ”sessions“ in a manner similar to that used by firewalls
(packets are scanned for changes of destination ports).

In the UGSF there is also a FileStream implemented. It serves as a streaming
version of a file access service. The FileStream has the ability to detect file
growth, and allows to stream file content as new data is put in. Clearly, this
solution is targeted to receive results of arbitrary simulation in real time. To
monitor grid job results, there is another stream called IVisStream which is a
simple extension of FileStream. It supports, in addition to FileStream features,
location of files outputted by a given grid job.

Currently we are working on more universal stream types, which will support
data flow creation, (as e.g., the Multiplexer stream for splitting arbitrary flow
into multiple ones) and to add generic support for video streaming which is a
necessity for many streaming applications. We chose Theora [12] as our ”native“
codec. Streams to compress raw video (and decompress it) will be available
shortly.

4 Performance

During the design of the UGSF, our aim was not to introduce any penalty on
throughput (except enforcement of TCP and use of SSL in most cases). It was
achieved, as after stream setup, the developer can use an arbitrary protocol
on open socket connection. The UGSF core does not add any extra data to the
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Fig. 3. The performance of plain netcat stream versus netcat over UGSF TCP tunnel
(over the 100Mbit network)

opened stream. To check the performance and see how tunneling over a particular
stream will impact it, we have run performance tests on the TCPStream. For the
tests we have used netcat TCP session. We have compared a direct connection to
one tunneled via TCPStream. Two machines running Fedora Core 4 operating
system (kernel version 2.6.13-1.1532 FC4) were used. The systems were inter-
connected with 100Mbit Ethernet. Server machine (B) was equipped with Intel
Xeon 2,4GHz CPU and the client was AMD Athlon 64 3400+ CPU (A).

As it is shown in the figure 3, the plain UGSF tunnel performs nearly the same
as the plain netcat connection. The SSL version is, of course, slightly slower, but
still the difference is tiny and acceptable in most usage scenarios.

We have also looked at the CPU usage reported by the Streaming Server. The
server consumed less than 15% of the CPU time at A and about 2–3% more CPU

Table 1. Performance comparison of the UGSF and web service based implementation.
The data was sent in small chunks in two directions. RQ stands for ”request“ and RE
for ”response“. The third column contains the total number of full message exchanges
(i.e. sending request and receiving response) per second.

Messages Implementation (RQ + RS) Relative
sizes per second speedup
RQ 16B/RS 10kB web service/UnicoreGS 1.4.1 0.96 1
RQ 10kB/RS 10kB web service/UnicoreGS 1.4.1 0.48 1
RQ 16B/RS 10kB UGSF/Java DataStream 23.38 24
RQ 10kB/RS 10kB UGSF/Java DataStream 20.76 43
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time at B machine. When SSL is turned on, the CPU intensive encryption caused
the increase of the systems utilization to about 50 and 55 percents respectively.

To summarize, the results are promising: practically there is nothing to opti-
mize. The CPU operations on recent hardware does not impact throughput of
100MBit streams and there is still some CPU power left. Moreover, the CPU in-
tensive operations are mostly those coming from the SSL sockets implementation
of the Java toolkit.

The most interesting topic is the comparison of operations invoked by means
of standard web service calls, with an analogous system based on the UGSF. The
web services operate exclusively on messages. The AXIS 1.x environment used
in the UniGrids project limits it to complete message exchanges instead of real
streaming. It can be theoretically proven that one-way web services can resolve
this issue. However, it is problematic from the server side when a client is behind
the firewall/NAT. Some progress can be made by using HTTP 1.1 persistent
connections [11] but currently this (along with other needed functionality) is
not available in AXIS 1.x.

In order to run comparison tests we have developed a trivial UnicoreGS ser-
vice with only one operation, which consumes and returns a configurable amount
of raw data (Base64 encoded). The results of running series of operations on this
service are given in the first two rows of tab. 1. Also small client-server applica-
tion was prepared to test UGSF version. It was used through UGSF TCPStream,
and as internal protocol we used Java DataStream. As it can be noted from the
last column of table 1, the speed up is more than 20. In fact, this is the minimal
performance gain. In reality UGSF can be used to operate much more effec-
tively: by implementing specialised UGSF stream type, the two extra data hops
introduced by generic TCPStream and it’s client can be eliminated. Moreover,
in many cases streaming applications can benefit from parallel streaming, while
in the tests we were using synchronised message exchanges. Test results were
obtained on the same machines as above.

We would like to mention that there is a lot to improve in the web service
version too. A Better SOAP engine (e.g. AXIS 2), and usage of its features,
can give a substantial performance boost. Also UnicoreGS currently is still in
development and there were no optimisations made.

5 Summary

The presented development is focused on various applications where UGSF will
have a possibility to prove its value. We consider a device access and remote
steering, video transmission and scientific image processing. Of course, visual-
isation and real-time monitoring of computation are also of interest, as it has
already been presented for the UNICORE middleware [13]. The UGSF includes
two stream implementations that allow for tunneling connections to both TCP
and UDP legacy servers on the grid site. Services to stream changing content of
grid jobs in real-time are also ready to be used. Support for data flow creations
encourages to use UGSF in a component driven way, where already created
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stream implementations are reused in larger applications. In general, the devel-
oped infrastructure opens a field to numerous applications, which require on-line
data streaming and steering.

This work was supported by European Commission under IST grant UniGrids
(No. 004279).
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Abstract. The increase of the speed of computer networks paired with
the ubiquity of inexpensive, yet fast and generously equipped hardware
offers many organizations an affordable way to increase the available
processing power. Clusters, hyperclusters and even grids, not so long ago
seen only in huge datacenters, can now be found helping many small
organizations in solving their computational needs. Clusterix is a truly
distributed national computing infrastructure with 12 sites (static Linux
clusters) located across Poland. The computing power of Clusterix can
be increased by connecting additional clusters. These clusters are called
dynamic because it is assumed that they will be connected to the core
infrastructure in a dynamic manner, using an automated procedure. In
the paper we present the design foundation of the Cumulus grid deployed
at Wroclaw University of Technology, together with the method for its
integration as a dynamic component in the Clusterix grid.

1 Introduction

In many fields of science, the increase of computational requirements has made
access to powerful computational installations a necessity. The creation of a ded-
icated Beowulf type cluster, composed of cheap commodity hardware is currently
in the reach of many organizations. Although this standard procedure has many
advantages, its creation is not always the best solution. In the paper we propose
an alternative approach - the creation of a dynamic cluster ready to be utilized
as a dynamic subsystem of the Clusterix grid [2,5]. This scheme is illustrated
by the example of the grid installation located at the Wroclaw University of
Technology.

The main objective of the Clusterix national grid project, coordinated by
Czestochowa University of Technology, is to develop mechanisms and tools that
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allow for deployment of a production grid with the core infrastructure consisting
of static clusters based on 64-bit Linux machines [10]. Local PC-clusters are
placed across Poland in independent centers connected by the Polish Optical
Network PIONIER. Currently, the core infrastructure of the Clusterix comprises
250 Itanium2 CPUs located in 12 sites. The computing power of the Clusterix
environment can be increased by connecting additional dynamic clusters. The
automated procedure is prepared to assist their attachment and detachment.

The term dynamic cluster (as opposed to static cluster) can be used to de-
scribe local clusters that are dynamically and frequently attaching and detaching
themselves to a grid environment. It can also be used to describe the clusters
created from the machines operating part-time as the computational nodes and
part-time detached from their cluster to perform other duties. In the Cumulus
grid the clusters are dynamic in both of the above meanings, but in the context
of the Clusterix grid only the first one is used. The paper presents the design, the
hardware and software configuration of the Cumulus dynamic grid and details
of the method of its integration into the Clusterix grid environment.

The structure of the paper is as follows: In section two, the architecture of
the Cumulus grid and its dynamic clusters is described. Section three outlines
the elements of the Clusterix architecture utilized during dynamic cluster at-
tachment. Section four describes the dynamic cluster connection procedure. In
the final section the conclusions and future work plans are presented.

2 Cumulus Grid Design Overview

The Cumulus grid [6] is composed of three clusters named Calvus, Humilis and
Nimbus. The clusters are located in two separate buildings of the Faculty of
Computer Science and Management, Wroclaw University of Technology (Fig. 1).
The Calvus and Humilis clusters are composed of dynamic and dedicated nodes,
while in the Nimbus test cluster only two dedicated nodes are available. The
dynamic nodes - located in the University computer laboratories - are logically
connected to the cluster only in the predefined hours, when they are not needed
for other purposes. The dedicated nodes form the static parts - full-time available
in the clusters. They have the whole of their hard disk space devoted to the
scratch and swap space utilized by the cluster system. The Calvus cluster consists
of 40 dynamic nodes and 2 dedicated ones. The Humilis cluster is built of 16
dynamic nodes and 2 dedicated ones.

One of the most important Cumulus grid design requirements was that its
deployment would not interfere with a typical role of the computers used for
university courses. During office-hours the dynamic nodes are detached from
their cluster. When the dynamic nodes are not available, only the dedicated ones
are operational - the cluster can not be efficiently utilized for computations, but
it is still available for testing purposes.

Utilization of the network-based startup procedure makes the clusters easy
to control and modify by centralizing their configuration and operating system
data in one place - the cluster server. It is assumed that the nodes will be used
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Fig. 1. Cumulus grid deployment structure

for CPU-intensive operations. If frequent data access is required, the necessary
files can be placed in the scratch space available locally. A high server load can
be observed only if a large number of nodes is simultaneously started, and only
during the time of their bootup. The node startup time is slightly prolonged
(in the Calvus cluster for 40 nodes it takes approximately 3 minutes) but as
this procedure is typically initialized only once a day, this small inconvenience
seems to be completely acceptable and justified. If the need to increase the
computational power arises, a simple reconfiguration of the queuing systems
makes it possible to logically move the chosen number of nodes from one cluster
to another.

The computational power available to the users of the Cumulus grid is ex-
tended by its incorporation as a dynamic component of the Clusterix grid. The
Cumulus clusters can be dynamically connected to the Clusterix infrastructure
as separate entities via their root-servers. The procedure to connect the whole
Cumulus grid to the Clusterix environment would require reconfiguration of the
routing rules on all the clusters and is not currently automated by the Clusterix
software.

3 Architectures of Static and Dynamic Clusters

Several conditions should be satisfied to provide the attractiveness of the con-
nection procedure for its potential users [4]. First of all, the attachment and
detachment procedures should be simple and automated. After the initial ful-
fillment of conditions necessary to provide integration of a dynamic cluster (in-
stalled software and initial verification of the cluster, performed only once), its
operator should be able to attach and detach the cluster automatically by calling
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a single command. The attachment and detachment procedure was developed to
implement the necessary steps.

The unified architecture of static clusters in the core has been tailored to
implement this functionality in an efficient and secure manner. In particular,
each dynamic cluster can be connected to a selected firewall/router (FW/R),
whose public network interface is the only access point to the external network
(Internet in particular). This solution allows for a balanced implementation of
the attachment procedure, giving the possibility to choose the most appropriate
static cluster to establish connection. The firewall/router controls the network
traffic both inside the static cluster (computational nodes, access node), and
on the edge with the external network. This allows for the concentration of the
network traffic control to one place. But also, the lack of other services running
on this machine makes it more difficult for compromising. Such a solution can
create a performance bottleneck, so this architecture may be modified in the
future if it becomes necessary.

As for now, in order to avoid situations where the FW/R throughput limits
the whole Clusterix grid efficiency, an additional test was performed on assur-
ing the optimal TCP/IP stack configuration for machines within the grid under
real network conditions. It is - among other things - recommended to increase
the minimum, default, and maximum TCP read and write buffers size. Also to
disable caching ssthresh variable, to allow increases of the TCP buffer size by
the receiver, and to assure that the system uses the BIC-TCP optimization al-
gorithm. As a result of the optimizations above, the transmission speed between
selected static clusters within the Clusterix network increased up to 500-600%.
This order of magnitude refers to single connections - in case of multiple connec-
tions (the tests were performed for 20 connections) the throughput improvement
is less considerable or even unchanged due to the link saturation or limitations
introduced by the internal architecture of switches used within the grid infras-
tructure [12].

The internal architecture of dynamic clusters is not defined by the Clusterix
project. The only requirement is the existence of the machine acting as the
cluster access point for the connections to and from the Clusterix network. This
machine is called a dynamic cluster firewall (DCF). In the case of the Cumulus
grid the clusters’ root-servers act as DCFs,

4 Dynamic Cluster Attachment

The attachment procedure is composed of two main parts. The first one - initial
configuration - is performed once on the dynamic cluster firewall (DCF) and
once on the firewall/router (FW/R) in the Clusterix network to prepare the
environment and install software necessary for the attachment procedure. The
second part - attachment and detachment procedure - is performed whenever the
dynamic cluster is to be attached or detached from the Clusterix environment.

There are two methods developed for establishing tunnels within the Clus-
terix grid. For real purposes it is strictly recommended to build a virtual private
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network (VPN) between local networks of static and dynamic clusters, using the
IPSec protocol. This protocol, despite its well known disadvantages, is said to
be ”the best IP Security protocol available at the moment” [13]. IPSec was also
chosen because it operates on the OSI network layer level and therefore may be
configured to protect all network traffic matching specific criteria (e.g. source
and destination network address), regardless of the application that generated
the traffic, or the protocol that is associated with the traffic. Unfortunately, the
IPSec protocol is well known because of its high level of complexity as well.
Thus unexpected errors may occur during configuration, or due to authentica-
tion issues. Having this in mind, it was decided to implement the possibility of
establishing standard IP-over-IP tunnels. These tunnels do not offer any built-in
security features like data encryption and therefore should not be used for any
real purposes (the FW/R administrator is able to configure the system to reject
tunnel establishing requests of this kind). However, they are a useful solution to
determine whether an error is independent on the protocol used (e.g. occurs due
to specific network conditions), or is strictly IPSec-specific.

During the attachment procedure, an encrypted tunnel is built to allow secure
communication between the nodes in the dynamic cluster and in the Clusterix
core. The encryption is necessary when the communication is performed utiliz-
ing untrusted links. In the Clusterix project, static and dynamic clusters use
addresses from the 10.0.0.0/8 address pool. Packets encapsulation in the tunnel
is thus required to connect dynamic clusters to the Clusterix core if the public
internet connections are utilized.

4.1 Initial Configuration

The DCF communicates with the FW/R using the SSH protocol. To be able
to execute the whole procedure automatically, passwordless authentication is
utilized (instead of the password, a public and private key pair will be used).
The protection level of the FW/R and DCF private keys becomes crucial -
it is assumed that they are protected appropriately. On the FW/R for every
dynamic cluster a pair of public and private keys should be generated. Using
different keys for each dynamic cluster increases the whole system security level.
Similarly on the DCF, a different key pair should be generated for every FW/R
that can be utilized to establish connection to the Clusterix environment. An
empty passphrase should be passed during the generating process, which will
disable the password based authorization. The DCF should be able to log on to
the dedicated account via ssh with no password provided.

This solution allows attaching and detaching a dynamic cluster in a fully
automated way (except the initial, one-time, configuration procedure). On the
other hand, it significantly decreases the system security level. One has to realize
that if the DCF’s private SSH key is compromised, the attacker is able to log
on to the FW/R. In order to mitigate this risk, operating systems on both the
FW/R and the DCF should be configured as introduced below.

On both the DCF and the FW/R, a new account should be added. This account
is dedicated only to the dynamic clusters attachment. The account name should
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be (for administrative purposes) identical on every FW/R (e.g. ”dynamic”). For
security purposes a new group should be established, containing only this user.
No shell should be available for the ”dynamic” user. Instead in the /etc/passwd
file, the full path to the dclctl configuration script should be given. This full path
should also be appended to the /etc/shells file. Additionally, the password based
login for the ”dynamic” account should be disabled.

Preparing a tunnel and changing the local FW/R configuration requires invok-
ing commands that should be available only for the superuser (like ip, ifconfig,
iptables). It is absolutely undesired that the ”dynamic” user has such privi-
leges. The most convenient way is to use the sudo facility that allows us to give
the specified user some higher privileges, but only for strictly defined activities
within the system. However, it should be emphasized that this still reduces the
overall system security level. Therefore other measures should be taken to se-
cure the FW/R as strongly as possible. To enable no-password logging from the
DCF, the appropriate public key should be copied from the DCF to every FW/R
that should offer the DCF access to the Clusterix grid environment. Finally the
dclctl configuration scripts should be installed in the ”dynamic” account’s home
directory. On the FW/R side, all calls to the dclctl scripts are logged together
with the parameters passed, and the calling host’s IP address. The IP address is
read from SSH environment variables, not from the network packet. The script
is able to reconfigure IPSec parameters only for this specific IP address.

After the DCF SSH private key is compromised, the attacker is still able to
send requests to the FW/R. Primarily, he or she may detach the dynamic cluster
from the grid. However, if the private key is compromised, the DCF system is
probably already in a significantly higher danger than disabling the possibility of
operating together with Clusterix. It should be analyzed more thoroughly, what
threats may arise from that for the FW/R.

Sending non-authorized requests to the FW/R should not harm that system,
unless some additional conditions are fulfilled - e.g. the attacker discovers a se-
rious vulnerability of an SSH application, which could be exploited, or someone
(e.g. the superuser) logs on to the FW/R from the DCF, which is rather im-
probable.

Logging on to the ”dynamic” account does not invoke any shell, but only
causes running the dclctl script with passed parameters. Strings that do not
match any script options are ignored. A successful attack on the FW/R would
require breaking the FW/R security system itself. The attacker may try to in-
troduce a DOS attack - however, a proper configuration of the FW/R operating
system will disable a large number of consecutive logon attempts. The attacker
might try to craft packets using the stolen private key from the attacked DCF
and attempt to spoof the IP of other dynamic clusters in order to detach them
from the grid in an unauthorized way. He or she would however have to force
the SSH daemon on the FW/R to recognize the SSH connection as coming from
another host than that it really originates from (e.g. to successfully attack the
DNS Server of the FW/R). This is still possible, however it makes the whole
attack more complicated and consumes more of the attacker’s resources.
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Finally, IPSec protocol properties have to be configured properly. It was
decided to use IPSec-tools and racoon packages, originating from the KAME
project - basically because of the easy configuration and the shell script
administering facilities. The packages contain - among other things - two of the
most important tools: setkey (for manipulating Security Policy Database and
Security Association Database) and racoon daemon (for automatic key distribu-
tion). The racoon daemon is installed in ”direct-configuration” mode in order to
enable shell script administration.

A key issue to take under consideration is the authentication method. Within
the Clusterix project, X.509-certificate based authentication is strongly preferred
to the preshared key method. The latter is significantly less complicated to
configure-and-use, but has got two meaningful disadvantages. First, it requires
storing the keys in plain text in a file and second, it is unscalable - it requires
one to have separate pairs of keys for each pair of communicating hosts - unless
all keys are the same, which is in turn highly insecure.

The certificate based authentication avoids these disadvantages. Moreover,
it is not necessary to implement a separate Public Key Infrastructure as the
hosts running under Clusterix use Globus software, which requires obtaining
host certificates from a trusted CA. Clusterix uses mainly Polish Grid CA for
that purpose (although other CAs are acceptable as well). Both the DCF and
FW/R have to obtain their host certificates as described on the Polish Grid
CA web page. Unfortunately, in order to automatically authenticate the peer by
the racoon daemon, the host’s private key has to be generated with an empty
password. Therefore the key must be protected on the operating system level
as strongly as possible (only read permissions for the user). The private key
file and the certificate should be put into a path defined within the racoon
daemon configuration file (together with appropriately renamed files containing
trusted CA certificate(s) and appropriate CRL(s)) [14]. Other important files,
like configuration files of setkey and racoon tools etc., are given as restrictive
permissions as possible, too.

4.2 Attachment and Detachment Procedure

Every dynamic cluster can be connected to one of the 12 static clusters in the
Clusterix core. According to principles of IP addressing adopted in the Clusterix
project [1], each static cluster possesses a certain subclass of private addresses
from the 10.0.0.0/8 pool. Inside this subclass, 16 separate subclasses for dynamic
clusters are distinguished. This means that a maximum of 16 dynamic clusters
may be integrated with a given static cluster at the same time.

The attachment and detachment procedures are initialized by the DCF using
SSH connection to the ”dynamic” account on the FW/R (Fig. 2).

Logging in to the account results in the dclctl script invocation. The ”up”
or ”down” parameter is passed to the script to determine if the connection
should be established or closed. The communication between the FW/R and the
DCF is performed using the standard input and error descriptors. The standard
input is used to transfer necessary data (e.g. the address range allocated by



826 J. Kwiatkowski et al.

Fig. 2. DCF attachment

the FW/R to the DCF) and information if a particular part of the script was
successfully accomplished on the remote side. The standard error is used to
transfer additional debugging information. The only parameter that needs to be
set up on the DCF side, is the address of the FW/R used for connection. On
the FW/R side, the only configuration step that is required is the allocation of
appropriate address range for every cluster that is to be connected.

In the first step of the attachment procedure (Fig. 3), the DCF connects to
the selected FW/R by logging in via ssh to the ”dynamic” account with an ”up”
parameter to indicate that the connection should be created. An additional pa-
rameter, ”secure”, determines which type of tunnel is to be created (however,
this is not necessary provided that the administrators properly define their con-
figuration files). If the DCF is allowed to log in, the dclctl script is invoked on the
FW/R. The script determines the DCF’s IP and creates a local end of the tun-
nel. The address range allocated on the FW/R (based on the entry in the dclctl
configuration file associated with the determined caller’s IP) for the particular
DCF is written to the standard output. The FW/R creates IPSec security policy
structures (SP) for the assigned address range, sets appropriate routing rules for
that and finally opens suitable ports on the local firewall in order to be able to
communicate via IPSec.

On the DCF, the assigned private class range is read by the dclctl script and
the local end of the tunnel is prepared. Then the DCF performs similar activities
(configuration of SP structures, routing and local firewall rules) on its side.

Fig. 3. Attachment procedure
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The detachment procedure is also initialized by the DCF which logs in to the
FW/R passing a ”down” parameter. After the SSH connection is established,
both ends of the tunnel are destroyed. So are the IPSec security policies, security
associations (if any), routing and firewall rules. As a result, the dynamic cluster
is detached from the Clusterix infrastructure.

The availability of dynamic clusters is monitored by the Grid Resource Man-
agement System [9]. Agents of the JMX-based Infrastructure Monitoring System
JIMS [2], running on dynamic clusters, are responsible for reporting their avail-
ability when a connection succeeds. When the cluster is detached, the JIMS
system recognizes the lack of this computational resource.

5 Possibilities of Future Improvements

The Clusterix is still an ongoing project but as the first prototype phase is
already finished, it is possible to recapitulate obtained results and discuss the
usability of the created environment. Some of the problems encountered are
mentioned in the previous sections and the three most important ones will be
shortly presented below.

The procedure of attaching dynamic clusters to the Clusterix core is suitable
for connection of individual clusters. As local grid installations are becoming
common [11], there also exists a need to offer easy and reliable ways of attaching
this kind of installations. The cluster connection procedure developed in the
project can be extended to accommodate the steps needed for a grid attachment.
The required additional procedure logic developments are planned to part of the
future Clusterix project phases.

Using the firewall/router for attaching static and dynamic clusters, as de-
scribed in the section 3, can create performance bottlenecks. It causes a latency
raise and lowers the throughput available. The impact of these problems on the
performance depends on the particular application implementation. The choice
of solution depends on the evaluation of the results of the ongoing tests. One
of the proposed improvements is the utilization of hardware firewalls (instead of
the FW/R).

The security considerations can lead to that the SSH based connection proce-
dure is replaced by one utilizing a dedicated service for attaching and detaching
dynamic clusters. It can be based for example on SSL/TLS protocol and the
same X.509 certificates that are used for IPSec authentication. This issue will
undergo further considerations.

6 Conclusions

The possibility to connect dynamic clusters to the Clusterix backbone opens the
access to a shared environment with extraordinary computational power. The
Cumulus grid created at Wroclaw University of Technology has already proved
to be a beneficial scientific tool for research and educational purposes. Together
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with the access to the Clusterix environment it can be utilized both as a tra-
ditional cluster and also as a grid installation. Cumulus joins extendable com-
putational power of dynamic machines, advantages of the persistent presence of
available dedicated nodes and the computational power, delivered by the Polish
national computational grid to execute applications and meta-applications. The
developed connection procedure does not require complicated installation nor
configuration changes. Utilizing only the SSH and IPSec protocols it is easy to
configure, yet robust and secure. The installation was used in many projects and
experiments. It served as a testbed for performance tests of the dependable infor-
mation system developed in the European Community Framework Programme
6, project DeDiSys [3]. Cumulus was employed for performance evaluation of
Kohonen network parallelization techniques [7], analysis of parallel program ex-
ecution anomalies [8], analysis of virtualization techniques suitable for utilization
in grid environments and in various other scientific projects.
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Abstract. One of the definitions of economy as ”the administration of
the concerns and resources of any community or establishment with a
view to orderly conduct and productiveness”[2] appears almost identical
to the definition of the problem of resource allocation in grid computing.
From an economic perspective, the grid itself coincided with the creation
of an economy in the very moment that it enabled the exchange or shar-
ing of resources between different owners. This consideration led us to
envisage a very high-level resource brokerage architecture based on grid
agents capable of implementing different social and economic interactions
in grids.

1 Introduction

The complexity of the design of a grid resource brokerage system lies in the
functionalities that such a system should implement and in the characteristics
that it should have. These are:

– Ability to cope with the different ownerships of resources and jobs.
– Ability to define what optimal resource selection means for each actor (re-

source owners, job owners, global welfare of the grid, optimal occupation of
the resources, etc) and to offer different solutions to different definitions of
optimality.

– Ability to cope with the highly dynamic characteristics of grid computing,
offering flexibility, scalability and fault tolerance.

– Ability to interface with existing and foreseen grid solutions.
– Ability to cope with different scenarios, ranging from pure cooperation to

pure competition.
– Capability to be implemented in small steps, allowing the incremental com-

position of simple brokerage services into more complex ones.

The various solutions[19],[12] envisaged by the scientific community to tackle
the complexities of resource brokerage and allocation in grids encompass genetic
algorithms, simulated annealing and hybrid solutions[5]. In addition to these,
there are economy-based approaches that range from pure competitive liberalism
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to pure cooperation, from uncontrolled markets[18][11], to centralized controlled
economies[10][9]. Nonetheless, all of these enable in effect low-level (the majority)
or mid-level (the minority) resource brokerage.

Below, we describe a very high-level resource brokerage architecture based on
grid agents capable of implementing different social and economic interactions
in grids.

2 The Socio-economic Paradigm

As in human societies and economies, grids are a way to allow actors to coop-
erate and compete to try to achieve their goals. These goals may be personal or
collective. The practice of using an economic and social approach is justified by
the fact that grids are a human invention that recreates in the digital environ-
ment what has been achieved over many centuries with economies and societies:
the possibility to cooperate and compete among and with each other to pur-
sue collective and personal goals. In reality humans arrange in fractal structures
called societies that are characterized by sets of rules that all the participants
should follow (but often don’t).

The rules that characterize an association may involve the exchange of goods
(these we will call economic societies) or may bind together actors willing to
cooperate for a certain goal voluntarily and without expecting an economic rev-
enue (we will call these empathy-based societies). Actors may expose one or both
behaviors depending on the circumstances. A resource owner may be willing to
offer part of his resource for free if they are used for certain goals, while he may
ask for payment if they are used for other goals, or, finally, he may definitely
not like to have his resource used to pursue goals he dislikes or condemns. These
relations, driven by a sense of empathy, cannot be modeled in economic terms.
On the other hand we can find purely economic behaviors where actors relate to
each other to buy and sell goods and services in the pursuit of their own interest.

2.1 Grid Services as Production

We describe the resource allocation using the microeconomic[13] concept of a
production chain that goes from the basic goods, or factors to intermediate
commodities and, in the end, to the final job, or produced commodity. This con-
ception of grid jobs as supply chains is illustrated in Fig. 1.

We divide the factors into three main categories: primary factors having no
semantic value such as CPU time, memory storage and network connection of-
fered directly (as an example through a scheduler), those having semantic value
(i.e. data), and finally existing grid resources (job submission, information sys-
tems and file management services). These are, in reality, produced commodities
but we model them as factors as their internal production chain is not modelled
in economic terms, although the price at which they are sold may reflect the
consumptions of primary factors.

The distinction between data and primary factors, even though not directly
used in this first approach to the problem, may turn out to be quite important
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Fig. 1. Representation of a grid job as a microeconomic supply chain

as the real economic value of a data set becomes represented by its meaning or
semantic.

2.2 Endowments, Demands and Supplies

At each of the production steps an actor (either a human or a program) as-
sembles factors and, possibly, intermediate commodities to create a produced
commodity. If at any given time an actor has not enough factors to produce
the commodities he wants, he may engage in social or economic transactions
to obtain the commodities he needs. To model this behaviour we borrow once
more concepts and terminology from microeconomics[13] with which we define
the Endowment as the set of commodities owned by the actor, the Needs as the
set of commodities needed by the actor, the Supplies as the set of commodities
that the actor has in abundance and can be traded or donated, the Demands
as the set of commodities that the actor cannot cover with its endowment and
the Satisfied Needs as the set of commodities that the actor can cover with its
endowment.

An actor owns an Endowment set of commodities and faces a Needs set of
commodities. Demands and Supplies are obtained from Endowment and Needs
as illustrated in Fig. 2. It is worth noting that the assessment of the factors
needed to complete a certain job is a crucial part of the process and that it is a
topic of active research in the grid community. In particular, the assessment of
the computational power required can be achieved in different ways, such as:

– User specification: In this simplest way, the user has the duty to provide a
description of the minimum set of resources necessary.

– Simple statistical analysis: Particular types of jobs, such as parameter sweep
applications, allow a relatively easy way to assess their needs[8],[7],[17],
[18],[11]
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– Complex statistical analysis: Research, such as that described in[4] is being
undertaken to assess the computational requirements of a broader variety of
jobs.

Fig. 2. Demands and Supplies

In this case, the Endowment and the Needs sets overlap partially. Where they
overlap, that part of the Needs has been satisfied by the Endowment. The actor
will be able to trade or donate the remaining part of its Endowment, and will
also need to trade for the unsatisfied part of the set of its Needs. Formally:
Supplies = Endowment ∩ Needs, Demands = Needs ∩ Endowment and Satisfied
Needs = Endowment ∩ Needs.

2.3 Exchange and Other Social Interactions

Thus if an actor owns an Endowment set of resources and faces a Needs set of
resources, the result is two disjoint sets: Demands and Supplies, that will be
traded, donated or acquired in the societies that the actor is joining. In order
to do this, actors engage in relations, both competitive and empathic, to fulfill
their Needs sets. These types of relations can be:

– Co-operative relations, such relations consist of the access to resources with-
out the need of a balancing transaction representing a payment. These re-
lations can be of the following nature: donations, lending and borrowing,
Keynesian investments1 and common goods.

– Non-monetary economic relations such as bartering.
– Monetary economic relations that involve payments and monetary transac-

tions such as posted price models, auctions and calls for tender.

3 Architecture

Our resource brokerage architecture[3] follows naturally the social and economic
paradigm used to analyze the problem, and it is based on the ongoing research
1 We term Keynesian Investment, in honour of the economist John Maynard Keynes, a

relationship where an Institution invests in Grid resources binding their use, partially
or fully, to a certain user or use
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on grid interoperability[16][15] and a concept of Social Grid Agents [14] to tackle
the issues of resource brokering. The design architecture is based on the following
assumptions:

– Grid resources can be accessed only through a service.
– Resources and services have a owner.
– Owners are implemented by grid agents.
– Grid agents are identifiable by their grid certificates.
– The mechanism of delegation allows access to resources by actors that do

not own them.
– Agents can communicate with each other using one or more communication

layers.

Another insight underlying the architectural design is that these grid agents
are at the convergence of three flows of information: the production process,
the policies information and the access rights or ownership. As said previously,
the production process produces commodities under the rules described by the
policies to which the grid agent is bound by using the factors to which it is
granted access through the ownership information flow. As production is bound
to the other two information flows, it seems natural to divide the architecture
into two layers: a production layer implemented by the Production Grid Agent,
and a surrounding social layer implemented by the Social Grid Agent.

3.1 Production Grid Agents

Production Grid Agents are composed of two main entities. Firstly the Grid Body
consists of existing grid services surrounded by a GT4 service that enables it to
be used by the agents. The link between the GT4[1] service and the existing
Grid Service usually consists of API invocations, but can also be performed
with system calls if an API is lacking. Secondly a Java Brain implements the
production behaviour with which the agent controls the existing grid service.
Production Grid Agents have the following characteristics:

– They hold a description of the service they produce.
– They always consume factors.
– They produce commodities.
– They have a purse of factors that they are allowed to use by their social

layer.
– They hold the information on their consumption of factors.
– They comply with the rules imposed by their social layer.

In order to comply with these requirement we represent the Production Grid
Agent as in Fig. 3. Among the processes that compose the Java Brain of a
Production Grid Agent, the most important are the following:

– A Policy Interface that acquires the information about the rules that are to
be followed.
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Fig. 3. The Production Agent

– A Rights Port that acquires the information about the factors that the Pro-
duction Agent can access.

– An Output Port through which the completed service will be delivered to
other production agents.

– A Service Descriptor that holds the description of the service.
– A Requirements Descriptor that holds information regarding factor needs.
– An Accounting Port that holds the information regarding factor usage.
– A Production Engine that actually performs the production process by con-

trolling the various Grid Bodies.
– An Agent Planner that will coordinate the work of the Production Engine

to provide the Produced Service.

The agent we have described, is capable of producing a service if it is given a
description and access to enough commodities. They can be arranged in produc-
tion chains where the factors of one are the produced commodities of another.
Nevertheless, from a social perspective, they still are islands in the ocean as they
lack the ability to negotiate the process necessary to interface with each other.
To use a human comparison, Production Grid Agents are workers that are not
capable of self organization. To implement this functionality, an additional layer
is built around the Production Grid Agent that provides social capabilities. This
layer transforms a Production Grid Agent into a Social Grid Agent.

3.2 Social Grid Agents

This layer is responsible for the social and economic behaviour of the agents.
Here Supplies and Demands are computed and social and economic transaction
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Fig. 4. The Social Grid Agent

are managed to meet the Needs of the agent. The functionalities offered by
this additional layer are: social capabilities, ownership management, negotiating
capabilities and treasurership.

As stated above, Social Grid Agents are Production Grid Agents with a social
layer built around them. Their architecture is presented in Fig. 4. This social
layer allows the creation of agents capable of engaging in social and economic
transactions regarding the production agent’s activities and the primary factors
they have ownership of. This approach allows a more homogeneous description
of every commodity as they are all accessed through services owned by a Social
Grid Agent. As an example an agent that offers raw computational power will
offer access to its server factory as a service owned by a Social Grid Agent that
may not be the real owner of the resources. This approach is inspired by the
concept of abstract ownership[6]. On the other hand, a more complex service,
such as that offered by an entire grid with its own resource broker, information
system and pool of resources, might be offered through a different service owned
by a Social Grid Agent that is (or is entitled by) the real grid owner, to offer the
grid resources.

3.3 Grid Societies

The social capabilities of the Social Grid Agents can also be used to build Grid
Societies that, although encompassing many grid agents, offer the same ”social
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interface” to other grid agents. As shown in Fig. 5, Grid Societies have a topology
of services that is similar to the Social Grid Agents. It is worth noticing that the
Production Agent may or may not be present, depending on whether the society
is a production society such as a company, or a gathering society such as a tribe
or a market.

Fig. 5. A Grid Society

Remember that the purpose of the social layer is to bring together different
grid agents to build composite agents capable of offering more complex services.
The resulting entities are called Grid Societies and can be economy-based or
empathy-based, the difference residing in the presence or absence of economic
exchanges. Grid Societies will expose the same interfaces as any other Social Grid
Agent to allow the creation of complex architectures of societies and agents.

The social capabilities of the Social Grid Agents allow for a great variety
of social structures. Fig. 6 illustrates three different ways in which Social Grid
Agents can interact.

– Individual Social Interactions (a), where Social Grid Agents interact among
each other, joining in a production process or engaging in exchange of their
endowments.

– Exchange-based societies (b), where Social Grid Agents gather in a society to
engage in exchanging relations. These social structures can model markets,
tribes and volunteer-based sharing structures.

– Production-based societies (c), where Social Grid Agents gather in a society
to engage in production relations. These social structures can model compa-
nies.

4 Conclusion

Why create such a resource brokerage architecture? Because it can incorporate
many kinds of realistic market actors and their interactions, because these may
coexist just as they do in the real world, and because they may be composed and
decomposed in the same bewildering array of combinations as is evident in the
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Fig. 6. Different Grid Societies

real world. In this way, true grid resource markets may be constructed, where
birth, death, marriage, profits, losses, theft and charity may all be represented.
Clearly this is an ambitious, and possibly even unattainable, goal, requiring
considerable further research. Currently this research is being conducted as two
parallel activities: A top-down approach involving a more detailed analysis of the
functionalities offered by the current actors in grid computing. And a bottom-
up approach involving the implementation of experimental prototypes of the key
parts of the proposed architecture, in order to test weaknesses in the hypothesis.
Eventually, this is intended to yield a first prototype with economic and empathic
functionalities that will serve both as a brokerage agent and as a testbed for
further analysis of grid economics.
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Abstract. OpusIB is an Opteron based cluster system with InfiniBand
interconnect. Grid middleware provide the integration into CampusGrid
and D-Grid projects. Mentionable details of hardware and software
equipment as well as configuration of the cluster will be introduced.
Performance measurements show that InfiniBand is not only well suited
for message-passing based parallel applications but also competitive as
transport layer for data access in shared cluster file systems or high
throughput computing.
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1 Introduction

Cluster systems with fast interconnects like Myrinet, Quadrics or InfiniBand
become more and more important in the realm of high performance comput-
ing (HPC). The Institute for Scientific Computing at the Forschungszentrum
Karlsruhe was active in adopting and testing InfiniBand technology very early.
We started with a small test system in 2002, followed by a Xeon based system
with 13 nodes called IWarp in 2003. The next generation of InfiniBand cluster
is OpusIB, which we describe in this paper.

In the following section we briefly look at the project CampusGrid in which
most activities reported here are embedded. The key facts about OpusIB’s hard-
ware and software are collected in several subsections of Sect. 3. Thereafter, in
Sect. 4, we comment on some measurements which prove the achievable perfor-
mance with InfiniBand. We shall conclude the paper with a short survey on
OpusIB as part of the D-Grid infrastructure.

2 The CampusGrid Project

The R&D project CampusGrid [1,2] was initiated at the Forschungszentrum
2004 with the aim to construct and build a heterogeneous network of resources

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 840–849, 2007.
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for computing, data and storage. Additionally, the project gives users the op-
portunity to run their applications in such a heterogeneous environment. Grid
technologies were selected as a state-of-the-art method to achieve these goals.
The use of standard Grid middleware in our local infrastructure is advantageous,
because we enable the scientists of the Forschungszentrum to smoothly enter the
global Grid.

The project started with a testbed for evaluation of middleware and other
components. While the initial testbed was small, it already comprised all kinds of
resources in our heterogeneous IT environment: clusters, SMP servers, and vector
processors as well as managed storage (SAN). During project progress more and
more production systems shall be integrated in the CampusGrid environment.
In order to do so we need a clear and smooth migration path from our classical
HPC environment into the new Grid-based infrastructure. Thus, in the design of
the CampusGrid architecture we need to take care of many boundary conditions
we can not (easily) change in our project, e. g. central user administration via
Active Directory Services (ADS).

The cluster OpusIB started as part of the CampusGrid testbed and it is now
growing into a fully productive system.

3 Hardware and Software of OpusIB

3.1 Overview

The name OpusIB is an abbreviation for Opteron cluster with InfiniBand. As the
name implies, the cluster is assembled of dual processor nodes with Opteron 248
processors and the high-performance networking fabric is an InfiniBand switch
(InfinIO9000 by SilverStorm). All worker nodes and most cluster nodes run
CERN Scientific Linux as operating system (64bit version).

At the time of writing this, there are 64 worker nodes with 128 CPUs in
total and an aggregated memory of about 350GB. All worker nodes and the
switch fabric are build into water cooled cabinets by Knürr. This technology
was originally developed for the GridKa [3] cluster.

3.2 InfiniBand

InfiniBand (IB) is a general purpose network and protocol usable for different
higher level protocols (TCP/IP, FibreChannel/SCSI, MPI, RFIO/IB) [4]. In con-
trast to existing interconnect devices that employ a shared-bus I/O architecture,
InfiniBand is channel-based, i. e., there is a dedicated path from one communi-
cation partner to the other. Links can be aggregated, which is standardized for 4
and 12 links called 4X and 12X. We use 4X in our installation, that means 1 GB/s
usable bandwidth (in each direction). FibreChannel (FC) bridges plugged into
the IB switch enable us to directly connect storage devices in the Storage Area
Network (SAN) to the cluster nodes. Thus it is not necessary to equip each node
with a FC host bus adapter.
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As an off-the-shelf high-speed interconnect InfiniBand is a direct competitor
of technologies like Myrinet and Quadrics. Our decision to use InfiniBand in the
cluster was mainly due to the positive experiences in recent projects (cf. [5]).

3.3 Running Two Batch Schedulers Concurrently

A peculiarity of the OpusIB cluster is that all worker nodes are managed by
two different job schedulers concurrently. At one hand, we have the OpenPBS
successor TORQUE [6] together with the MAUI scheduler [7]. On the other
hand, there is a mixed LoadLeveler cluster which consists of the OpusIB nodes,
several PowerPC blades and some other single machines. Recently we added our
AIX production system (pSeries 655 and 630) to this mixed cluster.

The reasons for running these two batch systems concurrently are numerous.
First the history: As we started assembling the cluster we chose TORQUE for
a couple of reasons – it is Open Source, compatible to OpenPBS, but more
stable. At the point when IBM provided first LoadLeveler with the mixed cluster
option, we decided to try it – because of curiosity. Shortly before we had got some
PowerPC blades which could serve as AIX nodes in our testing environment. The
Linux part of the testbed was just OpusIB. At that point, the cluster was still in
a quite experimental mode of operation. Thus, two batch systems did not cause
any problems but were sometimes useful for tests. This configuration survived the
gradual change of the cluster into productive operation. Currently, LoadLeveler
works very well and is used for the majority of user jobs submitted in the classical
way on the command line. On the other hand, Grid middleware supports more
often TORQUE/PBS than LoadLeveler. Moreover, the combination with MAUI
scheduler is quite popular in the Grid community. Thus, TORQUE serves as a
kind of reference system when using Grid Middleware. A third reason is, that
we want to stay independent of commercial software vendors as far as possible.
That means, an Open Source solution should be available at least as fall-back.

Running two job managers concurrently without noting of each other of course
holds the danger to overload nodes with too many jobs. In practice, however,
we noticed that such problems occur less often than expected. The reason was
probably that both schedulers take the actual workload on a node into account,
when making the scheduling decision. For Maui scheduler this behavior is trig-
gered by setting the configuration parameter MAXLOAD. Hence, Maui marks a
node busy if the load exceeds MAXLOAD. The exact value needs some tuning
– we used values between 1.1 and 2.5. LoadLeveler prefers the node with the
lowest load by default.

If overcommitment occurs, it is always very harmful, especially if it affects the
workload balance of a parallel job (since a single task is slowed down compared
to all other tasks). Recently we tried to solve this kind of problems by adding
prolog and epilog scripts to each job. After submission a job waits in a queue
until a matching resource is available. Right before job startup the scheduler,
say LoadLeveler, runs a prolog script, to which the list of processors (nodes)
occupied by the job is passed (via the variable LOADL PROCESSOR LIST).
The prolog script utilize this information to decrease the number of job slots
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in the list of available resources at the other scheduler (i. e. TORQUE). After
the job has finished, the slot number is increased in the epilog script. Thus, we
reconfigure dynamically the resources of the second scheduler if a job is started
by the fist scheduler, and vice versa.

3.4 Cluster Management Using Quattor

Automated installation and management of the cluster nodes is one of the key
requirements for operating a cluster economically. At OpusIB this is done using
Quattor, a software developed at CERN [8]. Some features of Quattor are:

– automated installation and configuration
– software repository (access via http)
– Configuration Data Base (CDB) server
– template language to describe setup
– Node Configuration Manager (NCM) using information from CDB
– templates to describe software setup and configuration

The open standards, on which the Quattor components are based, allow easy
customization and addition of new functionality. For instance, creating new node
configuration components is essentially writing a Perl module. In addition, the
hierarchical CDB structure provides a good overview of cluster and node proper-
ties. Addition of new hardware or changing installed software on existing hard-
ware is facilitated tremendously by Quattor – the process takes as long as several
minutes.

3.5 Kerberos Authentication and Active Directory

For the CampusGrid project it was decided to use Kerberos5 authentication
with the Active Directory Server as Key Distribution Center (KDC). Thus all
OpusIB nodes are equipped with Kerberos clients and a Kerberos enabled ver-
sion of OpenSSH. As a work-around for the missing Kerberos support in the
job scheduling systems (PBS, LoadLeveler) we use our own modified version of
PSR [9], which incorporates Kerberos 5 support.

While Kerberos is responsible for authentication, the identity information
stored in the passwd file still needs to be transferred to each node. For this
purpose we use a newly developed Quattor component, which retrieves the nec-
essary data via LDAP from the Active Directory and then distributes it to the
cluster by the usual Quattor update mechanism.

3.6 StorNext File System

SNFS is a commercial product by ADIC [10]. It has several features which sup-
port our goal to provide seamless access to a heterogeneous collection of HPC
and other resources:
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– Native clients are available for many operating systems (Windows, AIX,
Linux, Solaris, IRIX).

– The metadata server does not require proprietary hardware.
– Active Directory integration is part of the current version.
– We get very good performance results in our evaluation (cf. Sect. 4).
– Installation procedure and management is simpler than in competing prod-

ucts.

A drawback is that file system volumes can not be enlarged during normal op-
eration without a maintenance period.

3.7 Globus Toolkit 4

In the project CampusGrid we decided to use Globus Toolkit 4 (GT4) as ba-
sic middleware. For an overview of features and concepts of GT4 we refer to
Forster [11] and the documentation of the software [12]. The current configura-
tion for the OpusIB cluster is depicted in Fig. 1. We use the usual Grid Security
Infrastructure (GSI), the only extension is a component to update the grid map-
file with data from the Active Directory.

.

Fig. 1. WS-GRAM for job submission on OpusIB, with identity management using
Active Directory Server (ADS)
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For LoadLeveler jobs there is an additional WS-GRAM adapter and a sched-
uler event generator (SEG). Actually there are two of them – one running on
the GT4 server mentioned above and a second running on a PowerPC machine
with AIX. The latter was installed to test GT4 with AIX.

The cluster monitoring data gathered by Ganglia [13] are published in MDS4,
the GT4 monitoring and resource discovery system (using the Ganglia Informa-
tion Provider shipped with Globus).

4 Benchmarks

4.1 Data Throughput

Right from the start our objective in evaluating InfiniBand technology was not
only the fast inter-node connection for message-passing based parallel applica-
tions. We also focused on the data throughput in the whole cluster. The large
data rates achievable with InfiniBand are appropriate for accessing large amounts
of data from each node concurrently via file system or other protocols like RFIO.
Preliminary results of our studies can be found in [5]. Later on we successfully
tested the access to storage devices via an InfiniBand-FibreChannel bridge to-
gether with a Cisco MDS9506 SAN director. These tests were part of a compre-
hensive evaluation process with the aim to find a SAN based shared file system
solution with native clients for different architectures. Such a heterogeneous HPC
file system is intended as a core component of the CampusGrid infrastructure.
A comparison of StorNextFS (cf. Sect. 3.6) with two competitors (SAN-FS by
IBM and CXFS by SGI) is given in Table 1.

Table 1. Write throughput in MB/s for different file systems and client hardware,
varying file sizes and fixed record size of 8MB

SunFire with IB p630 (AIX)
SNFS CXFS SNFS CXFS SAN-FS

64MB 177 93 70 50 59
1GB 176 91 70 49 53
4GB 175 96 73 49 52

The measurements are done using the benchmark software IOzone [14]. Write
performance was always measured such that the client waits for the controller to
confirm the data transfer before the next block is written. This corresponds to the
behavior of NFS mounted with option ’sync’. Due to compatibility issues it was
not possible to install the SAN-FS client on our SunFire nodes with InfiniBand
and Opteron processors. The reported values rely on sequentially written files of
various size – 128 kB to 4 GB, doubling size in each step – while the record size
goes from 64 kB to 8 MB. Typically a monotonic increase of data throughput
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Fig. 2. Write performance of SNFS on SunFire with InfiniBand using IB-FC bridge

with growing file and record size can be observed. This behavior is depicted in
Fig. 2.

All measurements are done using a disk-storage system by Data Direct Net-
works (S2A 8500). The connection between SAN fabric and IB-FC bridge or,
accordingly, the p630, was a 2 Gigabit FibreChannel link. Thus, the overall
bandwidth from the cluster to the storage is limited to the capacity of this link.
For file system access with considerable overhead we can not expect more than
about 180 MB/s (or, correspondingly, 1.5 GBit/s). Measurements [15] show that
SNFS behave well if more than one client access the same file system.

4.2 Parallel Computing

Beside serial applications with high data throughput, the application mix on
OpusIB contains typical MPI applications from several scientific domains (cli-
mate simulation, CFD, solid state physics and quantum chemistry). Parallel
floating-point performance which is relevant for the latter applications was
benchmarked using HPL [16]. It was compiled and linked on OpusIB using all
available C compilers (GCC, Intel, PGI) and the libraries MVAPICH [17] and
ATLAS [18]. The latter was compiled with the architecture defaults from the
vendor. The tests were performed on up to 18 nodes.

Figure 3 shows the measured performance. It scales linearly with the number
of processors. The performance per node is quite constant – between 3.7 and
3.3 Gflops, which corresponds to about 80% of the peak performance.
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Fig. 3. Total performance of the HPL test RR00L2L2 for maximal problem size. The
HPL benchmark was compiled with the GNU C Compiler 3.2.
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Fig. 4. Performance comparison of the HPL test WR00L2L2 on two processors with
three different compilers

Comparing the compilers, we see that the GNU C compiler performs best in
our tests (cf. Fig. 4). However, for small problems (up to size 1000) the actual
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choice of the compiler does not matter. For larger problems (size 18000) the PGI
code is about 25% slower while the lag of the Intel compiler is moderate.

These results should not be misconstrued in the sense that GCC produces
always better code than the commercial competitors. Firstly, real applications
do not behave exactly as the benchmark. Secondly, according to our experiences,
PGI performs much better with Fortran code (see also [19]).

5 D-Grid

The D-Grid initiative aims at design, building and operating a network of dis-
tributed, integrated and virtualized high-performance resources and related ser-
vices which allow processing of large amounts of scientific data and information.
D-Grid currently consists of the integration project (DGI) and six community
projects in several scientific domains [20]. One work package of the integration
project is to build an infrastructure called Core D-Grid. As part of this core
infrastructure OpusIB should be accessible via the three middleware layers GT4,
Unicore [21] and gLite [22]. The GT4 services are the same as for CampusGrid
plus an OGSA-DAI interface to an 1 TB mySQL database (cf. [23]) and integra-
tion into the MDS4 monitoring hierarchy of D-Grid.

The integration with gLite middleware suffers from a yet missing 64bit port of
gLite. Thus, 32bit versions of the LCG tools must be used. The jobs submitted
via gLite are scheduled on the cluster via TORQUE. Unicore also supports
TORQUE, so we can use one local job scheduler on the cluster for all three
middlewares. Each middleware should run on a separate (virtual) machine which
is a submitting host for the local batch system.

So far, only few nodes are equipped with the gLite worker node software.
A complete roll-out of the system with access via all three middlewares (GT4,
gLite, and Unicore) is scheduled for the first quarter of 2007. At that time we
will be productive with an extended D-Grid infrastructure (for example, we are
adding 32 nodes to OpusIB with two dual core processors each). A detailed
report about configuration details and experiences will be subject of a separate
publication.
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Abstract. This paper presents the results obtained with an extension of
the HPC-ICTM model for grid computing. The HPC-ICTM is a multi-layered
interval tessellation-based model for the categorization of geographic re-
gions for high performance computing. The ICTM model is executed as a
Bag-of-Tasks on the OurGrid environment. For each layer, the catego-
rizer process is applied separately, without communication between the
layers. An analysis of the performance of the model is presented.

1 Introduction

The ICTM (Interval Categorizer Tessellation Model) is a multi-layered and multi-
dimensional tessellation model for the simultaneous categorization of geographic
regions considering several different characteristics (relief, vegetation, climate,
land use etc.) of such regions, which uses interval techniques [10,11] for the
modeling of uncertain data and the control of discretization errors.

To perform a simultaneous categorization, the ICTM proceeds (in parallel) to in-
dividual categorizations considering one characteristic per layer, thus generating
different subdivisions of the analyzed region. Each layer represents a tesselation
for one determined property of the same analyzed region. An appropriate projec-
tion procedure of the categorizations performed in each layer into a basis layer
provides the final categorization that allows the combined analysis of all char-
acteristics that are taken into consideration by the specialists in the considered
application, allowing interesting analyzes about their mutual dependency.

The HPC-ICTM – the multi-layered interval categorizer tessellation-based
model for high performance computing – was introduced in [2], whereas the
formalization of the ICTM, the single-layered model for the relief categorization
of geographic regions, called TOPO-ICTM (Interval Categorizer Tessellation Model
for Reliable Topographic Segmentation), was first presented in [1].

In this paper, we present some aspects about extension of the HPC-ICTM for
grids. Moreover, we present also some features about first parallel implemen-
tation of the ICTM model on clusters, that generated de first version of the
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HPC-ICTM model. We used the Message Passing Interface (MPI) to implement
the HPC-ICTM on clusters because it is the standard for programming in such
environments [8,13].

The computational grids have important characteristics that must be consid-
ered when developing a parallel application. One of most important characteris-
tics is the high geographic dispersion [4,9]. Thus, applications that possess tasks
that produce much communication, are not adjusted for this platform.

A class of applications that fits easily in the grid environment is the BOT
(Bag-of-Tasks), because they are characterized by having independent tasks that
do not communicate among themselves [5]. The ICTM model can be executed
as a BOT application. For each layer of the model, the categorizer process is
applied separately, without communication between the layers. Thus, despite
the fact of the partition in layers, the ICTM presents the typical behavior of a
BOT application. We implemented the HPC-ICTM grid extension on the OurGrid
environment [3].

2 Geographical Categorizations Using the HPC-ICTM
Model

The use of ICTM model for analysis of several properties of large geographic re-
gions requires high computational power. A solution for this problem was to
parallel the ICTM model for clusters execution. Thus appeared the first version
of the HPC-ICTM model, through MPI library. However, sometimes the cluster
resources are not enough to categorize these large areas. Moreover, to get dif-
ferent geographic data is a task sufficiently complicated. The main reason is the
high cost of the generating devices.

Therefore, we proposed an extension of HPC-ICTM model for Grid Computing,
through the OurGrid environment. The main objective is to get computational re-
sources enough for the categorizations and make use of geographicdata distributed
in grid machines located in specialized research centers, of simple and efficient way.

The HPC-ICTM is a multi-layered and multi-dimensional tessellation model for
the simultaneous categorization of geographic regions considering several differ-
ent characteristics (relief, vegetation, climate, land use etc.). In order to control
and minimize the errors coming from the discretization of the region into tessella-
tion cells and from numerical computations, we employ interval techniques [11].

The input data are extracted from satellite images, where the heights are
given in certain points referenced by their latitude and longitude coordinates.
The geographic region is represented by a regular tessellation that is determined
by subdividing the total area into sufficiently small rectangular subareas, each
one represented by one cell of the tessellation. This subdivision is done according
to a cell size established by the geophysics or ecology analyst and it is directly
associated to the refinement degree of the tessellation.

Applications in Ecology were found, where an adequate subdivision of ge-
ographic areas into segments presenting similar topographic characteristics is
often convenient (see, e.g: [6,7]).
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3 The Parallel Implementation of the ICTM

The parallel version of ICTM explores four possibilities for problem decomposi-
tion: Layers - each parallel process calculates a determined layer of the model;
Functions - each parallel process calculates an independent function of the
model; Domains - each parallel process calculates part of the region that will be
analyzed; Cells - each parallel process calculates individual cells of the model.

Since in clusters architectures the interconnection network can be considered
bottleneck (the cost of local computation is much cheaper then communication
with neighbors nodes) we are interested in a problem decomposition that results
in big chunks of work with low communication overhead (coarse grain [14]).

Considering this granularity issue, decomposition in layers is the most simple
and direct way to implement a parallel version of the ICTM. Being each process
responsible for a determined layer of the model, these processes perform the
ICTM calculations for each property in parallel.

The HPC-ICTM was implemented on clusters, using the MPI (Message Passing
Interface) [8] library, a master-slave scheme [14] (Fig. 1). The master process
is responsible for loading the input files and parameters (the data and the ra-
dius), dividing total work in nl tasks (nl is the number of layers that will be
processed), sending the radius value and the tasks for all slave processes to start
the categorization process, and keeping control of the tasks.

The slave processes receive the information sent by the master process, execute
their tasks and generate their own outputs. The directory with input and output
files is in the same file system, being accessible by all the cluster nodes. After
that, they ask the master for more work. Until there is work to do, the master
keep sending tasks to the slaves.
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Fig. 1. Master-slave scheme to solve the problem of decomposition in layers

Decomposition in layers follows the rule np = nl + 1, where np indicates the
number of processes and nl indicates the number of layers or properties that
need to be processed, considering each slave process running in a different node.
Thus, each layer is analyzed by a different slave process and the remnant process
is the master process.
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Communication occurs between master and slaves (not among slaves) and
only (i) when the master process sends the radius value and a layer for a slave
to compute, and (ii) when a slave notifies the master that the computation of a
layer has finished.

Each slave allocates only the amount of memory needed to calculate one
layer/property of the model. However, if the main memory size of a cluster node
is insufficient to execute one layer of the model, the application will access the
hard disk (swap) or, in the worst case, it will abort. In these cases, the problem
decomposition in layers is not recommended.

The analysis of the HPC-ICTM performance and some results concerning its
application to the relief/land-use categorization was presented in [12].

4 The HPC-ICTM Model on the OurGrid Environment

OurGrid (presented in [3]) is an environment for grid computing developed by
the Federal University of Campina Grande (UFCG, Brazil) in partnership with
the HP Brazil (Hewlett Packard Brazil). It is an environment for global execu-
tion, with sites for parallel applications based on Bag-of-Tasks. This computa-
tional power is provided by the idle resources of all participants, and is shared
in a way that makes those that contribute get more when they need.

Currently, the platform can be used to run any application whose tasks (i.e.,
parts that run on a single machine) do not communicate among themselves
during execution, as, e.g., most simulations, data mining and searching.

To execute a parallel application in OurGrid, the user located at a given site
must have the MyGrid package installed in his computer for the local schedul-
ing of the applications and to communicate with the remote machines (grid
machines). The user also needs to know the address of a peer. It is through this
peer that the addresses of the available machines in the grid will be acquired.
The idle resources of one determined domain are announced to the local peer
by user agents, or the peer maintains a list of the available machines that is
constantly updated.

After communicating with the MyGrid–Peer, the resources are supplied to
the scheduler of the user, and then the application submission can be scheduled
by the MyGrid–User Agents. In the cases where the peer does not obtain all
the resources that the user asks, it can search them in the community by asking
other peers. The way that the solicitation of a remote peer is replied is based on
the model of exchange favors[3]. Basically, a peer will prefer the one that had
previously yielded more resources.

In the OurGrid, each job is performed in three phases: i) init : this phase is
responsible for the information sending from home machine to grid machine; ii)
remote: this phase is responsible for running the application at the grid machine;
and iii) final : responsible for sending results from the grid machine to the home
machine.

Hence, the multi-layered ICTM can be modelled as one job with n tasks (see
Fig. 2), where n is the number of layers that will be analyzed. In each phase,
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the job sends instructions or information as follows: i) in the init phase, the
data on each layer and the sequential implementation of the ICTM; ii) in the
remote phase, the start instruction which executes the ICTM for the input data
supplied; and iii) in the final phase, the instruction that returns the results from
the analyzed layer to the user.

MyGrid
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OurGrid

paru.lsd.ufcg.edu.br dragao.lsd.ufcg.edu.br
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Workstation

.

.
. .Grid Community

CPAD
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Distributed geographic data
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UA UA

UA

UA

UA

UA UA UA

UAUA

Fig. 2. The HPC-ICTM on the OurGrid Environment

5 Performance Analysis and Final Remarks

Images from the LANDSAT1 satellite and SRTM2 radar were used to validate
the HPC-ICTM model for grid computing.

All the geographic data extracted from the images are altimetric data. Thus,
for the accomplishment of tests with various layers, the same data of topography
was replicated in each layer. However, it does not affect the obtained results since
the dimension of each layer is accurately the same.

Categorizations were obtained for the region surrounded the lagoon Lagoa
Pequena (Rio Grande do Sul, Brazil). The objective of this characterization was
the extraction of information to be used for the management and preservation of
the area. The analyzed region was divided in five subareas (sets of input data) to
allow tests with different sizes of data sets (quad. A: 58.081 cells, quad. B: 471.409
cells, quad. C: 2.310.385, quad. D: 3.763.196 cells and quad. E: 18.782.740 cells).

In order to verify the behavior and the performance of all the parallel models
of the ICTM model, three different tests for the clusters and two tests for the
computational grids were performed. Moreover, a test of the sequential version
of ICTM model for all quadrants was performed in order to calculate the reference
1 Land Remote Sensing Satellite.
2 Shuttle Radar Topography Mission.



Extending the HPC-ICTM Model for Grid Computing 855

Table 1. Results from the sequential implementation - Tseq (l is the number of layers)

Quadrant l E800 Server Workstation P4 IA64-dual
1 0.632s 0.593s 0.257s 0.452s

A(241×241) 3 1.838s 1.627s 0.885s 1.119s
5 3.024s 2.663s 1.449s 1.827s
7 4.471s 3.763s 2.804s 2.516s
1 5.483s 4.132s 1.884s 3.234s

B(577×817) 3 15.282s 12.373s 5.681s 7.188s
5 25.606s 20.514s 9.464s 11.979s
7 37.045s 28.682s 14.247s 16.818s
1 25.276s 19.971s 8.450s 12.098s

C(1309×1765) 3 Swap Swap 26.711s 33.652s
5 – Swap 45.693s 56.226s
7 – – – 79.568s
1 42.282s 33.242s 15.734s 21.340s

D(1739×2164) 3 – Swap 44.982s 58.135s
5 – – – 116.649s
7 – – – –
1 – – Swap 100.364s

E(4022×4670) 3 – – – –
5 – – – –
7 – – – –

time to be used in the comparisons with the parallel versions (see Table 1). Note
that the best sequential times were obtained in the 64 bits processors (IA64-
dual). These times were used as reference for the parallel executions.

The following tests were executed in the clusters: i) the layer parallelization
of the ICTM model, i.e., each layer in one processor; the quadrants A, B and
C had been analyzed with 3, 5 and 7 layers (see Table 2); ii) the functional
parallelization of the ICTM model, .i.e., each task of the method is executed
in one processor, using the quadrants C and D (see Table 3) ; iii) the ICTM
parallelization with domain decomposition, using the quadrant E (see Table 4).

The tests executed in grids were: i) using centralized geographic data for
all quadrants and 3, 5 and 7 layers (see Table 5)3; and ii) using distributed
geographic data for the quadrants C and D, using 3, 5 and 7 layers (see Table 6).
In this case, the data was locally stored in each machine of the grid.

These tests was performed in machines located at CPAD (High Performance
Center, PUCRS) and LSD (Distributed Systems Laboratory, UFCG, Federal
University of the Campina Grande, Brazil). We concluded that the partitioning
in layers for clusters must be used in the analysis of large geographic regions that
present different properties. The larger number of layers, the greater will be the
gain obtained with the parallel version. The parallelization of the ICTM operations
in clusters must be used in the analysis of large geographic regions that present

3 WQR and Storage Affinity scheduler algorithms was used.
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Table 2. Results from the layer parallelization implementation (l is the number of
layers; Tseq is the reference sequential time; Tpar is the parallel time; Speedup =
Tseq/Tpar; Effic = percentage of efficiency)

E800 IA64-dual
Quadrant l Tseq Tpar Speedup Effic. Tpar Speedup Effic.

3 1.119s 2.085s 0.54 13% 1.711s 0.65 16%
A(241×241) 5 1.827s 2.285s 0.80 13% 2.378s 0.77 13%

7 2.516s 2.840s 0.86 11% 2.630s 0.96 12%
3 7.188s 7.119s 1.00 25% 4.013s 1.79 45%

B(577×817) 5 11.979s 7.437s 1.61 27% 4.557s 2.63 44%
7 16.818s 8.055s 2.09 26% 5.568s 3.02 38%
3 33.652s 28.621s 1.18 29% 13.564s 2.48 62%

C(1309×1765) 5 56.226s 30.627s 1.84 31% 14.014s 4.01 67%
7 79.568s 31.005s 2.57 32% 14.433s 5.51 69%

Table 3. Results from the functional parallelization implementation (radius = neigh-
borhood cells; Tseq is the reference sequential time; Tpar is the parallel time; Speedup
= Tseq/Tpar ; Effic = percentage of efficiency)

P4 IA64-dual
Quadrant radius

Tseq Tpar Speedup Effic. Tseq Tpar Speedup Effic.

10 11.784s 9.945s 1.18 24% 11.637s 9.645s 1.21 24%
20 15.721s 13.002s 1.20 24% 12.347s 10.134s 1.22 24%
30 24.249s 20.278s 1.20 24% 13.069s 10.715s 1.22 24%
40 27.731s 22.678s 1.22 24% 20.735s 14.967s 1.39 28%

C(1309×1765) 50 31.952s 23.765s 1.34 27% 34.118s 24.122s 1.42 28%
60 36.730s 25.456s 1.44 29% 38.816s 27.356s 1.42 28%
70 41.918s 28.330s 1.48 30% 43.287s 30.506s 1.42 28%
100 75.210s 39.423s 1.91 38% 79.325s 44.331s 1.79 36%
200 248.321s 110.098s 2.25 45% 256.567s 115.123s 2.23 45%
10 18.216s 12.110s 1.50 30% 18.118s 12.002s 1.51 30%
20 24.439s 16.315s 1.50 30% 20.277s 13.221s 1.53 31%
30 37.578s 25.080s 1.50 30% 22.340s 14.620s 1.53 31%
40 43.946s 26.648s 1.66 33% 47.858s 29.345s 1.63 33%

D(1739×2164) 50 51.121s 28.950s 1.77 35% 55.387s 31.210s 1.77 35%
60 59.166s 30.008s 1.97 39% 62.655s 33.001s 1.90 38%
70 68.224s 33.987s 2.01 40% 69.668s 35.301s 1.97 39%
100 155.345s 62.345s 2.51 50% 159.333s 67.441s 2.36 47%
200 399.178s 132.234s 3.02 60% 405.212s 136.200s 2.98 60%

a level of great complexity, either for the size of the radius of neighborhood cells
or for the data absolute values.

The computational environment used in this test was:

– HP E800 Server: Dual Intel PIII 1GHz, 512MB RAM and 256KB cache;
– Workstation: Intel Pentium 4 1.6GHz, 512MB RAM and 256KB cache;
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Table 4. Results from the domain decomposition implementation (Tseq is the reference
sequential time; #blocks is the number of blocks cells; Tpar is the parallel time; Speedup
= Tseq/Tpar)

Amazônia - 32 bits
Quadrant Tseq #blocks

Tpar Speedup

3 105.332s 0.95
7 70.450s 1.42
15 50.340s 1.99

E(4022×4670) 100.364s 31 41.455s 2.42
39 33.211s 3.02
63 69.420s 1.45
79 115.367s 0.87

Table 5. Results from the centralized geographic data implementation (l is the number
of layers; Tseq is the reference sequential time)

OurGrid
Quadrant l Tseq WQR S. Affinity

1 0.452s 18.789s 16.066s
A(241×241) 3 1.119s 24.512s 21.569s
File: 540K 5 1.827s 55.319s 49.156s

7 2.516s 59.441s 55.345s
1 3.234s 81.921s 72.844s

B(577×817) 3 7.188s 89.666s 82.898s
File: 4.8M 5 11.979s 100.701s 86.737s

7 16.818s 116.201s 91.345s
1 12.098s 204.400s 192.382s

C(1309×1765) 3 33.652s 222.556s 210.293s
File: 21M 5 56.226s 232.875s 216.667s

7 79.568s 250.213s 225.312s
1 21.340s 274.231s 264.112s

D(1739×2164) 3 58.135s 290.389s 278.236s
File: 38M 5 116.649s 313.222s 284.561s

7 - 325.667s 296.212s
1 100.364s 470.476s 456.980s

E(4022×4670) 3 - 496.557s 465.180s
File: 178M 5 - 503.112s 477.213s

7 - 525.987s 503.098s

– HP Compaq dc5000 MT: Intel Pentium 4 2.8GHz, 1GB RAM and 1024KB
cache (denotated by P4);

– HP Integrity rx2600 IA64: Dual Itanium 64 bits 1.5GHz, 2GB RAM and
1024KB cache (denotated by IA64-dual);

– 8 nodes HP-E60: Dual Pentium III 550MHz, 256MB RAM and 512KB cache;
– 8 nodes HP-E800: Dual Pentium III 1GHz, 256MB RAM and 256KB cache;
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Table 6. Results from the distributed geographics data implementation (l is the num-
ber of layers; Tseq is the reference sequential time)

Distributed
Quadrant l Tseq LSD CPAD

OurGrid

3 33.652s 2 1 21.915s
C(1309×1765) 5 56.226s 3 2 23.011s

7 79.568s 4 3 24.110s
3 58.135s 1 2 47.760s

D(1739×2164) 5 116.649s 2 3 50.234s
7 - 3 4 53.314s

– 8 nodes HP Compaq dc5000 MT: Pentium 4 2.8GHz, 1GB RAM and 1024KB
cache (denotated by P4);

– 5 nodes HP Integrity rx2600 IA64: Dual Itanium 64 bits 1.5GHz, 2GB
RAM and 1024KB cache (denotated by IA64-dual).

The partitioning in layers for computational grids must be used when the
properties are locally stored in the nodes that will make its processing. We also
advise the use of grids mainly when the data will be distributed. The transference
of large archives by the Internet becomes the bottleneck of the grid implementa-
tion. On the other hand, if the network that establishes connection between the
resources is dedicated, then the transfer of archives may not cause much impact
in the time of execution of the application.

As future work will be developed a new version of the HPC-ICTM model for
Grid Computing with communication between tasks, since the last version of the
OurGrid environment adds support will be parallel applications developed on
MPI. This new characteristic will allow the implementation of other possibilities
for problem decomposition.
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Abstract. The present paper describes the design and implementation
of distributed SILC (Simple Interface for Library Collections) that gives
users access to a variety of MPI-based parallel matrix computation li-
braries in a flexible and environment-independent manner. Distributed
SILC allows users to make use of MPI-based parallel matrix computation
libraries not only in MPI-based parallel user programs but also in sequen-
tial user programs. Since user programs for SILC are free of a source-level
dependency on particular libraries and computing environments, users
can easily utilize alternative libraries and computing environments with-
out any modification in the user programs. The experimental results of
two test problems showed that the implemented SILC system achieved
speedups of 2.69 and 7.54 using MPI-based parallel matrix computation
libraries with 16 processes.

1 Introduction

The traditional way of using matrix computation libraries based directly on
library-specific application programming interfaces usually leads to a source-
level dependency on the libraries in use. This source-level dependency is the
primary reason why users (i.e., application programmers) are often required to
make a considerable amount of modifications to their user programs, for example
when porting them to other computing environments or when trying out other
libraries having different sets of solvers, matrix storage formats, arithmetic pre-
cisions, and so on. To address this issue inherent in the traditional programming
style, we have been proposing an easy-to-use application framework named Sim-
ple Interface for Library Collections (SILC) [1,2]. A user program in the SILC
framework first deposits data such as matrices and vectors into a separate mem-
ory space. Next, the user program makes requests for computation by means
of mathematical expressions in the form of text. These requests are translated
into calls for appropriate library functions, which are carried out in the separate
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double *A, *B;
int desc_A[9], desc_B[9], *ipiv, info;

/* create matrix A and vector B */

PDGESV(N, NRHS, A, IA, JA, desc_A, ipiv, B,
IB, JB, desc_B, &info);

/* solution X is stored in B */

(a)

silc_envelope_t A, b, x;

/* create matrix A and vector B */

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A \\ b"); /* call PDGESV() */
SILC_GET(&x, "x");

(b)

Fig. 1. A comparison of two C programs (a) in the traditional programming style and
(b) in the SILC framework, both making use of ScaLAPACK to solve a system of linear
equations Ax = b

memory space independently of the user program. Finally, the user program
fetches the results of computation from the separate memory space.

Figure 1 shows two user programs written in C, one in the traditional program-
ming style and the other in the SILC framework. The traditional user program
shown in Fig. 1 (a) prepares matrix A and vector b using library-specific data
structures and makes a call for a library function in ScaLAPACK [3] to solve a
system of linear equations Ax = b. The user program for SILC shown in Fig. 1
(b) realizes the same computation using the following three routines: SILC_PUT to
deposit A and b into a separate memory space, SILC_EXEC to issue a request for
solution of the linear system by means of a mathematical expression in the form of
text, and SILC_GET to retrieve the solution x. The mathematical expression spec-
ified as the argument of SILC_EXEC is translated into a call for the library function
in ScaLAPACK for example, and carried out in the separate memory space.

We have developed a SILC system for sequential and shared-memory parallel
computing environments [1,2]. The current implementation of SILC is based on
a client-server architecture, in which a user program is a client of a SILC server
running in a remote computing environment. Since a user program for SILC
does not contain any library-specific code, no modification to the user program is
required to utilize alternative matrix computation libraries. Moreover, users can
automatically gain the advantages of parallel computation by using a SILC server
that runs in a parallel computing environment. The main overhead in using SILC,
on the other hand, is the cost of data communications between a user program
and a SILC server. However, it is not difficult to reduce the relative amount of
communication overhead, since the time complexities of matrix computations
tend to be larger than their space complexities. For instance, solving a dense
linear system with N unknowns takes O(N3) time, while the time necessary
for data communications is of O(N2). Consequently, in many cases the use of a
faster matrix computation library and computing environment results in good
speedups even at the cost of data communications.

2 SILC for Distributed Parallel Computing Environments

We have been developing a SILC system for distributed parallel computing en-
vironments that allows users to make use of MPI-based matrix computation
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User program

MPI-based parallel library

Data communications

Configuration (A).

User program

MPI-based parallel library

Configuration (B).

MPI-based parallel library

User program

Configuration (C).

MPI-based parallel library

User program

The traditional configuration.

Fig. 2. Three system configurations of distributed SILC, compared with the configu-
ration of an MPI-based parallel program in the traditional programming style

libraries in a flexible and computing environment-independent manner. The
primary goal in the design of distributed SILC is to support as many MPI-based
parallel matrix computation libraries and computing environments as possible,
since SILC is a piece of middleware placed between user programs and matrix
computation libraries, serving as an abstraction layer that hides the details of
the libraries and underlying computing environments. Having this design goal
in mind, we consider three system configurations shown in Fig. 2. The shaded
parts in the figure show the components that SILC provides. For comparison,
the figure also shows the configuration of a user program in the traditional pro-
gramming style. The traditional user program in this example consists of four
MPI processes.

Configurations (A) and (B) are based on a client-server architecture in which a
user program is a client of an MPI-based parallel SILC server. The user program
establishes a TCP connection to the SILC server and makes use of MPI-based
parallel matrix computation libraries managed by the server. The user program
in (A) is sequential, while the user program in (B) is an MPI-based parallel
program. Both the server and the user program in (B) shown in Fig. 2 consist
of four MPI processes.

In Configuration (A), the user program makes a connection to one of the server
processes through which both data and requests for computation are transferred.
The server distributes the received data among the server processes by means of
a data redistribution mechanism, keeping the data among the server processes
in a distributed manner. The data redistribution mechanism is also utilized to
make a change in data distributions in the following two situations. One situation
is when the server handles requests for computation, where the data is passed
to a library function as an argument in a different data distribution the library
function accepts. The other situation is when the user program fetches the results
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of preceding computation requests, where the data is transferred in the data
distribution that the user program requires. Computation requests by means
of textual mathematical expressions are handled by the library interface in the
server. The interface incorporates an interpreter that translates the expressions
into calls for appropriate library functions, which are carried out within the
server processes.

In Configuration (B), each process of the MPI-based parallel user program
makes a separate connection to one of the server processes; that is, multiple
connections are established between the user program and the server. Data is
retained in a distributed manner in both the user program and the SILC server,
and parallel data transfer is performed between the user program and the server
through the multiple connections. The data redistribution mechanism is em-
ployed in the same manner as Configuration (A), when the server needs to change
distributions of data. Requests for computation, on the other hand, are sent to
the server from one process on behalf of the user program. Since a user program
in Configuration (B) is an ordinary MPI-based program, it can be executed, for
example, as follows:

mpirun -np n ./my_silc_application

where n is the number of processes on which the program runs. At the moment,
the number of processes of the user program must be smaller than or equal to
the number of the server’s processes.

Configuration (C) is prepared for some restrictive computing environments in
which the client-server architecture cannot be adopted. In this configuration, the
data redistribution mechanism and library interface of the SILC server are imple-
mented as a library, which is linked to MPI-based parallel user programs together
with MPI-based parallel matrix computation libraries. There is no source-level
difference between a user program in Configuration (B) and another program
in (C); that is, the source code of the two programs is the same, so that these
configurations can be exchanged without any modification to the source code.
Unlike Configurations (A) and (B), on the other hand, library functions in this
configuration are carried out within the processes of a user program.

3 Experiments

To determine whether the implemented SILC system is capable of achieving
speedups when compared with the traditional programming style, we conducted
experiments with regard to the following two test problems.

Problem 1. A dense linear system Ax = b.
Problem 2. An initial value problem of a partial differential equation (PDE).

Table 1 is a summary of the computing environments used in the experiments.
These computing environments are in the same Gigabit Ethernet (GbE) LAN.
Both Xeon4 and Xeon8 consist of a disjoint set of nodes in the same GbE-based
PC cluster. Only one core of each node was used. Computation was done in
double precision real throughout the experiments.
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Table 1. The computing environments used in the experiments

Host name Specifications
Xeon4 IBM eServer xSeries 335 (dual Intel Xeon 2.8 GHz, L2 cache 512 KB,

Memory 1 GB) × 4, Red Hat Linux 8.0, LAM/MPI 7.0
Xeon8 Different 8 nodes in the same PC cluster as Xeon4
Altix SGI Altix 3700 (Intel Itanium2 1.3 GHz × 32, L2 cache 256 KB,

Memory 32 GB), Red Hat Linux Advanced Server 2.1, SGI MPI 4.4
(MPT 1.9.1)

3.1 Problem 1: Solution of a Dense Linear System

Consider solving a system of linear equations Ax = b using the PDGESV routine
in ScaLAPACK, where A is an N × N dense matrix and b and x are N -vectors.
We prepared the following two user programs, both of which are MPI-based
parallel programs written in C.

Program P1 in the traditional programming style. The program first prepares A
and b in the two-dimensional block-cyclic distribution [3]. The elements of A are
random numbers, while those of b are given so that all elements of solution x
will be 1. Then, the program makes a call for PDGESV to solve the linear system.
The time elapsed in the ScaLAPACK routine was measured as the execution
time of the program.

Program P2 in the SILC framework. The program also prepares A and b in the
same way as P1. Next, the program makes two calls for SILC_PUT to deposit A
and b into a SILC server, respectively, and another call for SILC_EXEC to request
the solution of the linear system. This request is translated into a call for the
PDGESV routine, which is carried out on the server side. Finally, the program calls
for SILC_GET to retrieve the solution x from the server. We prepared three SILC
servers running in Xeon4, in Xeon8, and in Altix. The elapsed time from the
connection to a server to the data transfer of x was measured as the execution
time of the program.

Table 2 summarizes the computing environments used for Problem 1. Both
P1 and P2 were executed with 4 processes in Xeon4, whereas the SILC servers
used by P2 were executed with 4 processes in Xeon4, with 8 processes in Xeon8,
and with 16 processes in Altix. Since P2 is an MPI-based parallel program, this
configuration corresponds to Configuration (B) shown in Fig. 2. Timing was
done by the gettimeofday system call.

Table 3 shows the experimental results, where T is execution time in sec-
onds, S is speedup (i.e., a ratio of the execution time of P1 to that of P2), and
C is a proportion of communication overhead to the execution time of P2 (we
assumed C = (T − Tcomp)/T , where Tcomp is a computation time measured
on the server side). The execution time of P2 includes the time for the data
transfer and distribution of A and b, as well as the time for the collection and
data transfer of x. These data communications constitute the major overhead
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Table 2. The computing environments used for Problem 1

Label User program SILC server Configuration
Trad. P1 in Xeon4 (4 PEs) – –
SILC (local) P2 in Xeon4 (4 PEs) Xeon8 (4 PEs) (B)
SILC (remote #1) P2 in Xeon4 (4 PEs) Xeon8 (8 PEs) (B)
SILC (remote #2) P2 in Xeon4 (4 PEs) Altix (16 PEs) (B)

Table 3. The results of Problem 1 (solution of a dense linear system Ax = b). T is
execution time in seconds, S is speedup, and C is communication overhead.

Trad. SILC (local) SILC (remote #1) SILC (remote #2)
N T T (S) C T (S) C T (S) C

1,000 1.592 1.417 (1.12) 7.8% 2.179 (0.73) 9.5% 0.790 (2.02) 16.0%
2,000 5.403 5.453 (0.99) 6.5% 5.789 (0.93) 11.1% 2.827 (1.91) 13.8%
4,000 27.153 30.145 (0.90) 4.0% 22.626 (1.20) 9.8% 14.235 (1.91) 10.2%
8,000 186.991 208.880 (0.90) 2.3% 130.892 (1.43) 6.5% 69.481 (2.69) 8.3%

in using SILC. However, as indicated by the proportion C in Table 3, the cost
of data communications becomes relatively smaller as dimension N increases,
because the solution of the dense linear system requires a computation time on
the order of O(N3), while the data communications take only O(N2) time. Since
the computation time can be significantly reduced by using a faster computing
environment via SILC, some speedups are expected to be achieved even at the
cost of data communications when N is large. This holds true for the experi-
mental results shown in Table 3 – the speedups in the case of N = 8, 000 were
1.43 with the SILC server in Xeon8 and 2.69 with the server in Altix.

3.2 Problem 2: Solution of an Initial Value Problem of a PDE

We solve the two-dimensional time-dependent diffusion equation ∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2

(t ≥ 0) in the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 subject to the initial condition

u(x, y, 0) =
{

1 if |x − 0.5| < 0.1 and |y − 0.5| < 0.1,
0 otherwise,

and boundary conditions u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0
for t > 0, using the Crank-Nicolson method [4]. Suppose t0 = 0 is the initial
time and Δt > 0 is a constant time interval, and define the k-th time step as
tk = tk−1+Δt. In using the Crank-Nicolson method, we have to solve a system of
linear equations Axk = bk for each time step, where A is an N ×N sparse matrix
and bk and xk are N -vectors. bk is defined as bk = Cxk−1, i.e. the matrix-vector
product of another N × N sparse matrix C and the solution xk−1 at tk−1. We
prepared the following two user programs, both of which are sequential programs
written in C.
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Table 4. The computing environments used for Problem 2

Label User program SILC server Configuration
Trad. P1 in Xeon4 (1 PE) – –
SILC (local) P2 in Xeon4 (1 PE) Xeon4 (4 PEs) (A)
SILC (remote #1) P2 in Xeon4 (1 PE) Xeon8 (8 PEs) (A)
SILC (remote #2) P2 in Xeon4 (1 PE) Altix (16 PEs) (A)

Table 5. The results of Problem 2 (solution of an initial value problem of a PDE). T
is execution time in seconds, S is speedup, and C is communication overhead.

Trad. SILC (local) SILC (remote #1) SILC (remote #2)
N T T (S) C T (S) C T (S) C

10,000 0.432 0.693 (0.62) 46.54% 1.040 (0.42) 41.34% 0.423 (1.02) 56.8%
40,000 5.019 3.164 (1.59) 33.55% 3.756 (1.34) 39.32% 1.209 (4.15) 38.2%
90,000 19.206 8.587 (2.24) 28.83% 7.402 (2.59) 24.08% 2.981 (6.44) 31.1%

160,000 43.118 17.617 (2.45) 22.72% 13.850 (3.11) 22.69% 6.078 (7.09) 27.1%
250,000 82.798 30.627 (2.70) 17.78% 22.505 (3.68) 19.77% 10.987 (7.54) 23.1%

Program P1 in the traditional programming style.

1. Prepare matrices A and C and the initial solution x0 at t0. The matrices are
stored in the Compressed Row Storage (CRS) format [5].

2. For each time step tk (k = 1, 2, 3, . . .):
(a) Compute bk = Cxk−1 using the sparse matrix-vector product routine in

the sequential version of an iterative solvers library Lis [6].
(b) Solve Axk = bk using the Conjugate Gradient (CG) method [5] in Lis

with a zero initial guess.

Program P2 in the SILC framework.

1. Prepare matrices A and C and vector x0 in the same way as P1.
2. Send A, C, and x0 to a SILC server using SILC_PUT. In the server, the data

is distributed among the server processes.
3. For each time step tk (k = 1, 2, 3, . . .):

(a) Send a request for computation by SILC_EXEC to compute bk = Cxk−1
using a parallel sparse matrix-vector product routine.

(b) Send another request with SILC_EXEC to solve Axk = bk using the CG
method in the MPI-based parallel version of Lis with a zero initial guess.

(c) Receive xk from the SILC server using SILC_GET.

The library routines used by P1 are sequential, whereas those carried out by
the SILC server are MPI-based parallel routines. Table 4 shows the computing
environments used for Problem 2. We executed both P1 and P2 in a node of
Xeon4 using a single processor, and measured their execution times for the first
40 time steps using the gettimeofday system call. We used the same SILC
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servers as those in Problem 1 to run P2. Since P2 is a sequential program, this
configuration corresponds to Configuration (A) shown in Fig. 2.

Table 5 shows the experimental results. In comparison with Program P2 for
Problem 1, P2 for this problem consumed a relatively large proportion of the
execution time in depositing A, C, and x0 into the server and fetching xk for
each time step. Suppose K = 40 is the number of time steps, α is the iteration
count of the CG method, and β = 5N −4

√
N is the number of non-zero elements

in A and C. Then, the number of floating-point operations for sparse matrix-
vector product Cxk−1 is 2β, while that for solving Axk = bk with the CG
method is 4N +α(2β +12N +3). Therefore, the matrix computations in P1 and
P2 require a computation time on the order of O(αKN). On the other hand,
data communications between P2 and a SILC server require a communication
time on the order of O(KN). That is, the ratio of the computation time to the
communication time is almost proportional to α, which is small compared to N in
this test problem. In other words, this problem is somewhat disadvantageous to
SILC in the sense that P2 can hardly yield a speedup in the first place. However,
in the experiments we observed speedups of 3.68 using the SILC server in Xeon8
and 7.54 using the server in Altix in the case of N = 250, 000, by means of faster
matrix computations in these remote computing environments.

3.3 Observations

The experimental results of the two test problems showed that the implemented
SILC system is capable of achieving speedups when it deals with large problems.
Although SILC imposes some communication overhead due to the data trans-
fer between a user program and a SILC server, the overhead can be offset by
speedups through the faster matrix computation libraries and computing envi-
ronment that SILC makes available. The overhead can also be reduced by means
of a faster interconnect between the user program and the server.

In addition to the quantitative benefit of speedups, SILC also provides a
qualitative benefit in that it enables MPI-based parallel matrix computation
libraries to be used not only in MPI-based parallel user programs but also in
sequential user programs. In fact, P2 in Problem 1 was an MPI-based parallel
program, while P2 in Problem 2 was a sequential program. The former used
ScaLAPACK and the latter employed Lis, both in a remote MPI-based parallel
computing environment. Since the SILC server to be used by a user program
can be specified outside the user program, various computing environments as
well as the matrix computation libraries that are available in the computing
environments can be evaluated one after another without any modification to
the user program.

4 Related Work

Improving the utility of matrix computation libraries is a major research topic
in the areas of high-performance computing and Grid computing.
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The Trilinos project [7] has been proposing a framework for integrating matrix
computation libraries into a C++ class library and developing a number of
libraries for numerical linear algebra. The application programming interface
(API) of each library is consistent with others’ in terms of (1) common data
structures of matrices and vectors, and (2) common abstract classes based on
which users define solvers by inheritance. The libraries are also organized as
Trilinos packages by means of (3) common directory structures and installation
procedures. However, the libraries vary in the details of their APIs; for example,
the API of a dense direct solvers library and that of an iterative solvers library,
both developed in the Trilinos project, are not exactly the same, so that users
are required to modify their user programs to utilize one library instead of the
other in use. In SILC, requests for computation are issued by means of textual
mathematical expressions through which any libraries (even having incompatible
APIs) can be utilized in the same way in any programming languages.

Amesos [8] is a C++ class library which gives access to various direct linear
solvers through a common API. The library provides good support for many ex-
isting libraries based on different parallelization techniques, including sequential
libraries such as LAPACK and parallel libraries such as ScaLAPACK. Amesos
focuses on direct solvers for dense matrices, whereas SILC provides support for
a wider range of matrix computations in a language-independent manner.

Since SILC is a piece of middleware based on a client-server architecture, our
framework shares some functionalities with Grid computing middleware such as
Ninf-G [9] and NetSolve [10]. Ninf-G is a middleware system for realizing Remote
Procedure Call (RPC) in Grid computing environments. Ninf-G allows user pro-
grams to carry out MPI-based parallel matrix computation libraries in remote
distributed parallel computing environments. In Ninf-G, a particular call for a re-
mote procedure takes place in one process; that is, RPC is carried out sequentially
either in a sequential user program or in a process of an MPI-based parallel user
program [11]. All input and output data is once gathered to one of the remote pro-
cesses by which the remote procedure is carried out in parallel. In addition, users
are required to specify the ways of distributing the input data to the other pro-
cesses as well as of collecting output data to the sending process, both by means of
Ninf-G’s interface description language. In contrast, SILC enables data transfer
between a user program and a SILC server to be performed in parallel by means
of Configuration (B) shown in Fig. 2, allowing the user program and the server to
avoid the data redistribution to/from one process before the data transfer. More-
over, users do not have to care about the details of the data redistribution on the
server side as long as supported matrix storage formats are in use.

5 Concluding Remarks

This paper described the design and implementation of a SILC system for dis-
tributed parallel computing environments. By using this system, MPI-based par-
allel matrix computation libraries can be utilized not only in MPI-based parallel
user programs but also in sequential user programs. Moreover, no modification to
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the user programs is required to make use of different computing environments.
The experimental results of two test problems showed that some speedups are
feasible by using faster matrix computation libraries in distributed parallel com-
puting environments via SILC, provided that the amount of matrix computations
is large enough to reduce the relative amount of communication overhead due
to data transfer between a user program and a SILC server. In the experiments,
the implemented SILC system achieved speedups of 2.69 in Problem 1 using
ScaLAPACK and 7.54 in Problem 2 using an iterative solvers library Lis, both
through a remote SILC server that runs on 16 processes.

The primary subjects of our future study include an implementation of Con-
figuration (C) shown in Fig. 2, a quantitative analysis concerning the cost of data
communications, a proposal of a performance evaluation model for distributed
SILC with emphasis on the communication overhead [12], and the development
of plug-in modules for integrating various existing matrix computation libraries
into the SILC framework.
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Abstract. Parallel computing is indisputably present in the future of
high performance computing. For distributed memory systems, MPI is
widely accepted as a de facto standard. However, I/O is often neglected
when considering parallel performance. In this article, a number of I/O
strategies for distributed memory systems will be examined. These will
be evaluated in the context of COOLFluiD, a framework for object ori-
ented computational fluid dynamics. The influence of the system and
software architecture on performance will be studied. Benchmark results
will be provided, enabling a comparison between some commonly used
parallel file systems.

1 Motivation and Problem Description

1.1 Parallel Programming

Numerical simulation and other computationally intensive problems are often
successfully tackled using parallel computing. Frequently these problems are too
large to solve on a single system or the time needed to complete them makes
single-CPU calculation unpractical.

Successful parallelisation is usually measured by the problem “speedup”. This
quantity indicates how much faster a given problem is solved on multiple pro-
cessors, compared to the solution time on one processor. More often than not,
this speedup is only based on the computationally intensive part of the code,
and phases as program startup or data loading and saving elude the test. Also,
when the ratio of computation to the input data is high enough, I/O time is
negligible in the total execution time.

However, when scaling to larger problem sizes (and consequently more pro-
cessors), one often sees that I/O is becoming an increasingly large bottleneck.
The main reason for this is that without parallel I/O, the I/O and calculation
potential of a cluster quickly becomes unbalanced. This is visible both in hard-
ware and in software; often there is but a single file server managing data for the
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whole cluster. Moreover, traditional I/O semantics do not offer enough expres-
sional power to coordinate requests, leading to file server congestion, reducing
the already limited I/O bandwidth even further.

1.2 Computational Fluid Dynamics and COOLFluiD

Computational fluid dynamics (CFD) deals with the solution of a system of
partial differential equations describing the motion of a fluid. This is commonly
done by discretizing these equations on a mesh. Depending on the numerical
algorithm, a set of unknowns is associated with either nodes or cells of the mesh.
The amount of computational work is proportional to the number of cells. For
realistic problems this quickly leads to simulations larger than a single system
can handle.

COOLFluiD[4] is an object oriented framework for computational fluid dy-
namics, written in C++. It supports distributed memory parallelisation through
MPI, but still allows optimized compilation without MPI for single-processor
systems. COOLFluiD utilises parallel I/O for two reasons. One is to guarantee
scalability of the code. The other is to hide parallelisation from the end user.
During development, a goal was set to mask the differences between serial and
parallel builds of COOLFluiD as much as possible. This, among other things,
requires that the data files used and generated by the parallel version do not dif-
fer from those in the serial version. This depends on parallel I/O, as opening a
remote file for writing on multiple processors using posix semantics is ill defined
and often leads to corrupted files.

1.3 I/O in a Parallel Simulation

There has been much research on the optimal parallel solution of a system of
PDEs. However, relatively little study has been devoted to creating scalable I/O
algorithms for this class of problems.

Generally speaking, there are three reasons for performing I/O during a sim-
ulation. At the start of the program, the mesh (its geometric description and
an initial value for each of the associated unknowns) needs to be loaded into
memory. During the computation, snapshots of the current solution state are
stored. Before ending the program, the final solution is saved.

In a distributed memory machine, the mesh is divided between the nodes.
Consequently each CPU requires a different portion of the mesh to operate.
This offers opportunities for parallel I/O, since every processor only accesses
distinct parts of the mesh.

Figure 1 shows an example of a typical decomposition, and the resulting I/O
access pattern. On the left, the partitioned mesh is shown. On the right, the
file layout (row-major ordering) can be seen. Color indicates which states are
accessed by a given CPU.
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Fig. 1. Decomposition and file access pattern of a 3D sphere

2 I/O Strategies

Within COOLFluiD, I/O is fully abstracted. This simplifies supporting multiple
file formats and access APIs, and allows run-time selection of the desired format.
Mesh input and output is provided by file plugins. A file plugin offers a well
defined, format independent interface to the stored mesh, and can implement
any of the following access strategies:

Parallel Random Access: This strategy has the potential to offer the highest
performance. It allows every processor to read and write arbitrary regions
of the file. If the system architecture has multiple pathways to the file this
can be exploited. File plugins implementing this interface enable all CPUs to
concurrently access those portions of the mesh required for their calculations.

Non-Parallel Random Access: In this model, the underlying file format (or
access API) does not support parallel access to the file. Only a single CPU is
allowed to open the file, which will be random accessible. This strategy can
be used with data present on non-shared resources, for example local disks.

Non-Parallel Sequential Access: Sometimes the way data is stored prohibits
meaningful true parallel access. For example, within an ASCII based file for-
mat, it is not possible to read a specific mesh element without first reading
all the previous elements. This is due to the varying stride between the el-
ements. As such, even when the OS and API allow parallel writing to the
file, for mesh based applications, this cannot be done without corrupting
the file structure. Note that applications that do not care about the relative
ordering of the entries in the file can still use parallel I/O to read and write
from this file (using shared file pointer techniques). However, as this arti-
cle studies I/O patterns for mesh based applications this is not taken into
consideration.

3 Performance Testing

Currently, obtaining good parallel I/O performance is still somewhat of a black
art. By making use of the flexibility COOLFluiD offers concerning mesh I/O, an
attempt is made to explore and analyse the many different combinations of file
system, API and interconnect that can be found in modern clusters.
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3.1 Test Description

We will concentrate on the parallel random access pattern, since the other two
access strategies are inherently non-scalable (when considering I/O bandwidth).
Although COOLFluiD supports them, they are offered as a convenience. For
large simulations, converting the mesh to one of the formats supporting true
parallel random access is recommended.

Figure 2 shows the software invoked during mesh transfers. COOLFluiD has
file plugins that utilise a storage library (HDF5[3] or PnetCDF[7]) or that di-
rectly employ MPI-IO to access the mesh. Internally, these storage libraries rely
on the I/O functions of MPI to access raw files. ROMIO[6] is an implementation
of these I/O functions, and is used in almost all research or open source MPI
implementations. ROMIO has a number of ADIO (abstract-device interface for
I/O) drivers providing optimized access to a certain file system. While PVFS2[2]
and NFS have specific ADIO implementations, Lustre[1], aiming for full POSIX
compliance, is accessed through the generic “UFS” driver.

Operating System 

UFS PVFS2 NFS

MPI
ROM−IO (MPI−IO)

PHDF5 PNetCDF

lustrePVFS2

COOLFluiD

Fig. 2. Software stack for parallel mesh I/O

For testing, the time needed to access a set of unknowns (of a given dimension)
will be measured. These unknowns are stored as a linear sequence of “states”
(figure 3), each state consisting of a number of doubles. The storage library
(HDF5, PnetCDF) is responsible for the mapping between the virtual layout
(n×d doubles) and the file layout (a linear byte sequence). In general, each state
is only accessed by one CPU. However, states on the border of a partition will
be accessed by multiple CPUs. States are loaded or stored in groups, where the
group size is determined by the buffer size. Since MPI-IO requires file datatypes
to have positive type displacements, states need to be addressed in increasing
order (for a given CPU). This means that in each access round, a CPU will
access buffer size

sizeof(double)×d states. Because the state partitions are balanced to evenly
distribute the computational cost between the CPUs, this also causes the I/O
load to be balanced.

3.2 Test Hardware

All tests were conducted on VIC, a 862 CPU cluster located at K.U.Leuven. The
cluster has a number of different interconnect fabrics. All nodes possess a gigabit
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Fig. 3. (Virtual) file layout of the unknowns

ethernet connection. Two 144 port infiniband (4X) switches provide infiniband
connections to most of the nodes.

For PVFS2[2], 4 I/O servers were employed, each server having 2 opteron
CPUs. Data is stored locally on a SATA disk attached to the node. The disk has
a raw read bandwidth of approx. 50 Mb/s. One of the I/O servers doubles as
metadata server. Connections between the servers and clients were made using
native Infiniband. PVFS2 version 1.5.1 was used.

The Lustre[1] file system used for testing ran on the same 4 servers. Here
too, one of them performed both metadata (MDS) and storage (OST) functions,
while the others only served as storage servers. Connections were made using
IPoIB, an IP emulation mode running over the infiniband network. All files were
striped over the available I/O servers. The Lustre version was 1.4.6.

A dedicated server (of the same type) was installed to export the NFS file
system, also using IPoIB. The async option was enabled, allowing the server to
cache writes in order to increase performance.

Eight nodes were reserved as I/O clients. Only one of the two opteron CPUs
from every node was used, avoiding contention for the network ports.

All nodes were installed for the purpose of this article, in order to exclude any
interference from other jobs running on the cluster.

3.3 MPI-IO File Hints

The MPI-2 file interface enables the user to specify implementation specific hints.
These hints can be used to communicate additional information to the under-
lying software layers. However, an implementation is free to ignore hints. Both
PnetCDF and HDF5 allow the user to specify hints, which are subsequently
passed unmodified to MPI-IO during file access.

Unfortunately, most hints are useless in combination with high level storage
libraries. In order to specify meaningful hints, an application needs to know
intimate details of the underlying file layout. However, the goal of a storage
library is to abstract this underlying file layout and to present a higher level
interface to the application. Because of this, and also considering the fact that
an implementation can ignore hints, the influence of file hints on performance
was not studied.



876 D. Kimpe et al.

3.4 MPI-IO on PVFS2

Since both HDF5 and PnetCDF rely on MPI-IO for actual file access, ROMIO
performance can help explain their test results, therefore pure MPI-IO perfor-
mance will be discussed first. PVFS2 will be accessed through the user-space
PVFS2 ROMIO driver, which does not do client-side caching. As such, OS file
caches do not influence the performance.

Figure 4 shows the read and write performance of a number of MPI access
methods. (test dataset: 400000 x 8 doubles) For MPI-IO, two completely different
access methods were studied. For the first (the left graph), no file datatypes were
used. This is referred to as “level 0” for independent accesses, and “level 1” for
collective accesses[8]. The second method does use file datatypes, which make
it possible to address full non-contiguous access pattern in one operation. This
method is known as “level 2” for independent and “level 3” for collective accesses.

Additionally, each method was tested using a combination of the following
optimizations:

optimize: Try to group adjacent requests into larger ones. This is done by
the client application, before passing the request to MPI-IO or the storage
library.

typed: Use a one-dimensional array of an array type (with base type double)
instead of a two-dimensional array of doubles. Since there was no releveant
performance difference between typed and non-typed tests, this data was
omitted from the graphs.

collective: Use MPI File write all instead of MPI File write.

Selecting the right I/O method can make a huge difference in I/O performance.
Level 0 and 1 lead to unuseable performance (less than 1 Mb/s!). Although level
2 performs a little bit better, the graph already indicates a scaling problem,
even with eight nodes for four I/O servers! Only level 3 I/O leads to acceptable
performance.

3.5 PnetCDF and HDF5 on PVFS2

PnetCDF currently doesn’t offer a suitable API for unstructured dataset access.
Because of this, client software is forced to repeatedly call the library to access a
small number of elements, leading to many small read or write operations (level
0/1). Although ROMIO is capable of aggregating and grouping some of these
requests, the data volume is still too small to really benefit from this. For the
same reason, collective I/O (which has some additional overhead) performs even
worse.

Figure 4 shows the results. Because of the slow I/O speed, a small test dataset
(50000× 8) was choosen. This dataset was actually smaller than the buffer size.
On one CPU, when optimization of the access pattern was enabled, this resulted
in one large read/write request of the full dataset. Therefore, speed measure-
ments with only one client node were omitted from the graph when optimiza-
tion was enabled. Because of the huge difference between the performance of the
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Fig. 4. unstructured access pattern performance on PVFS2
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different I/O levels, the performance of the PnetCDF library (for this access pat-
tern) ultimately is determined by the access pattern presented by PnetCDF to
MPI-IO. The graph clearly resembles the MPI-IO graph (without file datatypes).

Figure 4 also demonstrates that HDF5 also has serious problems dealing with
unstructured access patterns. Although the API offers two ways to setup the
access pattern, both have problems. A first way is to use a union of hyperslabs.
The H5S select hyperslab call allows extending an existing dataset selection
with a specified hyperslab. By repeatedly calling this function, the full access
pattern can be described. Unfortunately, every time the function is called, it
loops over the old selection to make sure no duplicate selections exist. This causes
the setup time of the access pattern to become unreasonably large, making it
even slower than the actual data transfer.

The second method uses the H5S select elements call, which allows the
user to specify an array of coordinates of points that have to be read. Although
application-level optimization (by grouping adjacent points) is not possible with
this call, the access pattern can be described in one fast function call. However,
internally, HDF5 (currently) does not relay this access pattern to MPI-IO. In-
stead, it is broken up again in seperate one-element read operations, and read
by independent I/O requests. Because of this, its performance is comparable to
that of pure MPI-IO using independent accesses without file datatypes.

Results with only one client node were not obtained, as the latest stable HDF5
release (1.6.5) contains a bug preventing its use on only one CPU when using
userspace ROMIO drivers.

3.6 Unstructured MPI-IO Access on NFS and Lustre

The previous tests demonstrated that PnetCDF performance closely follows
that of MPI-IO with the same access pattern. For HDF5, at least when us-
ing H5S select elements style selections, this is also the case. The other HDF5
method, a hyperslab union, is limited not by I/O time but by the setup time.
Therefore, only MPI-IO performance will be shown for Lustre and NFS.

In figure 5 can be seen that NFS and PVFS2 had different design goals. NFS
was designed as a general purpose network file system, optimized to handle mul-
tiple small file requests. As such, for unstructured access without file datatypes
(causing small requests), on average NFS performs better than PVF2 if the num-
ber of clients is small. For more than 4 clients, the NFS server cannot handle the
load any more. Since NFS uses UDP – an unreliable transport protocol – lost
packets triggering retransmission delays cause a serious performance drop. This
can clearly be seen for collective operations, which by their nature increase net-
work contention. For 5 client nodes and more, transfer speed approached zero as
some transfers took multiple hours to complete. For this reason, no performance
numbers were obtained for collective modes with more than 6 clients.

When using file datatypes, by aggregating data, collective calls are able to
improve performance. Because of the small dataset size, from 6 or more clients
on, performance becomes less predictable due to client side caching. If (part of)
the data is in the client side cache, in addition to avoiding the data transfer, load
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Fig. 5. MPI-IO performance on NFS and Lustre
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on the NFS server is reduced, resulting in extra performance. Application-based
merging of adjacent access requests is a delicate issue on NFS. When dealing
with very small requests some benefit can be seen. However, when using level
3 I/O (collective mode and file datatypes), optimizing collective read patterns
can cause a 10-fold performance drop. This is probably due to network or server
congestion. The graph shows the average, minimum and maximum transfer speed
obtained. For collective reading with 6 or more clients, the avarage is misleading;
In reality, either very high or very low numbers were obtained.

The Lustre file system performs very well for level 0 I/O. This is partly due
to the client side cache, write accumulation and read-ahead. By default, on the
client nodes, Lustre utilized up to 1500 MB for client side caching. Also, a maxi-
mum read-ahead window of 40MB was automatically set. Writes are accumulated
until at least 1MB of dirty pages is available.

When doing independent reads without file datatypes, these optimizations
enable the best performance of all file systems tested. Independent write speed
is still adequate, but performance drops when the number of clients increases.
This is probably due to lock contention.

However, collective operations without file datatypes need to be avoided on
Lustre. From two clients on, transfer speeds become unworkable. As is the case
with NFS, collective operations cause the most lock contention and this trans-
lates into low performance. PVFS2, which does not have file locking, is not
affected by this.

Looking at level 2 and 3 I/O (independent and collective using file datatypes),
graph 5 shows nice results. In independent access modes, there is the usual
performance drop going from one to two clients, due to the locking protocol.
Collective access is less affected, because of its ability to avoid issuing small
requests[9].

4 Conclusion

As a first conclusion one can state that the most important factor influencing
performance is the access pattern. Using contiguous accesses results in much
better performance, up to an order of magnitude.

The large gap in transfer speed between NFS, a traditional shared file system,
and true parallel file systems such as Lustre and PVFS2 is clearly visible. Even
with only 8 clients, the NFS server load became unreasonably high, demonstrat-
ing the need for scalable I/O solutions.

For non-contiguous access patterns (such as those resulting from unstructured
meshes) performance using pure MPI-IO is adequate when using collective I/O
and file datatypes. However, at this time, none of the tested storage libraries
is ready for these kind of acccesses. Unless these libraries can accept a non-
contiguous file access pattern, and pass this information information on to MPI-
IO, they cannot be used. Until they do, if true non-contiguous file access is really
needed, MPI-IO should be utilized.
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However, if eventually all data needs to be accessed, utilizing an application
level parallel cache will outperform any non-contiguous file access method. In
such a scheme, the application would first read all data in contiguous chunks,
store everything in a parallel cache, and serve all future (non-contiguous) re-
quests from this cache. Also, although this could equally wel be done by MPI-IO
(or the storage library), application-level grouping of read and write requests
slightly increases performance.

PVFS2 is easy to install (no superuser access required), is well supported by
research MPI implementations and performs very well compared to commercial
file systems such as Lustre. PVFS2 enables end-users to easily setup and run
I/O servers alongside their jobs, allowing scalable I/O on any cluster offering
local disk access.
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Abstract. Usually, theories of surface growth are based on the study
of global processes without taking into account the local behaviour of
atoms. In this work we present two simulations making use of a parallel
computing library. These two simulations are based on a simple model
that allows us to simulate the surface growing process of a certain mate-
rial. The first one is a quasi-static model whereas the second recreates the
atomic interaction considering the free atoms in continuous movement
along the surface. Both simulations make use of local principles of ther-
modynamic for atomic deposition, relaxation and diffusion of a growing
surface. The obtained results agree with those that use global theories
and with experimental results of Scanning Tunneling Microscopy (STM).

1 Introduction to the Physical Model

Surface growth of materials is a very well studied topic from the theoretical
and experimental point of view [1] [2] [3] [4] [5] [6]. The surface structure of
certain materials presents a granular morphology randomly distributed along the
surface, with hills of various heights and lateral extensions (structure typically
named as mounds) [7] [8] [9] [10]. This property as the roughness (with less
significance) are properties which behaviour has been defined as fractal in several
times [11] [12] [13].

Film growth involves two sciences: the thermodynamics and the kinetics. The
kinetics appears because of the continuous movement of the atoms on the sur-
faces due to the presence of thermal, kinetics and chaotic fluctuations [14]. The
thermodynamics gives the conditions of nonbalance due to the temperature of
the substratum. By calculating these parameters we can grow a surface, initially
layer by layer until completing the first ones and then grow the surface making
mounds. In this case, the growth process is named epitaxial growth [15].

2 Simulation

We want to simulate the epitaxial surface growth of materials taking into account
the atomic interaction between free atoms that are in continuous movement

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 882–889, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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along the surface. This is a tightly coupled Laplacian problem with very high
requirements of memory and computations.

The two simulation we have implemented use two Monte Carlo methods:
one at the spatial-temporal dimension, determined by the deposition flux, and
related to the temperature of the substratum. Another at the spatial dimension
also related to the temperature.

These simulations [16] are both based on local behavior, calculating the par-
tition function of the accessible states of the atom (Fig. 2). This allows each
atom to know its probability of diffusion towards the next position. One by one,
these atoms will randomly choose, based on these probabilities, the direction in
which they finally will move. As it is a stochastic process, the direction of each
movement is not always the most favorable for optimizing the total energy of
the substratum. Once all the atoms have been diffused to their positions, the
deposition process will start again, repeating the algorithm explained in Figure 1
a fixed number of times, according to the temperature of the growing interface.

begin
foreach layer ← 0 to MONOLAY ERS do

foreach deposited atom ← 0 to DEPOSITIONS do
Random Deposition

foreach diffunded atom ← 0 to ATOMS do
probability ← Calculate Diffusion Probability()
if probability > V ALUE then

/* the atom diffunds */
energy ← Calculate Energy()
Calculate Direction(energy)

else
Move Atom()

end
end

end
end

end

Fig. 1. Pseudocode of the epitaxial quasi-static surface growth

The parallel version uses the LAM-MPI API [17] [18] [19]. The main difference
between this algorithm and the non-parallel one is that this one divides the
computation into several processes. These processes can be of two different kinds:
the slaves that simulate the deposition of atoms, the calculus of the energies
contributed by the neighboring atoms, the diffusion of the atom on the image and
the simulation of the interaction. The master only manages the synchronization
of the different slave processes. This election has been adopted in order to clearly
separate the communication between MPI processes, the synchronization with
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Fig. 2. a) Example of the surface in a certain moment of the simulation. b) Accessible
states of one deposited atom. Elemental diffusions that can be done by an atom centered
in a 3×3 matrix based on the previous surface. c) First neighbors area that contributes
with energy to the central atom. Calculus of the global energy of an atom.

all the nodes of the cluster and the algorithm for the problem to be solved.
To implement the communication between all processes we have studied several
structures of queues that also permit us to study different models of atomic
interactions in the growing surfaces.

3 Domain Decomposition

Different computations have been performed: the sequential (a quasi-static model
with no possible atomic interaction) and the parallel simulations. For the parallel
one, the domain decomposition depends so much, not in the physical result of the
execution (since this one only depends on the material and on the distribution of
randomness of positions) although it is related to the optimization and speed of
processing. Communication between processes take time that physically can be
considered as a variation of temperature. Thus it is very important to get a good
domain decomposition that optimizes the communication between processes.
The domain decomposition consists of a distributed or shared solution. We have
studied diverse domain decompositions that can be resumed in these ones:

– Partitioning the image in rectangles: a distributed solution in which
the image is partitioned in horizontal or vertical stripes depending on the
number of slaves, value known as N . The most important advantage of this
method is the simplicity of the management of the data from the master node
to the slaves. The main disadvantage of this decomposition resides in that
it implies different rates of growth between subimages due to the differences
between the speed of the processors. Also we have to keep in mind that
atoms are in continuous movement along the surface and nothing can assure
us that an atom would not leave its subimage in its movement. If it was



Epitaxial Surface Growth 885

Fig. 3. (1) Image at the master process. (2) Domain decomposition for the problem
with N slave processes.

Fig. 4. (1) Image at the master and decomposition in environments. (2) 5 × 5 matrix
and environments at the slaves.

deposited at another subimage, that could not be in the same slave. Due to
this computation model the interaction among processes are too intensive,
spending much more time in the construction of communication messages
than in the simulation (Fig. 3).

– Partitioning the image according to the environment of the atom:
we define the environment of an atom as a matrix of 5×5 elements that
contains the information about the first neighbors and about the second
ones (distance of 2 units in each direction) of a certain atom. In this, both
distributed and shared solution, the environments of the atoms are calculated
dynamically by the master process. This is the only information that the
master sends to the slave. Thus, this method saves much memory in the
slaves. The disadvantage resides in that this partition of the image takes too



886 C.B. Navarrete, S. Holgado, and E. Anguiano

much time, and the real computation on each step is so small that it is hard
to get good speedup (Fig. 4).

– Replicating: a shared solution in which all slaves have the image replicated
from the master process. The master and the slaves have shared the data
structure that represents the surface. This allows the slaves to calculate the
bonding energy of an atom without knowing what any other node of the
cluster have calculated. The main disadvantage is that all slaves have to
store the image of the surface in their memory (Fig. 5).

Fig. 5. (1) Calculation of the final position of the atom by the slave. (2) The slave
send that position to the master. (3) The master notifies all slaves of the position by
inserting the result in each queue.

4 Atomic Interaction

To simulate the atomic interaction between atoms in diffusion, we need to use
a queue structure. The atomic interaction and the deposition flux depends on
the queues and their treatment. As we have seen, the queues are essential to
discouple the two Monte Carlo methods that are involved in the solution of this
physical problem. We have performed several tests of random number generation
with the SPRNG Library [20] to prove that the Monte Carlo Methods from the
point of view of the random number generation were totally discoupled. The
results shown no measurable difference between using this library or not. The
main difference between these two methods is the execution time. This is why
we use the less computationally expensive algorithm, that is the simple random
number generation.

The queue structure (Fig. 6) consists of a double data array managed by
the master process. The data structure allocated in the queue consists of two
data structures. Each structure contains two coordinates to identify the posi-
tion of one atom in the image. The two points represent the movement of the
atom on its diffusion process, from the first position towards the second one. This
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Fig. 6. Queue structure at the master process. (1) Double array data structure. (2)
Entries counter for readjusting the tasks of the slaves. (3) Data structure allocated on
the queue. (4) Representation of the movement of the atom according to the information
shown in the data structure.

structure also contains a counter that defines the occupation of the queue. This
counter is needed for readjusting the tasks for each process allowing us not to
have to consider the speed of processing of each node of the cluster.

5 Results

Analyzing the results of these domain decompositions, we have chosen the pure
replication solution, just because this is the one that better fits the problem of
the atomic interaction, from the point of view of the optimization and speed of
processing, due to the minimization of the communications between the master
and the slave processes.

In order to verify the exactitude of the simulator, the results obtained with
existing results were compared to results of STM experiments [7] [8]. This anal-
ysis verify that the results are similar to the ones obtained experimentally, as it
can be seen in Figure 7.

From the point of view of the execution time we can observe that the non-
parallel algorithm takes much time, even more if we try to use it to recreate
the atomic interaction. The results of the parallel version have been obtained
executing the application in a 8-MPI heterogeneous NUMA [21] LAM-MPI [17]
[18] [19] cluster. 4 of those 8 processors were a simple Pentium–III Clamath and
the other 4 were the processors of an IBM e-Server SMP–Xeon.

Different computations have been performed. We can not conclude that the
parallel algorithm is better than the sequential only by considering the execu-
tion time. This is an unfair comparison since algorithm 2 is based on a slightly
different model as it regards additional physical interactions (Fig. 8). But we
can conclude that the parallel algorithm is better because it permits us to study
the atomic interaction in the growing surfaces in a reasonable time.
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Fig. 7. Fitting between the experimental and the simulated results

Fig. 8. Comparison of the execution time between the two developed simulators. The
growth parameters were: energy ε = e/kbT =0.5 and dimension d = 32 pixels2.
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Abstract. Data dependence analysis for automatic parallelization of
sequential tree codes is discussed. Hierarchical numerical algorithms of-
ten use tree data structures for unbalanced, adaptively and dynamically
created trees. Moreover, such codes often do not follow a strict divide
and conquer concept, but introduce some geometric neighborhood data
dependence in addition to parent-children dependencies. Hence, recog-
nition mechanisms and hierarchical partition strategies of trees are not
sufficient for automatic parallelization. Generic tree traversal operators
are proposed as a domain specific language. Additional geometric data
dependence can be specified by code annotation. A code transformation
system with data dependence analysis is implemented, which generates
several versions of parallel codes for different programming models.

1 Introduction

Automatic parallelization of general sequential, imperative code is one of the ul-
timate goals of compiler construction. Numerical algorithms in scientific comput-
ing can often be parallelized efficiently with a data parallel approach. Basically
there are three related problems to address: First the data partition problem,
second the mapping problem where sets of partitions are mapped to a processor,
and third the data dependence analysis where to add communication opera-
tions in a distributed memory environment and synchronization operations in a
shared memory environment. Both partitioning and mapping can be hard prob-
lems depending on the data dependence graph. The data dependence analysis
itself can be technically too complex for compilers. However, often there exist
good solutions for the problems known in the specific area of application. For
example additional geometric information along with a geometric partition of
data may work very well and may break general NP-hard problems, but such a
solution can be impossible to derive solely from a given sequential code. Hence,
parallelization of codes written in a domain specific languages may be possible,
while parallelization in general is not feasible.

In this paper, we restrict ourselves to hierarchical tree methods, such as fast
summation algorithms for N -body simulations and the fast multipole method.
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Given a large number of geometric entities, the numerical algorithms approxi-
mate the sum over expensive N(N − 1)/2 pair wise interactions by combining
the action of groups of entities with others distant away. This can be done hier-
archically, which leads to an unbalanced k-ary tree. Algorithms work bottom-up
for the computation of groups, top-down for the action of groups on other groups
or entities and use local neighborhood data on each tree level for pair wise in-
teractions. The overall complexity under reasonable assumptions is reduced to
O(N logN) or O(N), depending on the algorithm and the analysis.

There are a number of parallel implementations of such tree algorithms, among
them shared [1] and distributed memory implementations [2,3] and references
therein. The latter follow a data parallel style with a distributed tree data struc-
tures which contains all geometric data. Operations on the tree are subdivided
into operations on a common coarse tree part including the tree root and into
distributed operations on finer sub-trees exclusively performed and stored on
a single processing element. Except for embarrassingly parallel communication-
less algorithms, there are algorithms which require top-down or bottom-up data
exchange, or some data geometrically close to the tree node. In many cases this
can be assembled into a single global communication step and arranged as local
tree traversal before or after the communication step. Subtle changes of the nu-
merical algorithm however may cause a more elaborate communication scheme
like a data exchange at each tree level or a dynamic process of request and serve
processes.

2 Dependence Analysis

A major part for automatic code parallelization is data dependence analysis [4,5].
Efficient distributed memory parallelization however requires global data depen-
dence analysis. There are partial solutions of this problem for loops and array
languages like in HPF, parallel libraries [6] and parallel skeletons [7], which
have been applied to divide-and-conquer operations [8]. For a detailed overview,
see [9].

As an example of a parallel domain language, we consider numerical codes
using data organized as one large tree. Algorithms doing so are fast summa-
tion techniques like the fast multipole method or some hierarchical grid solver
for partial differential equations. Such structures currently cannot be handled
automatically in high performance languages and compilers.

The computational atom of the tree algorithms to be discussed is a node data
structure. In C++ this is typically a class with some data members and member
functions. For tree traversal in the unbalanced tree there are methods to access
the child nodes. Furthermore, there may be functions to access nodes in the
geometric neighborhood, see Fig. 1. Numerical algorithms on the tree consist of
a specification of the (partial) tree traversal along with some operations on the
data members of each tree node visited. Of course, there are many different ways
to express this [10]. However, for parallelization and for dependence analysis it is
favorable to separate tree traversal from operations on the nodes. Even further, it
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is often possible to derive the type of tree traversal from the dependence analysis
of the operations and to omit the tree traversal code. Hence, tree algorithms can
be put into a generic tree library, while the user code specifies the operations
on a single tree node. Note that tree creation requires data partitioning and
thus requires further domain specific information. Often, some geometric data
decomposition can be used, which can also be put into the library.
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Fig. 1. A sample tree node data structure (left) and the related binary tree (right) for
a fast multipole summation

We are left with the data dependence analysis of the operations on a single
tree node. A fine scale dependence analysis done by optimizing compilers is not
needed here, but solely the relation of data members of the current tree node
with other tree nodes. Currently we use a set of m4 scripts to create code, the
g++ compiler to process it, and a set of perl script to analyse the code’s output.
Based on a parallel tree library, this way a dependence analysis of the user code
can be performed. The result is a parallel distributed memory message-passing
code or a shared memory parallel pThread code or a hybrid message-passing/
pThread code for distributed memory systems with multiprocessor nodes.

A path matrix dependence analysis of the operations on a single tree node
is performed, see [5]. The read and write operations on all data members of a
node and on all nodes accessed relative to that node are recorded for different
stages of the algorithm. A standard bottom-up tree traversal for example will
read data of the node and its children and write data of the node, see Fig. 2.
Some top-down tree traversal may only write data of the node’s children. A
detailed comparison of data members read and written reveals flow dependencies
which cannot be parallelized this way. Hence, it is possible to verify that some
algorithm can be parallelized and to create the actual code for send and receive
of the necessary data members at some stage of a parallel tree traversal. Further,
the dependence pattern can be used to determine the type of tree traversal and
therefore the processor communication pattern. The same information is also
used for synchronization operations of a shared memory implementation.

Data dependence analysis on geometric neighbor nodes like in Fig. 2 (right)
can be done in the same way as for child/ parent dependencies. However, addi-
tional information is needed for the construction of the communication patterns.
Given additional user code annotation, for example based on a geometric inter-
pretation of the node relations, a transitive hull is set up, which contains at least
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Fig. 2. Sample data dependencies of tree operations: Read/write parent data, read
child data, bottom-up traversal (left). Read/write child data, read parent data, top-
down traversal (right). Read/write node data, read nodes of interaction list (bottom).

all neighbor nodes involved. We currently use a user defined relation, which may
or may not exclude complete sub-trees of interaction nodes. This relation is
marked by the code annotation REQUIRE, see also the end of the next section.

3 A Fast-Multipole-Method Example Code

As an illustrative example, we provide and discuss some parts of an imple-
mentation of a two-dimensional fast-multipole method. The detailed algorithm,
formulae and mathematical notation can be found for example in [11]. Here we
concentrate on some of the algorithmic structure and features that need to be
taken care of in the parallelization. The goal is to evaluate pair interaction forces
of a large number of particles. The idea is to approximate long distances com-
putations on coarser parts of a tree of particles, which is done in a bottom-up
summation and a top-down evaluation pass.

First of all, we declare a tree node derived from a generic k-ary tree defined
in the numerical tree library. Multipole and local expansion, particle and field
data are added. Further, numerical parts of the algorithm are encapsulated as
methods of the tree class.

class tree : public KAryTree<class tree,4> {
public:
complex<double> x, field;
TinyArray1<complex<double>, MAX_EXP_TERMS> mp_exp, local_exp;
...

};

The tree is created by successive insertion of particles. In order to separate
particles from one another, the respective tree node is subdivided. The dis-
tributed memory implementation also needs to distribute the tree data struc-
ture. A straightforward way to do this is to start with a coarse tree replicated on
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all processors. The complete sub-tree of the coarse tree leaf is mapped to exactly
one processor. Hence, the tree generation can be performed in parallel. In the
case additional load-balancing is necessary, for example space-filling curves can
be used [2,3].

tree *root = new tree;

The first part of the fast multipole summation method computes the far field
multipole expansions in a bottom-up order. Children node expansions are shifted
to the origin of the parent node expansion and summed up. The implementation
consists of some methods of the tree classes. We show the declaration only.
The comments indicate data dependencies for this presentation. Note that the
automatic dependence analysis is based on the actual implementation, not on
the comments.

void InitMPExp(); // store mp_exp
void ComputeMPExp(); // store mp_exp
void ShiftMPExp(tree *cb); // store mp_exp, load cb->mp_exp

The main code instantiates and uses a tree iterator and contains the actual
algorithmic atom to be executed for each tree node. This is a generic tree operator
and a first example of the proposed domain language.

BottomUpIterator<tree> iu(root);

ForEach(tree *b, iu, ‘
if (b->isleaf()) b->ComputeMPExp();
else {

b->InitMPExp();
for (int i=0; i<tree::dim; i++)
if (b->child[i])

b->ShiftMPExp(b->child[i]);
} ’)

The code transformation system converts this expression into an ordinary
tree traversal in the sequential case. The system is able to determine the type
of tree traversal and emits error messages in cases where an unsuitable iterator
is specified. However, the construction of a parallel iterator implies that the
operations on the children of a node are independent and can be executed in
parallel. Hence, for the thread parallel version, sub trees are assigned to different
threads, once the coarse tree provides enough sub trees to distribute the load
evenly. However, there is some data dependence, namely the child to parent
dependence in the array mp_exp. This translates into message passing at the
level of sub tree to coarse tree on distributed memory machines. The presented
code transformation system is able to detect this dependence, even as a inter-
procedure code analysis, and to emit the correct message passing instructions.

The second stage of the fast multipole summation computes the interaction
lists. For a balanced tree, the interactions are a set of siblings of a node. However,
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in the case of unbalanced trees, additional nodes on finer or coarser levels may be
needed for the interactions. Nevertheless, the interaction lists can be computed
in a top-down tree traversal.

TopDownIterator<tree> it(root);

For distributed memory machines, we replicate the operations on the already
replicated coarse tree, such that no communication or message passing is actually
needed in this step.

The final stage of the algorithm, which can also be executed in conjunction
with the second stage, computes the local expansions and finally the fields. Here,
the far field multipole expansions are evaluated directly or converted into near
field local expansions, which need to be evaluated. This can be performed in a
top-down tree traversal with a set of methods in the tree class,

void VListInter(tree *src); // store local_exp, load src->mp_exp
void UListInter(tree *src); // store field, load src->x
void WListInter(tree *src); // store field, load src->mp_exp
void XListInter(tree *src); // store local_exp, load src->x
void ShiftLocalExp(tree *cb); // store cb->local_exp, load local_exp

which perform the four types of possible conversions and shift the local expan-
sions for propagation to the children nodes.

ForEach(tree *b, it, ‘
for (int i=0; i<tree::dim; i++)

if (b->child[i]) {
b->ShiftLocalExp(b->child[i]);
b->child[i]->field = 0.0;
if (b->child[i]->isleaf())

for (list<tree*>::iterator n = b->child[i]->inter.begin();
n != b->child[i]->inter.end(); n++) {

if ((*n)->isleaf()) b->child[i]->UListInter(*n);
else b->child[i]->WListInter(*n);

}
else

for (list<tree*>::iterator n = b->child[i]->inter.begin();
n != b->child[i]->inter.end(); n++) {

if ((*n)->isleaf()) b->child[i]->XListInter(*n);
else b->child[i]->VListInter(*n);

}
b->child[i]->EvaluateLocalExp();

} ’)

Both sequential and thread parallel versions are relatively easy to generate,
since there is only a parent to child data dependence in the local_exp arrays.
However, in the distributed memory version of this code, the dependence on sib-
ling nodes mp_exp arrays and particle data x turns out to be a severe problem.
While it is easy to detect this as a possible dependence, only a global analysis



896 G. Zumbusch

of the tree and interaction list construction may lead to an efficient and correct
result. Some message passing is needed for correctness, but too much may ex-
haust local memory and degrade parallel efficiency. At this point we clearly see
the limitations of automatic parallelization.

The solution we chose here is an additional hint (code annotation) in the
application program. The hint provides a criterion to select a set of nodes, which
are needed at most. The transformed code initiates a message passing step to
exchange the variables determined by the dependence analysis. Data of a node
is sent to another processor, if and only if the given criterion may match for any
of this processors nodes. Hence, the criterion has to be transitive such that it is
fulfilled for a pair of nodes, if it is fulfilled for one of its children and the other
node.

REQUIRE(list<tree*> neighbor, fetch);
REQUIRE(list<tree*> inter, fetch);
int fetch(tree *b) { return (distance(b) <= 2 * fmin(diam, b->diam)); }

Some more details of the code are presented in the following section.

4 Numerical Experiments

For illustration purposes of the concept of generative programming and auto-
matic parallelization of codes written in a domain language we have to implement
several systems: First of all, a data dependence analysis tool and a code gen-
eration system have to be created. In order to demonstrate its use a domain
language and a parallel application library has to be written. Finally a sample
application code has to be developed, which is written in the domain language
and which is compiled by the code generation system.

The main part of data dependence analysis currently is implemented in a non-
robust way leading to a speculative parallelization. The tree atoms of code are
compiled and instantiated in different settings. A runtime system keeps track
of all references to variables, which results in a dependence analysis capable
of interprocedure analysis and recursive calls. However, this requires some pro-
gramming discipline and the possibility of missing some data dependence. An
alternative approach to be pursued in the future would substitute this step by a
static code analysis within the optimization phase of a standard C++ compiler.
The code generation system further includes multiple passes of the code by the
macro preprocessor m4 to generate code, g++ to either compile the code or
look for errors and some perl scripts to extract information from the compiler
error messages or code instantiations. The results of the compilation process is a
correct sequential or parallel code. Each parallel programming model of message
passing, thread parallelism or mixed model leads to a different parallel code. The
overall execution time of the code generation process is of the same order as stan-
dard compilation times of optimizing compilers and are substantially lower than
compilation times of some cases of expression templates or self-tuning libraries,
see Table 1.
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Table 1. Execution times of the source-to-source transformation and compilation
times, FMM example, wall clock in sec. Total times are measured and do not ex-
actly match the sum of sub tasks mainly due to pipelining effects of the compilation
stages

sequential pThreads MPI pThreads & MPI

find out of scope variables 9.0
find local scope variables 1.7
create instrumented code − 4.3

create src code 0.45 0.78 0.75 0.83
compile src, no flags / -O3 2.3/3.2 2.4/3.8 4.8/7.4 5.0/7.4

total, no flags / -O3 11.5/12.6 17.7/20.1 20.2/23.8 21.3/22.9

532 lines of code expand to 590 680 729 777

Now we are ready for the second implementation, namely a numerical tree
algorithm to be parallelized and compiled by the code generation system. Again
for illustration purposes we chose a well documented example. The fast multipole
method in two spatial dimensions can be written for a logr potential conveniently
with complex numbers and arithmetic [11] using a Laurent- and a power-series.
We chose the fast multipole code of the SPLASH-2 program collection [12] as
an initial point. The number of coefficients is fixed both for the far field Laurent
series and the near field power series. A quad-tree is constructed with at most
one particle per node, each representing a square shaped cell. The particles
are distributed uniform over the unit square [0, 1]2 which leads to a slightly
unbalanced tree, but good load balance for processor numbers of powers of two.

Wall clock times of a single fast multipole summation, including the computa-
tion of far field, near field and the interaction lists are reported on two computer
platforms. First, we consider a shared memory computer with four dual-core
AMD Opteron processors at 1.8GHz with 64bit Scientific Linux totaling eight
processors. In Table 2 we report execution times for two different problem sizes
for the sequential, the thread parallel (pThreads), the message-passing (MPI)
and the mixed parallel code. Second, the same codes are compiled and run on
a beowulf cluster of 32 PCs with a dual-core Intel D820 processor at 2.8GHz
running 64bit Rocks Linux connected by gigabit ethernet totaling 64 processors.
Three different problems sizes and four programming models are run, see Ta-
ble 3. The all MPI version places two MPI processes on a computer, while the
mixed programming model uses one MPI job, which initiates a second worker
thread. On both platforms we use the Mpich MPI implementation with shared
memory communication on a computer and p4 device over the network.

On both platforms and for all parallel programming models we observe good
parallel speedup and efficiency. Further, four-times the number of particles, lead-
ing roughly to four-times the amount of work, also gives good parallel scaling.
The most efficient parallel programming model on the shared memory machine is
message-passing. The thread implementation is slightly slower. The paralleliza-
tion is efficient up to eight processors, especially for the larger problem size.
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Table 2. Execution times of the FMM example, wall clock in sec. SMP server with 4
dual core processors

no. of proc. cores 1 2 4 8

0.36 · 106particles, MPI 21.56 10.80 6.47 3.73
2 threads per MPI node 11.60 6.93 3.73
4 threads per MPI node 7.13 4.34
8 threads per MPI node 4.19

1.44 · 106particles, MPI 84.15 42.11 21.56 11.29
2 threads per MPI node 43.84 24.24 11.68
4 threads per MPI node 25.26 12.73
8 threads per MPI node 13.68

Table 3. Execution times of the FMM example, wall clock in sec. Beowulf cluster
with dual core nodes and gigabit ethernet

no. of proc. cores 1 2 4 8 16 32 64

0.36 · 106particles, MPI 28.42 14.81 7.14 3.45 2.14 2.00 2.73
2 threads per MPI node 15.84 7.64 3.76 2.01 1.30 1.22

1.44 · 106particles, MPI 15.03 10.17 7.21 5.47
2 threads per MPI node 7.53 3.90 2.70

5.76 · 106particles, MPI 15.6 8.26
2 threads per MPI node 8.24

For reasons of main memory size, the larger problems can be run on the clus-
ter only for a certain number of computers and above. Up to eight processors,
message passing is most efficient. On larger processor numbers the mixed pro-
gramming model is faster, probably due a limitation of network speed (gigabit
ethernet) and a fewer number of communication operations of each computer.
Versions up to four processors are executed faster on the AMD processors, but
the cluster is faster for eight processors (and more).

Hence all parallel programming models are efficient in general. The optimal
choice depends on the platform and number of processors. Execution larger num-
bers of fast multipole summations, the compilation times (reported from a slower
computer) can be neglected.

5 Conclusion

We have discussed some aspects of the automatic parallelization of tree codes.
With fast multipole and related algorithms in mind, a programming style with
a domain specific tree traversal library and some user code which defines data
structures and operations on the tree nodes is briefly introduced. This style
allows for a data dependence analysis of the tree algorithms and an efficient
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parallelization, in the sense of telescoping programming languages. Code anno-
tation was used, when static dependence analysis was no longer sufficient. The
library and preprocessor have been used so far among others for the paralleliza-
tion of a fast multipole method.

We would like to thank the anonymous referees for their helpful comments.
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Abstract. In certain applications the non-zero elements of large sparse
matrices are formed by adding several smaller contributions in random
order before the final values of the elements are known. For some sparse
matrix representations this procedure is laborious. We present an efficient
method for assembling large irregular sparse matrices where the non-
zero elements have to be assembled by adding together contributions
and updating the individual elements in random order. A sparse matrix
is stored in a hash table, which allows an efficient method to search for
an element. Measurements show that for a sparse matrix with random
elements the hash-based representation performs almost 7 times faster
than the compressed row format (CRS) used in the PETSc library. Once
the sparse matrix has been assembled we transfer the matrix to e.g. CRS
for matrix manipulations.

1 Introduction

Sparse matrices play a central role in many types of scientific computations.
There exists a large number of different storage formats for sparse matrices
[1], such as the compressed row format, compressed column format, block com-
pressed row storage, compressed diagonal storage, jagged diagonal format, trans-
posed jagged diagonal format [2] and skyline storage. The Sparskit [3] library
supports 16 different sparse matrix formats. These storage formats are designed
to take advantage of the structural properties of sparse matrices, both with re-
spect to the amount of memory needed to store the matrix and the computing
time to perform operations on it. The compressed row format, for instance, is a
very efficient representation for sparse matrices where rows have identical struc-
ture and where elements are accessed in increasing row and column order, e.g.
when multiplying a matrix with a vector.

However, in applications where a sparse matrix has to be assembled, by adding
and updating individual elements in random order, before the matrix can be
used, for example for inversion, these storage methods are inefficient. In this
paper, we argue that hashing with long hash tables can be used to efficiently
assemble individual matrix elements in sparse matrices, improving time perfor-
mance of matrix element updating by up to a factor of 50 compared to the
compressed row format.
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We stress that the proposed sparse matrix format is not intended to be used
as a general replacement for the traditional storage formats, and that it is not
efficient for performing computations on sparse matrices, like computing matrix–
vector products or solving linear systems. These algorithms access the matrix
elements in a highly regular fashion, normally row-wise or column-wise, and do
not exhibit any of the irregular behavior for which the hash-based representa-
tion is designed to be efficient. The hash-based representation is efficient for
applications where the elements have to be accessed repeatedly and in random
order. Thus, once the matrix has been assembled in the hash-based represen-
tation it is transferred to, e.g., CRS for matrix manipulations or matrix-vector
calculations.

2 Background

The problem of assembling large irregular sparse matrices originated in a project
where the goal was to improve the performance of a parallel fusion plasma sim-
ulation, Elmfire [4]. In fusion plasma simulations particles move along orbits
circling a torus simultaneously making small Larmor circles along their main
trajectory. Instead of explicitly calculating the long range particle–particle in-
teractions, a short time average electrostatic potential is calculated on a grid
spanning the torus, and the particle-particle interaction is replaced by a local
interaction with the electrostatic potential. The grid points receive contributions
from every particle within a given radius from the grid point, typically several
grid units. The problem of calculating the electrostatic potential turns into the
problem of collecting and inverting a linear sparse matrix, where the individual
elements are assembled from the contributions of up to 100 particles at irregular
moments in time as the particles are simulated forward in time. In a typical
application the electrostatic potential was represented by a 28000×28000 sparse
matrix of double-precision floating-point values with a 10% fill rate.

The plasma simulation program used a collection of sparse matrix routines
from the PETSc library [5] to first assemble and then invert the distributed
sparse matrix representing the electrostatic potential. Computing the inverse of
the sparse matrix turned out to be very efficient, taking only a few seconds.
However, the assembly of the matrix was very time consuming (of the order 100
seconds), and the decision was made to use another sparse matrix representation
to first assemble the matrix and then construct the compressed row format used
in the PETSc library to invert it.

Effectively, we are trading memory for speed, since the sparse matrix is as-
sembled in one data structure (a hash table) and then converted to another
data structure (the CRS format) before it is used in the computation. However,
the improved efficiency of the program clearly outweighs the drawback of the
increased memory consumption.
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3 Sparse Matrix Representation Using Hash Tables

Our sparse matrix representation is essentially a coordinate storage format where
the non-zero elements are stored in a hash table [6] to allow for an efficient
method to update individual elements in random order. An element (x, y) in
a two-dimensional sparse matrix with r rows and c columns, x ∈ [0, r − 1],
y ∈ [0, c−1], with value v will be stored in a hash table with the key k = x∗c+y.
The hash function h(k) is simply the value k mod s. The size of the hash table,
s, is chosen to be nz/b, where nz is the number of non-zeros in the sparse matrix
and b is a small integer value, for instance 20. The number of non-zero elements
in the sparse matrix is given as a parameter by the user. The idea is that,
assuming that the non-zero elements are evenly distributed over the hash keys,
on an average b elements are mapped to any hash key and we try to keep b
reasonably small in order to be able to quickly locate an entry with this hash
key value. The size of the hash table is actually chosen to be a prime number s′

larger than or equal to nz/b. This choice will typically map the non-zero elements
evenly among the different hash values.

Encoding the (x, y) coordinates of non-zero matrix elements as a single integer
value k = x ∗ c + y saves memory space. Using 32-bit integers, a non-zero value
requires only 12 bytes of memory instead of 16 bytes if the (x, y)-coordinates
and the value are stored as two integers and one double-precision floating point
value. Using 64-bit integers we need 16 bytes for each non-zero element instead
of 24 bytes. A minor drawback of this approach is that the row and column
indices have to be computed with integer division and modulo-operations. The
representation also puts an upper limit on the size of the sparse matrices that
can be represented. The largest unsigned integer that can be represented with
32 bits (the constant UINT MAX in C) is 232 − 1. Thus, the largest square matrix
that can be stored has 65535 rows and columns. The largest unsigned 64-bit
integer value (ULONG MAX in C) is 264 − 1, which allows for square matrices with
approximately 4.2 x 109 rows and columns.

Matrix elements which map to the same position in the hash table are stored
in an array of tuples consisting of a key k and a value v. The number of elements
in an array is stored in the first position (with index zero) of the array, together
with the size of the array. All arrays are initialized to size nz/s′. In other words,
the arrays are initialized to the average number of non-zero elements per hash
key. If the non-zero values are evenly distributed over all hash keys, no memory
reallocation should be necessary.

Three operations can be performed on the sparse matrix: an insert-operation
which assumes that the element does not already exist in the matrix, a get-
operation which retrieves a value and an add-operation which adds a value to
an already existing value in the matrix.

To insert a value v into position (x, y) in the matrix, we first compute its
key k and the hash key h(k) as described earlier. We check if there is space
for the new element in the array given by the hash key h(k) by comparing the
number of elements stored in the array with the size of the array. If the array
is full, it is enlarged by calling the realloc function and updating the size of
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the array. The value is inserted as a tuple (k, v) into the next free position in
the array, and the number of elements in the array is incremented by one. Since
memory reallocation is a time-consuming procedure, arrays are always enlarged
by a factor that depends on the current size of the array (for instance by 10% of
its current size). The minimum increase, however, is never less than a pre-defined
constant, for instance 10 elements. This avoids small and frequent reallocations
at the expense of some unused memory.

The get-operation searches for an element with a given (x, y)-position in the
sparse matrix. We first compute the key k and the hash key h(k) and perform
a linear search in the array h(k), looking for an element with the given key. If
the key is found we return its value, otherwise the value 0.0 is returned. The
linear search that is needed to locate an element will be short and efficient,
since it goes through a contiguous array of elements with an average length of b
stored in consecutive memory locations. This means that the search is efficient,
even though it is an O(N) operation. The key to the success of using long hash
tables is thus manifested by the short length of the array needed for each hash
value h(k). An alternative approach would be to use a tree-based structure to
resolve collisions among hash keys, for instance an AVL-tree [6]. This would
make the search an O(logN) operation, but the insert-operation would become
much more complex. Another drawback would be the increase in memory to
store the elements, since each element would then need two pointers for its left
and right subtrees, in addition to the key and the value.

The add-operation adds a given value to the value stored in the sparse matrix
at position (x, y). It first performs a get-operation, as described above, to locate
the element. If the element is found, i.e. (x, y) already has a non-zero value
stored in the sparse matrix representation, the given value is added to this. If
the element is not found, it is inserted using the insert-operation.

3.1 Look-Up Table

In some cases there is a temporal locality when assembling the elements of a
sparse matrix, which implies that we will be accessing the same element repeat-
edly at small time intervals. To speed up accesses to such matrix elements and
avoid linear searches, we store the positions of the elements that have been ac-
cessed recently in a look-up table. The look-up table is also implemented as a
hash table, but with a different hash function l(k) than that used for storing the
matrix elements. The look-up table contains the key of an element and the index
of its position in the array. To search for an element (x, y) we compute the key k
and the look-up table hash function l(k) and compare the value at position l(k)
in the look-up table against the key k. If these are equal, the element can be
found in the array associated with hash table h(k) at the position given in the
index in the look-up table. More than one element can be mapped to the same
position in the look-up table. No collision handling is used in the look-up table,
but only the last reference to an element will be stored. The size of the look-up
table is given as a parameter by the user when the matrix is created. The size is
a fraction 1/a of the hash table size s′, and is also chosen to be a prime number.
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Fig. 1. Hash table structure

A typical size for the look-up table could be 1/10 of the hash table size. The
data structure used to represent the sparse matrix is illustrated in Figure 1.

4 Performance

We have compared the times to assemble sparse matrices of size 10000 by 10000
with a fill degree of 10% using both the compressed row format of PETSc and our
hash-based representation. The test matrices are chosen to exhibit both efficient
and inefficient behavior for the two storage formats. In the test programs, 10
million non-zero elements are inserted into the sparse matrix storage either with
an insert-operation or an add-operation, depending on whether the elements are
all unique or not. The time to perform the insert- or add-operations are measured
with the time-function in the C language.

The structures of the test matrices (for illustration purposes with 100 by 100
matrices) are shown in figure 2.

The first test inserts non-zero values into every 10th column in the matrix in
order of increasing (x, y)-coordinates. Hence the matrix is perfectly regular
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Fig. 2. Structure of test matrices: every 10th element, every 11th element, random and
clustered
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with identical row structures. The matrix elements are all unique and we
need only perform an insert-operation. As the measurements show, the CRS
format used in PETSc is very efficient for this case, clearly outperforming the
hash-based representation. This is to be expected since in the CRS format
all accesses go to consecutively located addresses in memory (stride one),
thus making excellent use of cache memory.

The second test inserts the same elements as in the first case, i.e. a non-
zero value in every 10th position, but in reverse order of (x, y)-coordinates,
starting from the largest row and column index. The matrix elements are
all unique and we need only perform an insert-operation. The measurements
show that this case performs considerably slower using the CRS format in
PETSc, while the hash-based representation is only slightly slower than the
previous case.

The third test inserts non-zero elements in every 11th position in the matrix.
Thus, consecutive rows will have different structure since the row length is
not divisible by 11. The matrix elements are all unique and we need only
perform an insert-operation. Surprisingly, the CRS format in PETSc is ex-
tremely inefficient for this case, while the performance of the hash-based
representation is similar to the two previous cases.

The fourth test inserts 10 million randomly generated non-zero elements,
which are inserted into the sparse matrix storage using an add-operation,
since the elements are not necessarily all unique. We can see that the CRS
format in PETSc is very inefficient for this case, while the hash-based rep-
resentation shows a small performance penalty.

In the fifth test we first generate 100000 randomly located clusters centers,
and then for each cluster we generate 100 random elements located within
a square area of 9 by 9 around the cluster center. As in the fourth test, we
must use an add-operation since the matrix elements are not all unique.

An example of the type of sparse matrices encountered in the fusion plasma
simulation is illustrated in figure 3.

4.1 Execution Time

The results of the measurements of the execution times are summarized in table
1. The tests were run on a AMD Athlon XP 1800+ processor with 1 GB of
memory. The operating system was Red Hat Enterprise Linux 3.4 with gcc 3.4.4.
The test programs were compiled with the -O3 compiler optimization switch.

The measurements show that the compressed row format used in PETSc is
very inefficient if the sparse matrix lacks structure, while the hash-based rep-
resentation is insensitive to the structure of the matrix. In our application, the
fusion simulation, the matrix structure was close to the fifth test case, consisting
of randomly distributed clusters, each consisting of about 1 to 100 values. In our
application a significant speed-up was indeed achieved using the sparse matrix
representation with long hash tables. In addition, the logic for assembling the
distributed matrix with contributions from all parallel processes was simplified,
thanks to the restructuring of the code that had to be done at the same time.
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Fig. 3. Example of a sparse matrix in the fusion plasma simulation

Table 1. Measured execution times in seconds for the five testcases

Matrix structure PETSc Hash
Every 10th element, natural order 2.4 6.9
Every 10th element, reverse order 20.6 7.5
Every 11th element 377.8 7.1
Random 86.6 12.5
Clusters 37.8 12.0

4.2 Memory Usage

The sparse matrix representation based on hash tables uses slightly more memory
than the compressed row format. The compressed row format uses 12nz+4(r+1)
bytes of memory to store a matrix with r rows and nz non-zero entries. The hash-
based representation uses 12nz + 16nz/b + 8nz/ab bytes, where b is the average
number of non-zero elements per hash key and a gives the size of the look-up
table as a fraction of the hash table size, as explained in section 3.1

For the sparse matrices used in the test cases presented in section 4, all with
10000 rows and columns filled to 10%, that is, with 10 million non-zero elements,
the compressed row format needs about 114 MB of memory, whereas the hash-
based representation needs about 122 MB.

5 Conclusions

We have presented an efficient solution to the problem of assembling unstruc-
tured sparse matrices, where most of the non-zero elements have to be computed
by adding together a number of contributions. The hash-based representation
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has been shown to be efficient for the particular operation of assembling and up-
dating elements of sparse matrices, for which the compressed row storage format
is inefficient. The reason for this inefficiency is that access to individual elements
is slow, particularly if the accesses do not exhibit any spatial locality, but are
randomly distributed. For these types of applications, a representation using a
hash table provides a good solution that is insensitive to the spatial locality of
the elements.

The hash-based representation is not intended to be used as a general purpose
storage format for sparse matrices, for instance to be used in matrix computa-
tions. It is useful in applications where unstructured sparse matrices have to
be assembled, as described in this paper, before they can be used for computa-
tions. Our experiences show that the performance of programs of this kind can
be significantly improved by using two separate sparse matrix representations;
one during matrix element assembly and another for matrix operations, e.g. in-
version. The trade-off in memory consumption is outweighed by the increased
performance when assembling the matrix elements using long hash tables.
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Abstract. A power method formulation, which efficiently handles the
problem of dangling pages, is investigated for parallelization of PageRank
computation. Hypergraph-partitioning-based sparse matrix partitioning
methods can be successfully used for efficient parallelization. However,
the preprocessing overhead due to hypergraph partitioning, which must
be repeated often due to the evolving nature of the Web, is quite sig-
nificant compared to the duration of the PageRank computation. To
alleviate this problem, we utilize the information that sites form a natu-
ral clustering on pages to propose a site-based hypergraph-partitioning
technique, which does not degrade the quality of the parallelization. We
also propose an efficient parallelization scheme for matrix-vector multi-
plies in order to avoid possible communication due to the pages without
in-links. Experimental results on realistic datasets validate the effective-
ness of the proposed models.

1 Introduction

PageRank is a popular algorithm used for ranking Web pages by utilizing the
hyperlink structure among the pages. PageRank algorithm usually employs the
random surfer model [21], which can be described as a Markov chain, where the
PageRank values of pages can be computed by finding the stationary distribu-
tion of this chain. Traditionally, PageRank computation is formulated as finding
the principal eigenvector of the Markov chain transition matrix and solved using
the iterative power method. Recently, linear system formulations and associated
iterative solution methods [3, 9, 18] are investigated for PageRank computation
as well. In both types of formulations, PageRank computation can be acceler-
ated via parallelization [9,20] or increasing the convergence rate of the iterative
methods [5, 12, 15, 16, 19].

The focus of this work is on reducing the per iteration time through par-
allelization. Among several formulations [13, 15, 17, 18] proposed for handling
the dangling-page (pages without out-links) problem, widely used formulation
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of Kamvar et al. [15] is selected for parallelization. In this formulation, which
is based on the power method, the kernel operations are sparse-matrix vector
multiply and linear vector operations. The partitioning scheme adopted in our
parallelization is based on rowwise partitioning of the transition matrix and con-
formable partitioning of the linear vectors used in the iterative power method.

Recently, the hypergraph-partitioning-based sparse matrix partitioning met-
hod of Catalyurek and Aykanat [6, 7] is applied by Bradley et al. [4] for ef-
ficient parallelization of the above-mentioned power method formulation. This
parallelization technique successfully reduces the communication overhead while
maintaining computational load balance. However, the preprocessing overhead
due to hypergraph partitioning, which must be repeated often due to constantly
evolving nature of the Web, is quite significant compared to the duration of the
PageRank computation.

In this work, we investigate techniques for reducing the overhead of the pre-
processing step before the PageRank computation without degrading the quality
of the parallelization. To this end, we propose a site-based compression on the
rows of the transition matrix relying on the expectation that sites form a natural
clustering on pages. Then, the conventional hypergraph model [6, 7] is applied
on the compressed site-to-page transition matrix to induce a partitioning on the
original page-to-page transition matrix. We also propose an efficient paralleliza-
tion scheme for matrix-vector multiplies in order to avoid possible communica-
tion due to the pages without in-links. Furthermore, we extend the hypergraph-
partitioning model to encapsulate both this efficient parallelization scheme and
the computational load balance over the whole iterative algorithm. Experimental
results on realistic Web datasets verify the validity of the proposed models. The
proposed site-based partitioning scheme reduces the preprocessing time drasti-
cally compared to the page-based scheme while producing better partitions in
terms of communication volume. Our implementation for the proposed parallel
PageRank algorithm shows that site-based partitioning scheme leads to better
speedup values compared to the page-based scheme on a 32- node PC cluster.

The rest of the paper is organized as follows. Section 2 summarizes the PageR-
ank algorithm. The proposed parallelization scheme is discussed in Section 3. Sec-
tion 4 describes the proposed page-based and site-based partitioning schemes.
Experimental results are presented in Section 5. Finally, concluding remarks are
given in Section 6.

2 PageRank Algorithm

PageRank can be explained with a probabilistic model, called the random surfer
model. Consider a Web user randomly visiting pages by following out-links within
pages. Let the surfer visit page i at a particular time step. In the next time step,
the surfer chooses to visit one of the pages pointed by the out-links of page i at
random. If page i is a dangling page, then the surfer jumps to a random page.
Even if page i is not a dangling page, the surfer may prefer to jump to a random
page with a fix probability instead of following one of the out-links of page i.
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In the random surfer model, the PageRank of page i can be considered as the
(steady-state) probability that the surfer is at page i at some particular time
step. In the Markov chain induced by the random walk on the Web containing n
pages, states correspond to the pages in the Web and the n×n transition matrix
P = (pij) is defined as pij = 1/deg(i), if page i contains out-link(s) to page j,
and 0, otherwise. Here, deg(i) denotes the number of out-links within page i.

A row-stochastic transition matrix P′ is constructed from P as P′ = P+dvT

via handling of dangling pages according to the random surfer model. Here,
d = (di) and v = (vi) are column vectors of size n. d identifies dangling pages,
i.e., di = 1 if row i of P corresponds to a dangling page, and 0, otherwise. v is the
teleportation (personalization) vector which denotes the probability distribution
of destination pages for a random jump. Uniform teleportation vector v, where
vi = 1/n for all i, is used for generic PageRank computation [14]. Non-uniform
teleportation vectors can be used for achieving topical or personalized PageRank
computation [11, 21], or preventing link spamming [10].

Although P′ is row-stochastic, it may not be irreducible. For example, the Web
contains many pages without in-links, which disturb irreducibility. An irreducible
Markov matrix P′′ is constructed as P′′ = αP′+(1−α)evT , where e is a column
vector of size n containing all ones. Here, α represents the probability that the
surfer chooses to follow one of the out-links of the current page, and (1 − α)
represents the probability that surfer makes a random jump instead of following
the out-links.

Given P′′, PageRank vector r can be determined by computing the stationary
distribution for the Markov chain, which satisfies the equation (P′′)T r = r.
This corresponds to finding the principal eigenvector of matrix P′′. Applying
the power method directly for the solution of this eigenvector problem leads
to a sequence of matrix-vector multiplies pk+1 = (P′′)T pk, where pk is the kth
iterate towards the PageRank vector r. However, matrix P′′ is completely dense,
whereas original P is sparse. Kamvar et al. [15] propose an efficient multiplication
scheme by reformulating the multiplication with dense matrix (P′′)T in terms
of sparse PT . This efficient PageRank algorithm is given in Fig. 1.

3 Parallel PageRank Algorithm

Two basic types of operations are performed repeatedly at each iteration of the
PageRank algorithm given in Fig. 1. The first type is sparse-matrix vector multi-
ply (i.e., q ← αAp), and the second type is linear vector operations, such as L1
norm (e.g., ‖q‖1), DAXPY (i.e., q ← q+γv) and vector subtraction (i.e., q−p).
We consider the parallelization of the computations of the PageRank algorithm
through rowwise partitioning of the A matrix as A = [AT

1 · · ·AT
k · · ·AT

K ]T ,
where processor Pk stores row stripe Ak. All vectors (e.g., p and q) used in
the algorithm are partitioned conformably with the row partition of A to avoid
communication of the vector components during linear vector operations. That
is, the p and q vectors are partitioned as [pT

1 · · ·pT
K ]T and [qT

1 · · ·qT
K ]T , re-

spectively. Processor Pk is responsible for performing the local matrix-vector
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PageRank(A, v)
1. p ← v
2. repeat
3. q ← αAp
4. γ ← ||p||1 − ||q||1
5. q ← q + γv
6. δ ← ||q − p||1
7. p ← q
8. until δ < ε
9. return p

Fig. 1. Efficient PageRank algorithm based on the power method: A = PT is the
transition matrix, v is the teleportation vector, and ε is the convergence threshold

multiply qk ← αAkp while holding pk. Processor Pk is also responsible for the
linear vector operations on the kth blocks of the vectors.

In this scheme, the linear vector operations can be efficiently performed in par-
allel such that only the norm operations require global communication overhead.
Fortunately, the volume of communication incurred due to this global commu-
nication does not increase with increasing n, and it is only K−1 words. On the
other hand, depending on the way in which rows of A are partitioned among
the processors, entries in p may need to be communicated among the processors
before the local matrix-vector multiplies, hence this scheme can be considered as
a pre-communication scheme. During the pre-communication phase, a processor
Pk may be sending the same pk-vector entry to different processors according
to the sparsity pattern of the respective column of A. This multicast like op-
eration is referred to here as Expand operation. Note that the communication
requirement during the pre-communication may be as high as (K − 1)n words
and K(K − 1) messages, and the communication occurs when each sub-matrix
Ak has at least one nonzero in each column.

As seen in Fig. 1, PageRank algorithm requires two global communication
operations in the form of all-to-all reduction due to the norm operations at steps
4 and 6 in Fig. 1. The global operations may incur high communication overhead
in parallel architectures with high message latency. In this work, we propose a
coarse-grain parallel PageRank algorithm, which reduces the number of global
communication operations at each iteration from two to one by rearranging the
computations as shown in Fig. 2. Here, two global norms are accumulated at
all processors in a single all-to-all reduction operation performed at step 5(c) in
Fig. 2. Hence, the proposed coarse-grain formulation halves the latency overhead
while keeping the communication volume the same. The only drawback of this
formulation is that it will perform an extra iteration compared to the power
method formulation given in Fig. 1, because the convergence check is applied on
the p vectors of the previous two iterations. In Fig. 2, a superscript k denotes
the partial result computed by processor Pk, e.g., γk is the partial result for
global scalar γ, where γ =

∑K
k=1 γk.
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Parallel-PageRank(Ak, vk)
1. pk ← vk

2. tk ← 0
3. repeat
4. (a) p ← Expand(pk)

(b) qk ← αAkp
5. (a) γk ← ‖pk‖1 − ‖qk‖1

(b) δk ← ‖pk − tk‖1

(c) 〈γ, δ〉 ← AllReduceSum(〈γk, δk〉)
6. tk ← pk

7. pk ← qk + γvk

8. until δ < ε
9. return pk

Fig. 2. Coarse-grain parallel PageRank algorithm (pseudocode for processor Pk)

Web data may contain many pages without in-links [3]. This property can be
utilized to increase the efficiency of the parallel PageRank algorithm as follows.
Since pages without in-links correspond to zero rows of matrix A, the matrix-
vector multiply at step 4 of Fig. 2 results in zero values for the respective q-vector
entries. Hence, for each page i without in-links, pi iterate can be simply updated
as γvi instead of the DAXPY operation at step 7. Note that vi is a constant
throughout the iterations and γ is a global scalar computed and stored at all
processors at each iteration of the algorithm. Hence, possible expand communi-
cations of pi due to the sparsity pattern of column i of A can be totally avoided
as follows: We replicate vi among the processors that have at least one row with
a non-zero at column i at the very beginning of the algorithm and then enforce
each one of those processors to redundantly compute pi = γvi at each iteration
of the algorithm.

4 Rowwise Partitioning

The objective in the proposed parallelization is to find a rowwise partition of A
that minimizes the volume of communication during each sparse matrix-vector
multiply while maintaining the computational load balance during each iteration.

4.1 Page-Based Partitioning

Rowwise partitioning of irregularly sparse matrices for the parallelization of
matrix-vector multiplies is formulated using the hypergraph-partitioning model
[6, 7]. In the column-net model proposed for rowwise partitioning [6, 7], a given
matrix is represented as a hypergraph which contains a vertex for each row
and a net for each column. The net corresponding to a column connects the
vertices corresponding to the rows that have a non-zero at that column. The
vertices connected by a net are said to be its pins. Vertices are associated with
weights which are set equal to the number of non-zeros in the respective rows.
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A K-way vertex partition on the hypergraph is decoded as assigning the rows
corresponding to the vertices in each part of the partition to a distinct processor.
Partitioning constraint on balancing the part weights corresponds to balancing
the computational loads of processors, whereas partitioning objective of mini-
mizing the cutsize corresponds to minimizing the total communication volume
during a parallel matrix-vector multiply.

In this work, we adopt the hypergraph-partitioning model and extend it to
encapsulate both the computational load balance over the whole iterative algo-
rithm and the efficient parallelization scheme described in Section 3. For this
purpose, we reorder the rows and columns of matrix A in such a way that rows
and columns corresponding to the pages without in-links are permuted to the
end. Then, we decompose the reordered transition matrix A as follows:

A =
Z

WC

Here, rows of sub-matrix Z and columns of sub-matrix W correspond to the
pages without in-links. Note that Z is a sub-matrix containing all zeros. We
compute a rowwise partition of A in two phases. The first and second phases
respectively incorporate the partitioning of the PageRank computation for the
pages with and without in-links among the processors.

In the first phase, we obtain a K-way row partition of sub-matrix [C |W]
by partitioning the column-net representation H(C) of the C sub-matrix. H(C)
contains one vertex and one net for each row and non-zero column of sub-matrix
C, respectively. Note that no nets are introduced for zero-columns which cor-
respond to dangling pages. Vertices of H(C) are weighted to incorporate the
floating point operations (flops) associated with the non-zeros of both C and W
sub-matrices as well as the flops associated with the linear-vector operations.
That is the weight of vertex i is set equal to: 2×nnz(row i of [C |W])+7. The
first term accounts for the number of flops associated with row i during a matrix-
vector multiply operation since each matrix non-zero incurs one multiply and
one add operation. The second term accounts for the number of flops associated
with the linear vector operations performed on the ith entries of the vectors.

In the second phase, rows of sub-matrix Z are distributed among the parts
of the rowwise partition obtained at the end of the first phase. Although it may
seem awkward to mention about distributing zero-rows across processors, recall
that partitioning of rows also incur the assignment of the respective vector en-
tries and the associated linear vector operations. The number of linear vector
operations performed on the vector entries corresponding to the zero rows re-
duces from 7 to 4 flops since the respective q-vector entries remain as zero. The
only metric considered during this distribution is to improve the balance of the
partition obtained in the first phase.
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4.2 Site-Based Partitioning

Experimental results show that the page-based partitioning technique proposed
in Section 4.1 is quite successful in minimizing the total volume of communi-
cation during the parallel PageRank computation. However, the preprocessing
overhead incurred in the first phase of the page-based scheme is quite signifi-
cant due to the partitioning of the hypergraph representing the page-to-page C
sub-matrix, which is very large in practice. For example, the time elapsed for
16-way partitioning of the Google and In-2004 datasets are as high as the time
elapsed for 64 and 47 iterations of the PageRank computations performed for
the respective datasets.

In this section, we propose a technique to reduce this overhead by partitioning
a compressed version, C̄, of the page-to-page sub-matrix C. We generate the site-
to-page C̄ matrix exploiting the fact that Web sites form a natural clustering of
pages. In matrix C̄, rows correspond to Web sites while columns corresponds to
pages. The union of the non-zeros of the C-rows that correspond to the pages
residing in a site form the non-zeros of the C̄-row corresponding to that site.
Then, we apply the column-net model on C̄ to obtain the H(C̄), and partition
H(C̄) instead of H(C). The weight of a vertex j in H(C̄) corresponding to site j
is set equal to

∑

page i∈ site j

(2 × nnz(row i of [C |W])) + 7 × pin−links(site j),

where pin−links(site j) denotes the number of pages with at least one in-link in
site j.

Although the compression of C reduces the number of vertices in H(C̄) sig-
nificantly, the compression does not reduce the number of nets. However, ex-
perimental results show that H(C̄) contains many nets that connect a single
vertex. These single-pin nets correspond to the pages that have out-links only to
the sites they belong to. Since single-pin nets have no potential to incur cost to
the cutsize, they can be discarded from H(C̄) before the partitioning. Removal
of single-pin nets significantly reduces the number of total nets in H(C̄). The
partitioning time of H(C̄) is expected to be much less than that of H(C), since
H(C̄) contains significantly fewer vertices and nets.

5 Experimental Results

In our experiments, two datasets with different sizes are used. The Google1

dataset is provided by Google and includes .edu domain pages in the US. The
In-20042 dataset is crawled by UbiCrawler and includes pages from the Web
of India. The properties of these datasets are given in Table 1. For the conver-
gence threshold of ε = 10−8, the PageRank computations converge in 91 and 90

1 http://www.google.com/programming-contest/
2 http://law.dsi.unimi.it/

http://www.google.com/programming-contest/
http://law.dsi.unimi.it/
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Table 1. Properties of datasets and column-net hypergraph representations of the
respective C and C̄ matrices

Google In-2004
# of pages 913,569 1,347,446
# of pages w/o in-links 132,167 86
# of sites 15,819 4,376
# of links 4,480,218 13,416,945
% intra-site links 87.42 95.92
% inter-site links 12.58 4.08
Page-based # of vertices 781,402 1,347,446
hypergraph # of nets 608,769 1,065,161

# of pins 4,741,970 14,482,106
Site-based # of vertices 15,819 4,376
hypergraph # of nets 214,659 205,106

# of pins 600,952 555,195

iterations for the Google and In-2004 datasets, respectively. In the PageRank
computations, the damping factor α is set to 0.85, conforming with the usual
practice [3].

Table 1 also shows the properties of the column-net hypergraphs H(C) and
H(C̄), which represent the C and C̄ matrices, respectively. As seen in Table 1,
the proposed compression scheme leads to a significant decrease in the size of
the hypergraphs. For example, in the In-2004 dataset, approximately 99%, 80%
and 96% reductions are obtained in the number of vertices, nets and pins, re-
spectively. Direct K-way hypergraph partitioning tool kPaToH [2, 8] is used,
with default parameters and an imbalance tolerance of 3%, for partitioning the
hypergraphs. As kPaToH involves randomized heuristics, kPaToH is run ten
times with different seed values for each partitioning instance and the averages
of those results are reported in the following figures. The partitioning operations
are performed on an Intel Pentium IV 3.0 GHz processor with 2 GB of RAM.
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Fig. 5. Speedup curves

Fig. 3 displays the variation of the preprocessing times of page-based and
site-based partitioning schemes with increasing number of processors. For the
page-based scheme, the preprocessing time involves only the partitioning time,
whereas for the site-based scheme, it involves both compression and partitioning
times. As seen in Fig. 3, the proposed site-based partitioning scheme achieves a
drastic reduction in the preprocessing time compared to the page-based scheme.
For example, the site-based scheme performs the preprocessing approximately 11
and 40 times faster than the page-based scheme in partitioning the Google and
In-2004 datasets, on the overall average. In Fig. 3, the number annotated with
each bar shows the ratio of preprocessing time to the sequential per iteration
time. According to these values, in the In-2004 dataset, the preprocessing time
of the site-based scheme is approximately equal to a single iteration time of the
sequential PageRank computation.

Fig. 4 displays the quality of the partitions obtained by the page-based and
site-based partitioning schemes in terms of total communication volume. As
seen in the figure, the partitions obtained by the site-based scheme incurs 70%
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and 54% less communication volume than those of the page-based scheme for the
Google and In-2004 datasets, respectively. These experimental findings verify
the expectation that sites constitute natural clusters of pages.

In order to compare the speedup performances of the page- and site-based
partitioning schemes, the parallel PageRank algorithm proposed in Section 3 is
implemented using the ParMxvLib library [22]. The parallel PageRank algorithm
is run on a 32-node PC cluster interconnected by a Fast Ethernet switch, where
each node contains an Intel Pentium IV 3.0 GHz processor, 1 GB of RAM.
The speedup curves are given in Fig. 5. As seen in the figure, the site-based
partitioning scheme leads to higher speedup values than the page-based scheme,
in accordance with the reduction in the communication volumes. For example,
the site-based scheme leads to a speedup of approximately 24 on 32 processors,
whereas the page-based scheme achieves a speedup of 16.

6 Conclusion

An efficient parallelization technique for PageRank computation was proposed
and implemented. Experimental results show that, compared to a state-of-the-art
parallelization scheme, the proposed technique not only reduces the preprocess-
ing time drastically, but also reduces the parallel per iteration time. Although
the proposed parallelization scheme is applied on a particular power method
formulation, the underlying ideas can be easily and effectively applied to the
parallelization of other iterative method formulations investigated in the litera-
ture for PageRank computation.
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Abstract. We present a studyof implementations ofDGEMM using both
the cache-oblivious and cache-conscious programming styles. The cache-
oblivious programs use recursion and automatically block DGEMM
operands A, B, C for thememory hierarchy.The cache-conscious programs
use iteration and explicitly block A,B, C for register files, all caches and
memory. Our study shows that the cache-oblivious programs achieve sub-
stantially less performance than the cache-conscious programs. We discuss
why this is so and suggest approaches for improving the performance of
cache-oblivious programs.

1 Introduction

One recommendation of the Algorithms and Architectures (AA) approach [1, 6,
10] is that researchers from Architecture, Compilers and Algorithms communi-
cate. In this spirit, the authors of this paper, who are from the compilers and
algorithms areas, have been collaborating in a research project to build BRILA
(Block Recursive Implementation of Linear Algebra), a domain-specific compiler
for Dense Linear Algebra (DLA) programs. This compiler takes recursive descrip-
tions of linear algebra problems, and produces optimized iterative or recursive
programs as output.

As part of this effort, we investigated the cache-oblivious (CO) and cache-
conscious (CC) approaches to implementing programs for machines with mem-
ory hierarchies. CO research introduced recursion via the divide and conquer
paradigm into DLA approximately ten years ago [9, 4]. The work in [9] was in-
spired by earlier work [1] which first enunciated the AA approach; see also [10,6].
[9] additionally advocated the use of new data structures (NDS) and L1 cache
blocking to improve the performance of DLA recursive algorithms such as the
Level 3 BLAS [6].

The results described in this paper summarize and extend a companion paper
directed towards the optimizing compiler community [15]. Our main findings
can be summarized as follows. As is well-known, the performance of many pro-
grams such as DGEMM is limited by the performance of the memory system
in two ways. First, the latency of memory accesses can be many hundreds of
cycles, so the processor may be stalled most of the time, waiting for reads to
complete. Second, the bandwidth from memory is usually far less than the rate

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 919–928, 2007.
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at which the processor can consume data. Our study examined these limitations
for highly optimized CO and CC DGEMM programs, generated by BRILA, on
four modern architectures: IBM Power 5, Sun UltraSPARC IIIi, Intel Itanium 2,
and Intel Pentium 4 Xeon. We found that there is a significant gap between the
performance of CO and CC algorithms for DGEMM; we provide reasons why
this gap exists and how it might be overcome. We are not aware of any similar
study in the literature.

The rest of this paper is organized as follows. In Section 2 we give a quan-
titative analysis of how blocking can reduce the latency of memory accesses as
well as the bandwidth required from memory. Using this analysis, one can tell
when an architecture cannot deliver a peak performing DGEMM. This was the
case for the IBM PC604 computer whose L1 cache was too small and whose
bandwidth between L2 and memory was too small1. In Section 3 we discuss the
performance of näıve iterative and recursive programs. Neither program performs
well on any architecture but for different reasons: the iterative program performs
poorly mainly because of poor memory hierarchy behavior, and the recursive one
behaves poorly mainly because of recursive overhead. In Section 4 we evaluate
approaches for reducing recursive overhead. Following [4] we introduce, in [15], a
recursive microkernel which does instruction scheduling and register blocking for
a small problem of size RU × RU × RU . However, even after considerable effort,
we are unable to produce a recursive microkernel that performs well. In Section
5 we explore iterative microkernels produced by the BRILA compiler using tiling
and unrolling of the standard iterative programs. We show that these iterative
microkernels perform much better than the recursive microkernels. A main find-
ing of [3, 11, 15] is that prefetching is important to obtain better performance.
While prefetching is easy if the outer control structure is iterative, it is not clear
how to accomplish this if the outer control structure is recursive. In Section 6 we
discuss the importance of two recent architectural innovations: streaming and
novel floating-point units [3, 16]. We describe a new concept called the L0/L1
cache interface for reasoning about the impact of these innovations [11]. Lastly,
in Section 7, we summarize our findings on recursive and iterative approaches
to matrix multiplication.

2 Approximate Blocking

The cache-oblivious approach can be viewed as a way of performing approximate
blocking for memory hierarchies. Each step of the recursive divide-and-conquer
process generates sub-problems of smaller size, and when the working set of a
sub-problem fits in some level of the memory hierarchy, that sub-problem can
execute without capacity misses at that level. It is known that this recursive ap-
proach is I/O optimal for common problems like matrix-multiplication and FFT,
which means intuitively that the volume of data transfers between different cache
1 The IBM PC architecture introduced prefetching instructions (called touches), and

using them and the AA approach, one of us introduced the concept of algorithmic
prefetching to improve DGEMM performance on this platform.
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levels is as small as it can be (to within constant factors) for any program im-
plementing the same computation [7]. However, program performance is limited
by both the latency of memory accesses and the bandwidth between different
levels of the memory hierarchy. We argue in this section that minimizing the
volume of data transfers between cache levels by approximate blocking may re-
duce bandwidth demands to an adequate level, but may not necessarily address
the latency problem.

We consider blocked Matrix-Matrix Multiply (MMM) of N × N matrices in
which each block computation multiplies matrices of size NB × NB. We assume
that there is no data reuse between block computations, which is a conservative
assumption for both latency and bandwidth estimates. We find an upper bound
on NB by considering a simple two-level memory hierarchy model with a cache
and main memory, and requiring the size of the working set of the block compu-
tation to be less than the capacity of the cache, C. Assume that the line size is
LC , and that the cache has an access latency lC . Let the access latency of main
memory be lM . The working set is bounded above by the size of the sub-problem.
Therefore, the following inequality is a conservative approximation:

3N2
B ≤ C . (1)

The total number of memory accesses each block computation makes is 4N3
B.

Each block computation brings 3N2
B data into the cache, which results in 3N2

B

LC

cold misses. If the block size is chosen so that the working set fits in the cache
and there are no conflict misses, the cache miss ratio of the complete block
computation is 3

4NB×LC
. Assuming that memory accesses are not overlapped,

the expected memory access latency is as follows:

l =
(

1 − 3
4NB × LC

)
× lC +

3
4NB × LC

× lM . (2)

Equation (2) shows that the expected latency decreases with increasing NB, so
latency is minimized by choosing the largest NB for which the working set fits in
the cache. In practice, the expected memory latency computed from Equation (2)
is somewhat pessimistic because loads can be overlapped with each other or
with actual computations, reducing the effective values of lC and lM . These
optimizations are extremely important in the generation of the micro-kernels, as
is described in Section 4. Furthermore, hardware and software prefetching can
also be used to reduce effective latency, as is discussed in Section 5 of [15] and
Section 6.

Bandwidth considerations provide a lower bound for NB. We start by consid-
ering the bandwidth between the registers and the L1 cache, which we will refer
to as B(L0, L1). Assume that the processor can perform one fused multiply-add
per cycle. Therefore, the time to execute a matrix-multiply is bounded above by
N3. Without blocking for registers, the bandwidth required between registers
and the L1 cache is therefore 4N3 ÷ N3 = 4 doubles/cycle.

If the processor cannot sustain this bandwidth, it is necessary to perform
register-blocking. If the size of the register block is NB, we see that each block
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computation requires 4N2
B data to be moved, so our simple memory model im-

plies that the total data movement is
(

N
NB

)3
× 4N2

B = 4N3

NB
. The ideal execution

time of the computation is still N3, so the bandwidth required from memory is
4N3

NB
÷ N3 = 4

NB
doubles/cycle. Therefore, register-blocking by a factor of NB

reduces the bandwidth required from L1 cache by the same factor.
We can now write the following lower bound on the value of NB, where

B(L0, L1) is the bandwidth between registers and the L1 cache:

4
NB

≤ B(L0, L1) . (3)

Inequalities (1) and (3) imply the following inequality for NB:

4
B(L0, L1)

≤ NB ≤
√

C

3
. (4)

This argument generalizes to a multi-level memory hierarchy. If B(Li, Li+1)
is the bandwidth between levels i and i + 1 in the memory hierarchy, NB (i) is
the block size for the ith cache level, and Ci is the capacity of this cache, we
obtain the following inequality:

4
B(Li, Li+1)

≤ NB (i) ≤
√

Ci

3
. (5)

In principle, there may be no values of NB (i) that satisfy the inequality.
This can happen if the capacity of the cache as well as the bandwidth to the
next level of the memory hierarchy are small. According to this model, the
bandwidth problem for such problems cannot be solved by blocking. The IBM
PC604 processor is an example of such a processor.

Equation (5) shows that in general, there is a range of block sizes for which
bandwidth constraints can be satisfied. In particular, if the upper bound in Equa-
tion (5) is more than twice the lower bound, the divide-and-conquer process in
the cache-oblivious approach will generate a block size that lies within these
bounds, and bandwidth constraints will be satisfied. However, Equation (2) sug-
gests that latency might still be a problem, and that it may be a bigger problem
for the CO approach since blocking only approximate.

3 Naive Recursive and Iterative DGEMM Routines

As a baseline for performance comparisons, we considered näıve recursive rou-
tines that recursed down to 1 × 1 matrix multiplications, as well as unblocked
iterative routines for MMM. We found that both performed very poorly but for
different reasons. We show that recursive codes have low cache misses but high
calling overhead whereas the opposite holds for iterative codes.

For these implementations we need a data structure for matrices and a control
structure. We use standard Fortran and C two dimensional arrays to represent
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the matrix operands A, B, C of DGEMM. In [9,6] the all-dimensions (AD) stat-
egy of divide and conquer is described. Here one divides the rows and columns
of A, B, C equally and thereby generates eight sub-problems of half the size.
For the iterative control, we used simple jki loop order, [5]. This was the worst
choice for iterative control as our matrices were stored in row major order. Both
programs performed very poorly on all four platforms obtaining about 1% of
peak. Three reason emerged as the main cause of bad performance:

1. The overhead of recursive calling was in the hundreds of cycles whereas an
independent FMA executed in one cycle.

2. Both programs made poor use of the floating point register files. Currently,
compilers fail to track register values across procedure calls. For iterative
codes compilers can do register blocking; however, none of our compilers
were able to do so.

3. A remarkable fact emerged when we examined L2 cache misses on Itanium.
Our iterative code suffered roughly two cache misses per FMA resulting in
a miss ratio of 0.5! So, poor memory behavior limits the performance of
our iterative code. For the recursive code the miss ratio was a tiny .002
misses per FMA, resulting in a miss ratio of 0.0005!. This low miss ratio
is a practical manifestation of the theoretical I/O optimality of recursive
programs. However, because of the calling overhead, I/O optimality alone
did not guarantee good overall performance.

Many more details and experimental results about this Section are contained in
Section 3 of [15].

4 Recursive Kernels for DGEMM and Reducing
Recursive Overhead

A standard approach to reducing the recursive overhead is to cut the recursion
off once the problem size is below some cut-off, and call a kernel routine to
perform the sub-problem. For DGEMM one no longer performs single FMAs at
the leaves of the recursion tree; instead, the program would call a kernel routine
that would perform N3

B FMA’s. This microkernel is a basic block obtained by
fully unrolling the recursive code for a small problem of size RU × RU × RU , as
suggested by Frigo et al. [4]. This kernel routine has to be optimized carefully
for the registers and the processor pipeline, so it is not “register-oblivious”. We
call this a recursive microkernel since the FMAs are performed in the same order
as they were in the original recursive code.

The optimal RU value is determined empirically for values between 1 and 15;
i.e., this microkernel must be done in a register file. The overhead of recursion is
amortized over R3

U FMAs, rather than a single FMA. Furthermore, a compiler
might be able to register allocate array elements used in the microkernel, which
gives the effect of register blocking. Therefore, performance should improve sig-
nificantly.
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One also needs to worry about selecting a good data structure to represent
the matrix operands A, B, C of the microkernel as the standard Fortran and C
two dimensional arrays are often a poor choice [10]. Virtually all high perfor-
mance BLAS libraries internally use a form of a contiguous blocked matrix, such
as Row-Block-Row (RBR); e.g., see [9, 10, 14, 6, 11]. An alternative is to use a
recursive data layout, such as a space filling curve like Morton-Z [9, 6]. In [15]
we compared the MMM performance using both these choices and we rarely saw
any performance improvement using Morton-Z order over RBR. Thus [15] used
RBR in all of its experiments and it chose the data block size to match the kernel
block size.

In [15] we considered four different approaches to performing register allo-
cation and scheduling for the recursive microkernel; see Sections 4.1,2,3,4 and
Table 4 of [15]. The results of these four recursive microkernel experiments led
us to the following four conclusions:

– The microkernel is critical to overall performance. Producing a high per-
formance recursive microkernel is a non-trivial job, and requires substantial
programming effort.

– The performance of the program obtained by following the canonical recipe
(recursive outer control structure and recursive microkernel) is substantially
lower than the near-peak performance of highly optimized iterative codes
produced by ATLAS or in vendor BLAS. The best we were able to obtain
was 63% of peak on the Itanium 2; on the UltraSPARC, performance was
only 38% of peak.

– For generating the microkernel code, using Belady’s algorithm [2] followed by
scheduling may not be optimal. Belady’s algorithm minimizes the number of
loads, but minimizing loads does not necessarily maximize performance. An
integrated register allocation and scheduling approach appears to perform
better.

– Most compilers we used did not do a good job with register allocation and
scheduling for long basic blocks. The situation is more muddied when proces-
sors perform register renaming and out-of-order instruction scheduling. The
compiler research community needs to pay more attention to this problem.

5 Iterative Kernel Routines for DGEMM

Iterative microkernels are obtained by register-blocking the iterative code, and
have three degrees of freedom called KU , NU , and MU . The microkernel loads
a block of the C matrix of size MU × NU into registers, and then accumulates
in them the results of performing a sequence of outer products between column
vectors of A of size MU and row vectors of B of size NU . Therefore, MU + NU

loads of A and B operands accomplish MU × NU FMA’s. Clearly, with a large
enough register file one can do cache blocking out of higher levels of cache than
L1. This actually happens on Itanium and on IBM BG/L, see [3]. With this
kernel, KU can be very large.
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The microkernels were generated by BRILA in [15] as follows:

1. Start with a simple kji triply-nested loop for performing an MMM with
dimensions 〈KU , NU , MU 〉 and unroll it completely to produce a sequence of
MU × NU × KU FMAs.

2. Use the algorithm described in Figure 5 of [15] for register allocation and
scheduling, starting with the sequence of FMAs generated above. As in Sec-
tion 4.4 of [15], Belady register allocation was used and [15] scheduled
dependent instructions back-to-back on the Pentium 4 Xeon.

5.1 Iterative Minikernels

By blocking explicitly for L1 and other cache levels, we get iterative minikernels.
These minikernels usually deal with square blocks, and invoke the iterative mi-
crokernel to perform the matrix multiplications. We also considered combining
recursive outer control structures with the iterative microkernel [15].

Not surprisingly, we found that blocking the iterative code for all levels of
cache gave roughly the same performance as using a recursive outer control
structure with the iterative microkernel. However, the iterative outer control
offers many more blocking choices as there are 3! = six choices for each higher
cache level, although this large number of choices can be reduced to only four
choices [8]. Furthermore, to get the highest level of performance, it is necessary
to implement prefetching from the memory, as is done in hand-tuned libraries.
Prefetching for iterative control structures is well understood, but appears to be
more difficult for recursive control structures because they access the matrices
in a relatively unstructured fashion. We believe more research into prefetching
for recursive codes is needed.

6 Pipelined Streaming and Novel Floating Point Units

Finally, we discuss the impact of novel features of the processor pipeline.
Many processors now support streaming but there are a limited number of

streaming units on a given platform [16]. In Section 5.1, we discussed minikernels
that block explicitly for L1 and other cache levels [1, 17, 11]. In [15] the data
structure of the minikernel was RBR, which is a special case of the Square
Block Format (SBF) [9, 10, 14]. In [14] the authors show that this data format
minimizes L1, L2, and TLB misses for common matrix operations that involve
both row and column operations. Typically, the order NB of a SBF matrix is
chosen so it will reside in L1 cache. Unfortunately, streaming makes the use
of SBF suboptimal since the iterative microkernel requires 2NU + MU streams
with RBR storage. Usually, MU and NU is around four so about twelve streams
are required. Unfortunately, twelve is too large. With NDS, we show that these
streams can be reduced to three, one each for the A, B, C operands of DGEMM.
We note that three is minimal for DGEMM as one stream is required for each
of DGEMM’s operands; see [11].
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Next, we discuss novel floating point units. These are SIMD vector like and
several platforms now have them. For example, on Intel one has SSE units which
are capable of delivering 4,2 multiplies or 4,2 adds for single, double precision
operands in a single cycle. The peak MFlop rate is thus quadrupled/doubled
with this floating point unit. On IBM Blue Gene, BG/L, there is a pair of
double SIMD Floating point units with associated double SIMD floating point
register files [3]. It turns out that these units are not fully integrated with the
CPU. Thus, there is an interface problem that exists in getting data from the L1
cache into the register files of these novel units. In [11] we discuss the matters in
more detail and in particular, we define a new concept called the L0/L1 cache
interface; also see [3]. Note that in this context the L0 cache is the register file
of a given processor.

Now we briefly describe how these problems can be handled. An answer lies
in changing the internal data structure [11]. Instead of using a standard For-
tran or C two dimensional array, it is necessary to use a four-dimensional array.
The inner two dimensions constitute register blocks. These register blocks are
transposes of the register blocks described in Section 5. However, data in this
new format can be addressed with memory stride of one so that twelve streams
mentioned above become three. Furthermore, the L0/L1 interface problem dis-
appears as data will now enter L1 (or bypass it completely) in a way that is
optimal for its entrance into the L0 cache; see [11].

7 Conclusion

We summarize the results of [15] for the recursive and iterative programming
styles. Our recursive microkernel work led us to the following conclusions.

– The performance of the program obtained by following the canonical recipe
(recursive outer control structure and recursive microkernel) is substantially
lower than the near-peak performance of highly optimized iterative codes
produced by ATLAS or in vendor BLAS. The best we were able to obtain
was 63% of peak on the Itanium 2; on the UltraSPARC, performance was
only 38% of peak.

– The microkernel is critical to overall performance. Producing a high per-
formance recursive microkernel is a non-trivial job, and requires substantial
programming effort.

– For generating code for the microkernel, using Belady’s algorithm [2] fol-
lowed by scheduling may not be optimal. Belady’s algorithm minimizes the
number of loads, but minimizing loads does not necessarily correlate to per-
formance. An integrated register allocation and scheduling approach appears
to perform better.

– Most compilers we used did not do a good job with register allocation and
scheduling for long basic blocks. This problem has been investigated before.
The situation is more muddied when processors perform register renaming
and out-of-order instruction scheduling. The compiler research community
needs to pay more attention to this problem.
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Our iterative microkernel and blocking work led us to the following conclu-
sions.

– Using the techniques in the BRILA compiler, we can generate iterative micro-
kernels giving close to peak performance. They perform significantly better
than recursive microkernels.

– Wrapping a recursive control structure around the iterative microkernel gives
a program that performs reasonably well since it is able to block approxi-
mately for all levels of cache and block exactly for registers. If an iterative
outer control structure is used, it is necessary to block for relevant levels of
the memory hierarchy.

– To achieve performance competitive with hand-tuned kernels, minikernels
need to do data prefetching. It is clear how to do this for an iterative outer
control structure but we do not know how to do this for a recursive outer
control structure.
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K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 256–265. Springer,
Heidelberg (2006)

9. Gustavson, F.G.: Recursion Leads to Automatic Variable Blocking for Dense
Linear-Algebra Algorithms. IBM Journal of Research and Development 41(6), 737–
755 (1997)

10. Gustavson, F.G.: High Performance Linear Algebra Algorithms using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Develop-
ment 47(1), 31–55 (2003)



928 J.A. Gunnels et al.

11. Gustavson, F.G., Gunnels, J.A., Sexton, J.C.: Minimal Data Copy for Dense Linear
Algebra Factorization. In: K̊agström, B., Elmroth, E., Dongarra, J., Wasniewski,
J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 540–549. Springer, Heidelberg (2007)

12. Gustavson, F.G., Henriksson, A., Jonsson, I., K̊agström, B., Ling, P.: Recur-
sive blocked data formats and BLAS’s for dense linear algebra algorithms. In:
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Abstract. The purpose of this work is to provide a method which ex-
ploits the parallel blockwise algorithmic approach used in the framework
of high performance sparse direct solvers in order to develop robust and
efficient preconditioners based on a parallel incomplete factorization.

1 Introduction

Over the past few years, parallel sparse direct solver have made significant
progress. They are now able to solve efficiently real-life three-dimensional prob-
lems having in the order of several millions of equations (see for example [1,5,8]).

Nevertheless, the need of a large amount of memory is often a bottleneck in
these methods. On the other hand, the iterative methods using a generic pre-
conditioner like an ILU(k) factorization [21] require less memory, but they are
often unsatisfactory when the simulation needs a solution with a good precision
or when the systems are ill-conditioned. The incomplete factorization technique
usually relies on a scalar implementation and thus does not benefit from the su-
perscalar effects provided by the modern high performance architectures. Futher-
more, these methods are difficult to parallelize efficiently, more particulary for
high values of level-of-fill.

Some improvements to the classical scalar incomplete factorization have been
studied to reduce the gap between the two classes of methods. In the context
of domain decomposition, some algorithms that can be parallelized in an effi-
cient way have been investigated in [14]. In [19], the authors proposed to couple
incomplete factorization with a selective inversion to replace the triangular so-
lutions (that are not as scalable as the factorization) by scalable matrix-vector
multiplications. The multifrontal method has also been adapted for incomplete
factorization with a threshold dropping in [10] or with a fill level dropping that
measures the importance of an entry in terms of its updates [2]. In [3], the authors
proposed a block ILU factorization technique for block tridiagonal matrices.

Our goal is to provide a method which exploits the parallel blockwise algorith-
mic approach used in the framework of high performance sparse direct solvers
in order to develop robust parallel incomplete factorization based precondition-
ers [21] for iterative solvers.

For direct methods, in order to achieve an efficient parallel factorization,
solvers usually implement the following processing chain:
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– the ordering phase, which computes a symmetric permutation of the initial
matrix A such that factorization will exhibit as much concurrency as possible
while incurring low fill-in. In this work, we use a tight coupling of the Nested
Dissection and Approximate Minimum Degree algorithms [17];

– the block symbolic factorization phase, which determines the block data
structure of the factored matrix L associated with the partition resulting
from the ordering phase;

– the block repartitioning and scheduling phase, which refines the partition, by
splitting large supernodes in order to exploit concurrency within dense block
computations, and maps it onto the processors;

– the parallel numerical factorization and the forward/backward elimination
phases, which are driven by the distribution and the scheduling of the pre-
vious step.

In our case, we propose to extend our direct solver PaStiX [8] to compute an
incomplete block factorization that can be used as a preconditioner in a Krylov
method. The main work will consist in replacing the block symbolic factorization
step by some algorithms able to build a dense block structure in the incomplete
factors. We keep the ordering computed by the direct factorization to exhibit
parallelism. Reverse Cuthill and McKee techniques are known to be efficient for
small values of level-of-fill (0 or 1), but, to obtain robust preconditioners, we
have to considere higher values of level-of-fill. In addition, the Reverse Cuthill
and McKee leads to an ordering that does not permit independent computation
in the factorization and thus it is not adapted for parallelization. The extensions
that are described also have to preserve the dependences in the elimination tree
on which all direct solver algorithms rely.

2 Methodology

In the direct methods relying on a Cholesky factorization (A = L.Lt), the way
to exhibit a dense block structure in the matrix L is directly linked to the or-
dering techniques based on the nested dissection algorithm (ex: MeTiS [15] or
Scotch [16]). Indeed the columns of L can be grouped in sets such that all
columns of a same set have a similar non zero pattern. These sets of columns,
called supernodes, are then used to prune the block structure of L. The supern-
odes obtained with such orderings mostly correspond to the separators found in
the nested dissection process of the adjacency graph G(A) of matrix A. Another
essential property of this kind of ordering is that it provides a block elimination
tree that is well suited for parallelism [8].

An important result used in direct factorization is that the partition P of the
unknowns induced by the supernodes can be found without knowning the non
zero pattern of L. The partition P of the unknowns is then used to compute the
block structure of the factorized matrix L during the so-called block symbolic
factorization. This block symbolic factorization for direct method is a very low
time and memory consuming step since it can be done on the quotient graph
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Q(G(A), P) with a complexity that is quasi-linear in respect to the number of
edges in the quotient graph. We exploit the fact that:

Q(G(A), P)∗ = Q(G∗(A), P)

where the exponent ∗ means “elimination graph”. It is important to keep in
mind that this property can be used to prune the block structure of the factor L
because one can find the supernode partition from G(A) [13]. For an incomplete
ILU(k) factorization, these properties are not true any more in the general case.
The incomplete symbolic ILU(k) factorization has a theorical complexity similar
to the numerical factorization, but an efficient algorithm that leads to a practical
implementation has been proposed [18]. The idea of this algorithm is to use
searches of elimination paths of length k+1 in G(A) in order to compute Gk(A)
which is the adjacency graph of the factor in ILU(k) factorization.

Another remark to reduce the cost of this step is that any set of unknowns in
A that have the same row structure and column structure in the lower triangular
part of A can be compressed as a single node in G(A) in order to compute the
symbolic ILU(k) factorization. Indeed the corresponding set of nodes in G(A)
will have the same set of neighbors and consequently the elimination paths of
length k + 1 will be the same for all the unknowns of such a set. In other words,
if we consider the partition P0 constructed by grouping sets of unknowns that
have the same row and column pattern in A then we have:

Q(Gk(A), P0) = Q(G(A), P0)k.

This optimization is very valuable for matrices that come from finite element dis-
cretization since a node in the mesh graph represents a set of several unknowns
(the degrees of freedoms) that forms a clique. Then the ILU(k) symbolic factor-
ization can be devised with a significantly lower complexity than the numerical
factorization algorithm.

Once the elimination graph Gk is computed, the problem is to find a block
structure of the incomplete factors. For direct factorization, the supernode par-
tition usually produces some blocks that have a sufficient size to obtain a good
superscalar effect using the BLAS 3 subroutines. The exact supernodes (group
of successive columns that have the same non-zeros pattern) that are exhibited
from the incomplete factor non zero pattern are usually very small. A remedy to
this problem is to merge supernodes that have nearly the same structure. This
process induces some extra fill-in compared to the exact ILU(k) factors but the
increase of the number of operations is largely compensated by the gain in time
achieved thanks to BLAS subroutines. The principle of our heuristic to compute
the new supernode partition is to iteratively merge supernodes whose non zero
patterns are the most similar until we reach a desired extra fill-in tolerance.

To summarize, our incomplete block factorization consists of the following
steps:

– find the partition P0 induced by the supernodes of A;
– compute the incomplete block symbolic factorization Q(G(A, P0))k;
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– find the exact supernode partition in the incomplete factors;
– given a extra fill-in tolerance α , construct an approximated supernode par-

tition Pα to improve the block structure of the factors;
– apply a block incomplete factorization using the parallelization techniques

implemented in our direct solver PaStiX [8,9].

The incomplete factorization is then used as a preconditioner in an iterative
method using the block structure of the factors.

3 Amalgamation Algorithm

The previous section shows that the symbolic factorization of ILU(k) method,
though more costly than in the case of exact factorizations, is not a limitation
in our approach. Another remark is that the ordering step can be more expen-
sive, in terms of memory and time, than the ILU(k) factorization but parallel
ordering softwares are now available [6,7]. Nevertheless, in this paper, we use
a sequential version of Scotch [16]. What remains critical is to obtain dense
blocks with a sufficient size in the factor in order to take advantage of the su-
perscalar effects provided by the BLAS subroutines. The exact supernodes that
can be exhibited from the symbolic ILU(k) factor are usually too small to allow
good BLAS efficiency in the numerical factorization and in the triangular solves.
To address this problem we propose an amalgamation algorithm which aims at
grouping some supernodes that have almost similar non-zero patterns in order
to get bigger supernodes. By construction, the exact supernode partition found
in any ILU(k) factor is always a sub-partition of the direct supernode partition
(i.e. corresponding to the direct factorization). We impose the amalgamation
algorithm to merge only ILU(k) supernodes that belong to the same direct su-
pernode. That is to say that we want this approximated supernode partition to
remain a sub-partition of the direct supernode partition. The rational is that
when this rule is respected, the additional fill entries induced by the approxi-
mated supernodes can correspond to fill-paths in the elimination graph G∗(A)
whereas merging supernodes from different supernodes will result in “useless”
extra fill (zero terms that does not correspond to any fill-path in G∗(A)). Thus,
the extra fill created when respecting this rule has a better chance of improving
the convergence rate. Future works will investigate a generalized algorithm that
releases this constraint.

As mentioned before, the amalgamation problem consists of merging as many
supernodes as possible while adding the least extra fill. We propose a heuristic
based on a greedy algorithm: given the set of all supernodes, it consists of itera-
tively merging the pair of succesive supernodes (i, i + 1) which creates the least
extra fill in the factor (see Figure 1) until a tolerance α is reached. Each time
a pair of supernodes is merged into a single one the total amount of extra fill
is increased: the same operation is repeated until the amount of additional fill
entries reaches the tolerance α (given as a percentage of the number of non-zero
elements found by the ILU(k) symbolic factorization). This algorithm requires to
know at each step which pair of supernodes will add the least fill-in in the factors
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when they are merged. This is achieved by maintaining a heap that contains all
the pair of supernodes sorted by their cost (in terms of new entries) to merge
them. As said before, we only consider pair of ILU(k) supernodes that belong
to the same direct supernode). This means that, each time two supernodes are
merged, the number of extra fill that would cost to merge the new supernode
with its father or its son (it can only have one inside a direct supernode) has to
be updated in the heap.

I+1

I

I

I+1

Additional fill induced by merging I and I+1

Fig. 1. Additional fill created when merging two supernodes I and I+1

The next section gives some results on the effect of the α parameter and a
comparison to the classic scalar ILU(k) preconditioner.

4 Results

In this section, we consider 3 test cases from the PARASOL collection (see
Table 1). NNZA is the number of off-diagonal terms in the triangular part of
matrix A, NNZL is the number of off-diagonal terms in the factorized matrix
L (for direct method) and OPC is the number of operations required for the
factorization (for direct method).

Numerical experiments were performed on an IBM Power5 SMP node (16
processors per node) at the computing center of Bordeaux 1 university, France.
We used a GMRES version without ”restart”. The stopping iteration criterion
used in GMRES is the right-hand-side relative residual norm and is set to 10−7.

For matrices that are symmetric definite positive, one could use a precondi-
tioned conjugate gradient method; but at this time we only have implemented
the GMRES method in order to treat unsymmetric matrices as well. The choice
of the iterative accelerator is not in the scope of this study.
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Table 1. Description of our test problems

Name Columns NNZA NNZL OPC
SHIPSEC5 179860 4966618 5.649801e+07 6.952086e+10
SHIP003 121728 3982153 5.872912e+07 8.008089e+10
AUDI 943695 39297771 1.214519e+09 5.376212e+12

Table 2 gives the influence of the amalgamation parameter α that is the
percentage of extra entries in the factors allowed during the amalgamation algo-
rithm in comparison to the ones created by the exact ILU(k) factorization. For
the AUDI problem with several levels of fill (k), the table reports :

– the number of supernodes,
– the number of blocks,
– the number of non-zeros in the incomplete factors divided by the number of

non-zeros in the initial matrix (Fill-in),
– the time of amalgamation in seconds (Amalg.),
– the time of sequential factorization in seconds (Num. Fact.),
– the time of triangular solve (forward and backward) in seconds (Triang.

Solve)
– the number of iterations.

Table 2. Effect of amalgamation ratio α for AUDI problem

k α # Supernodes # Blocks Fill-in Amalg. Num. Fact. Triang. Solve Iterations
1 0% 299925 11836634 2.89 1.31 258 9.55 147
1 10% 198541 6332079 3.17 1.92 173 7.18 138
1 20% 163286 4672908 3.46 4.24 77 4.92 133
1 40% 127963 3146162 4.03 4.92 62 4.86 126
3 0% 291143 26811673 6.44 5.17 740 12.7 85
3 10% 172026 11110270 7.07 6.24 463 8.99 78
3 20% 136958 6450289 7.70 7.31 287 8.22 74
3 40% 108238 3371645 8.97 8.06 177 7.53 68
5 0% 274852 34966449 8.65 7.04 1567 14.3 69
5 10% 153979 12568698 9.50 7.72 908 10.7 63
5 20% 125188 6725165 10.35 8.84 483 9.44 59
5 40% 102740 3254063 12.08 9.87 276 8.65 52

We can see in Table 2 that our amalgamation algorithm reduces significantly
the number of supernodes and the number of blocks in the dense block pattern
of the matrix.

As a consequence, the superscalar effects are greatly improved as the amal-
gamation parameter grows: this is particulary true for the factorization which
exploits BLAS-3 subroutines (matrix by matrix operations). The superscalar ef-
fects are less important on the triangular solves that require much less floating
point operations and use only BLAS-2 subroutines (matrix by vector operations).
We can also verify that the time to compute the amalgamation is negligible in
comparison to the numerical factorization time. As expected the number of it-
erations decreases with the amalgamation fill parameter: this indicates that the
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Table 3. Performances on 1 and on 16 processors PWR5 for 3 test cases

AUDI
1 processor 16 processors

k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total
1 10% 138 173 7.18 1163.84 26 0.65 115.70
1 20% 133 77 4.92 731.36 18 0.55 91.15
1 40% 126 62 4.86 674.36 11 0.47 70.22
3 10% 78 463 8.99 1164.22 58 1.25 155.50
3 20% 74 287 8.22 895.28 33 0.97 104.78
3 40% 68 177 7.53 689.04 17 0.70 64.60
5 10% 63 908 10.70 1582.10 89 1.59 189.17
5 20% 59 483 9.44 1039.96 47 1.26 121.34
5 40% 51 276 8.65 725.80 23 0.82 65.64

SHIP003
1 processor 16 processors

k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total
1 10% – 1.41 0.28 – 0.32 0.05 –
1 20% – 1.41 0.28 – 0.28 0.05 –
1 40% – 1.58 0.29 – 0.28 0.04 –
3 10% 76 4.14 0.45 38.14 0.69 0.07 6.01
3 20% 75 4.05 0.45 37.80 0.62 0.05 4.37
3 40% 64 4.43 0.42 31.31 0.60 0.04 3.16
5 10% 49 7.81 0.55 34.76 1.13 0.07 4.56
5 20% 35 6.98 0.55 26.23 0.90 0.06 3.0
5 40% 34 7.24 0.49 23.9 0.98 0.06 3.02

SHIPSEC5
1 processor 16 processors

k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total
1 10% 121 1.28 0.32 40.0 0.28 0.03 3.91
1 20% 117 1.26 0.32 38.7 0.25 0.03 3.76
1 40% 111 1.44 0.33 38.07 0.24 0.03 3.57
3 10% 70 2.29 0.44 33.09 0.41 0.04 3.21
3 20% 66 2.29 0.43 30.67 0.38 0.04 3.02
3 40% 62 2.83 0.42 28.87 0.43 0.04 2.91
5 10% 54 3.32 0.51 30.86 0.54 0.05 3.24
5 20% 51 3.40 0.49 28.39 0.50 0.05 3.05
5 40% 47 4.11 0.47 26.2 0.59 0.05 2.94

extra fill allowed by the amalgamation corresponds to numerical non-zeros in
the factors and are useful in the preconditioner.

Table 3 shows the results for the 3 problems both in sequential and in parallel
for different levels-of-fill and different amalgamation fill parameter values. “–”
indicates that GMRES did not converge in less than 200 iterations. As we can see
the parallelization is quiet good since the speed-up is about 10 in most cases on
16 processors. This is particulary good considering the small amount of floating
point operations required in the triangular solves.

The performance of a sequential scalar implementation of the columnwise
ILU(k) algorithm are reported in Table 4. The “–” corresponds to cases where
GMRES did not converged in less than 200 iterations. When compared to Ta-
bles 2 and 3 what can be noticed is that the scalar implementation is often
better for a level-of-fill of 1 (really better for α = 0) but is not competitive for
higher level-of-fill values. The scalar implementation of the triangular solves is
always the best compared to the blockwise implementation: we explain that by
the fact that the blockwise implementation of the triangular solves suffers of the
overcost paid to call the BLAS subroutines. It seems that this overcost is not
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Table 4. Performances of a scalar implementation of the column-wise ILU(k) algorithm

AUDI
k Fill-in Num. Fact. Triang. Solve Total Iterations
1 2.85 75.0 2.63 482.65 155
3 6.45 466.9 4.95 922.3 92
5 8.72 1010.4 6.21 1488.57 77

SHIP03
k Fill-in Num. Fact. Triang. Solve Total Iterations
1 1.99 3.32 0.16 – –
3 4.15 15.69 0.29 39.47 82
5 5.93 33.74 0.37 58.53 67

SHIPSEC5
k Fill-in Num. Fact. Triang. Solve Total Iterations
1 1.79 3.38 0.22 33.08 135
3 2.76 10.83 0.33 38.55 84
5 3.46 19.56 0.38 46.16 70

compensated by the acceleration provided by BLAS-2 subroutines compared to
the scalar implementation. This is certainly due to the size of the block not being
sufficiently for BLAS-2. On the contrary, a great difference is observed in the
incomplete factorization between the scalar implementation and the blockwise
implementation. In this case, the BLAS-3 subroutines offer a great improvement
over the scalar implementation especially for the higher level-of-fill values that
provide the bigger dense blocks and number of floating point operations in the
factorization.

5 Conclusions

The main aims of this work have been reached. The blockwise algorithms pre-
sented in this work allow to significantly reduce the complete time to solve linear
systems with incomplete factorization technique. High values of level-of-fill are
manageable even in a parallel framework. Some future works will investigate
a generalized algorithm that releases the constraint that imposes the amalga-
mation algorithm to merge only ILU(k) supernodes that belong to the same
supernode. Furthermore, we will study a pratical way of setting automatically
the extra fill-in tolerance α. We work on modifying the amalgamation algorithm
such that it merges supernodes (and accept fill-in) while it can decreases the
cost (in CPU time) of the preconditioner according to an estimation relying on
a BLAS modelization.
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Abstract. We propose multisection for the multiple eigenvalues (MME)
method for determining the eigenvalues of symmetric tridiagonal matri-
ces. We also propose a method using runtime optimization, and show
how to optimize its performance by dynamically selecting the implemen-
tation parameters. Performance results using a Hitachi SR8000 super-
computer with eight processors per node yield (1) up to 6.3x speedup
over a conventional multisection method, and (2) up to 1.47x speedup
over a statically optimized MME method.

1 Introduction

The bisection method is widely used to compute the eigenvalues of a symmetric
tridiagonal matrix T , especially when a subset of the spectrum is desired. The
bisection method is based on repeated evaluation of the function Count(x) =
number of eigenvalues of T less than x. Evaluation of this function at two points
a and b yields the number of eigenvalues in the interval [a, b]. There can be a
lot of parallelism inherent in the bisection method. First, disjoint intervals may
be searched independently, but the number of intervals available depends on
the distribution of the eigenvalues of T . Second, one can divide an interval into
more than two equal parts (i.e., multisection as opposed to bisection) but the
efficiency depends on how much faster Count(x(1 : k)) can be evaluated at k
points x(1 : k) than at one point [5,8], which in turn depends on the computer
being used to perform the calculation.

So to optimize the performance, an implementation of the bisection method
could select the points at which to evaluate Count(x) based on both the intervals
that contain eigenvalues that have been found so far, and the relative speeds of
Count(x(1 : k)) for different k. At one extreme, when the n-by-n matrix T has
fairly uniformly distributed eigenvalues, multisection could be used initially until
there were sufficient intervals to take advantage of the available parallelism. By

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 938–948, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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doing this there would eventually be n disjoint intervals to each of which bisection
could be applied. In the other extreme case in which all the eigenvalues of T lie in
a few tight clusters so that there are never many intervals containing eigenvalues,
multisection could be applied.

We propose a method for selecting parameters during runtime the optimal
mix of multisection. Like other automatic tuning systems [9,1,4,2] at install-
time a few benchmarks are run to determine the speed of Count(x(1 : k)), and a
simple performance model is used at runtime to decide what to do. We assume
a shared memory parallel system in this paper but we also consider the use
of vectorization. We call our method the multisection with multiple eigenvalues
(MME) method. Our implementation is intended for inclusion in the forthcoming
LAPACK and ScaLAPACK codes xSTEGR [3].

This paper is organized as follows. Section 2 explains the kernel of the MME
method. Section 3 proposes a runtime optimization method for the MME method.
Section 4 describes an evaluation of the proposed runtime method using a Hitachi
SR8000 supercomputer. Finally, the conclusions from this study are given.

2 Kernel Derivation for the MME Method

2.1 LAPACK dlarrb Routine

The kernel of the bisection method explained in this section is based on the
LAPACK xSTEGR implementation. Figure 1 shows the whole bisection kernel
for the dlarrb routine in LAPACK xSTEGR. However, the MME method is not
limited to the implementation in LAPACK xSTEGR.

The kernel in Fig. 1 returns the number of eigenvalues under the value σ.
Note that the kernel in Fig. 1 is a bisection for one target eigenvalue. The total
number of eigenvalues should be calculated in the dlarrb routine based on the
relatively robust representation (RRR) [7]. The value of σ is determined using
the interval for the target eigenvalue. This interval is given by the representation
tree [7] in the multiple relatively robust representation (MRRR) algorithm.

The dlarrb routine performs ”limited” bisection to refine the eigenvalues of
L D LT . IEEE-features [6], for example NaN, are used in the kernel to make it
more rapid. The value of σ in Fig. 1 is the value of the bisection search for the
target eigenvalue. It is calculated using the formula a+(b−a)/2 in the bisection
method, where the current interval is [a,b].

In the kernel shown in Fig. 1, there are three kinds of computational parts,
namely: I) the upper part of LDLT − σI = L+ D+ LT

+; II) the lower part of
LDLT − σI = U− D− UT

− ; III) the twist index. This is because the MRRR
algorithm uses a special data format of the target matrix, namely the twisted
factorization of the target tridiagonal matrix T .

We consider that the condensed bisection kernel is represented by the line
〈2〉–〈7〉 for part I) in Fig. 1, since the data dependency of part II) is the same as
that of part I), while part III) is negligible. The kernel of part I can be regarded
as the bisection kernel hereafter.



940 T. Katagiri, C. Vömel, and J.W. Demmel

〈0〉 S = 0; P = 0; NEG1 = 0; NEG2 = 0; NEGCNT = 0;
〈1〉 I) Upper Part
〈2〉 do J = 1, R − 1
〈3〉 T = S − σ
〈4〉 DPLUS = D(J) + T
〈5〉 S = T*LLD(J) / DPLUS
〈6〉 if ( DPLUS .lt. ZERO ) NEG1 = NEG1 + 1
〈7〉 enddo
〈8〉 if (S .eq. NaN) Use a slower version the above loop;
〈9〉 NEGCNT = NEGCNT + NEG1

〈10〉 II) Lower Part
〈11〉 do J = N − 1, R, −1
〈12〉 DMINUS = LLD(J) + P
〈13〉 P = P*D(J) / DMINUS − σ
〈14〉 if ( DMINUS .lt. ZERO ) NEG2 = NEG2 + 1
〈15〉 enddo
〈16〉 if (P .eq. NaN) Use a slower version the above loop;
〈17〉 NEGCNT = NEGCNT + NEG2

〈18〉 III) Twist Index
〈19〉 GAMMA = S + P
〈20〉 if (GAMMA .lt. ZERO) NEGCNT = NEGCNT + 1
〈21〉 return (NEGCNT )

Fig. 1. The whole bisection dernel for the dlarrb routine in LAPACK xSTEGR. The
variable R is a twist index for the twisted factorization of the tridiagonal matrix T .

2.2 The Bisection Kernel

Figure 2 shows the kernel of the bisection method for one target eigenvalue. The
kernel of Fig. 2 cannot be parallelized, since it has a loop-carried flow-dependency
for the variable S.

2.3 The Multisection Kernel

Fig. 3 shows the kernel for the multisection method with ML points for one
target eigenvalue. The values of σ(1 : ML) shown in Fig. 3 are calculated using
σ(i) = a + h · i, for i = 1, 2, ..., ML, where h ≡ (b − a)/(ML + 1) and where the
current interval is [a,b).

The kernel of Fig. 3 can be parallelized for the outer loop of I, since none
of the variables is dependent on I. However, there is a problem; namely, if we
want to take a large vector length for I to reduce the parallel overhead, we
should take a large number of points for multisection, given by the value of ML
in Fig. 3. But the efficiency of searching decreases as ML increases due to the
additional overhead of computing NEG1(I) . Hence, there is a trade-off between
the parallel execution efficiency and the searching efficiency in the multisection
kernel.
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〈0〉 S = 0; NEG1 = 0;
〈1〉 do J = 1, R − 1
〈2〉 T = S − σ
〈3〉 DPLUS = D(J) + T
〈4〉 S = T*LLD(J) / DPLUS
〈5〉 if ( DPLUS .lt. ZERO ) NEG1 = NEG1 + 1
〈6〉 enddo

Fig. 2. The Bisection Kernel

〈0〉 S(1 : ML) = 0; NEG1(1 : ML) = 0;
〈1〉 do I = 1, ML
〈2〉 do J = 1, R − 1
〈3〉 T (I) = S(I) − σ(I)
〈4〉 DPLUS(I) = D(J) + T (I)
〈5〉 S(I) = T (I)*LLD(J) / DPLUS(I)
〈6〉 if ( DPLUS(I) .lt. ZERO ) NEG1(I) = NEG1(I) + 1
〈7〉 enddo; enddo

Fig. 3. The Multisection Kernel

2.4 The MME Kernel

Fig. 4 shows the kernel of MME. The values of σ ( 1 : ML, 1 : EL ) in Fig. 4
are calculated using σ(i, k) = ak + hk · i, for i = 1, 2, ..., ML, where hk ≡
(bk − ak)/(ML + 1), if the current interval is [ak,bk) for the k-th eigenvalue for
k = 1, 2, ..., EL. The loops of K and I in Fig. 4 can be combined.

The MME kernel and the combined-loop MME kernel have the following ad-
vantages over the normal multisection method.

First, by using a long loop length for I, the parallel overhead can be reduced
compared that of the normal multisection method. This is because we can make

〈0〉 S(1 : ML, 1 : EL) = 0; NEG1(1 : ML, 1 : EL) = 0;
〈1〉 do K = 1, EL
〈2〉 do I = 1, ML
〈3〉 do J = 1, R − 1
〈4〉 T (I,K) = S(I, K) − σ(I,K)
〈5〉 DPLUS(I, K) = D(J) + T (I,K)
〈6〉 S(I, K) = T (I,K)*LLD(J) / DPLUS(I, K)
〈7〉 if ( DPLUS(I, K) .lt. ZERO ) NEG1(I, K) = NEG1(I, K) + 1
〈8〉 enddo; enddo; enddo

Fig. 4. The multisection with multiple eigenvalues (MME) kernel
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the length EL times the normal multisection length ML. Hence, the ratio is
EL times greater, which is equal to the number of eigenvalues, than the normal
multisection method.

Second, while we can select a small length for ML, the outer loop-length
can be kept long by setting EL appropriately. This means that the searching
efficiency can be kept high, since it is not necessary to use a long length for ML
to obtain high parallelism.

One drawback of using the MME kernel is that if there is no multiple eigen-
values in the routine of dlarrb, the merit of the MME method will be the same
as that of the normal multisection method.

2.5 Overall Process for the MME Method

Figure 5 shows the overall process for the MME method. Note that the number
of eigenvalues in Fig. 5 cannot be known in advance even when computing all
the eigenvalues for the input matrix. This is because the usage of the bisection
routine strongly depends on the algorithm and the numerical characteristics of
the input matrices. In the case of the MRRR algorithm, the number of eigen-
values is determined by the representation tree which is based on the numerical
characteristics of the input matrix.

Hence, the parameters EL and ML cannot be optimized in advance, rather
a runtime optimization of EL and ML has to be performed.

Figure 6 shows the details for the MME method in the LAPACK dlarrb
routine. There are three computational parts for the eigenvalue computation in
Fig. 6. They are: I) Computation of the left intervals for [aJ:J+EL−1,aJ:J+EL−1
+ δJ:J+EL−1] in 〈3〉–〈9〉; II) Computation of the right intervals for [bJ:J+EL−1
− δJ:J+EL−1,bJ:J+EL−1] in 〈10〉–〈16〉; III) Improvement of the accuracy of the
intervals [ajuc ,bjuc ] in 〈17〉–〈23〉, for juc ∈ [J ,J + EL − 1] for unconverged in-
tervals in the previous two parts of I) and II), in Fig. 6. Where δJ:J+EL−1 are
the previously calculated existence regions of the target eigenvalues previously
calculated.

If the eigenvalues are strongly clustered, the computation for part III in 〈17〉–
〈23〉 will be heavy.

〈1〉 if (#Eigenvalues .gt. 1) then
〈2〉 Call MME routine with EL ≡ #Eigenvalues; ML ≡ an appropriate value;
〈3〉 else
〈4〉 Call normal multisection routine with ML ≡ an appropriate value;
〈5〉 endif

Fig. 5. Overall of MME method
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〈1〉 do J = 1, #Eigenvalues, EL
〈2〉 Make sure that [aj ,bj ] for j-th eigenvalue, where j = J, ..., J + EL − 1;

〈3〉 I) Compute NEGCNTj from L+D+LT
+ = LDLT − aJ:J+EL−1.

〈4〉 while (all intervals are enough small)
〈5〉 Set the points of σ(1 : ML, 1 : EL) in the left intervals of aJ:J+EL−1;
〈6〉 Call the MME kernel with EL and ML;
〈7〉 Fix the interval of aJ:J+EL−1 using returned numbers on σ(1 : ML, 1 : EL)
〈8〉 Check all intervals;
〈9〉 end while

〈10〉 II) Compute NEGCNTj from L+D+LT
+ = LDLT − bJ:J+EL−1.

〈11〉 while (all intervals are enough small)
〈12〉 Set the points of σ(1 : ML, 1 : EL) in the right intervals of bJ:J+EL−1;
〈13〉 Call the MME kernel with EL and ML;
〈14〉 Fix the interval of bJ:J+EL−1 using returned numbers on σ(1 : ML, 1 : EL);
〈15〉 Check all intervals;
〈16〉 end while

〈17〉 III) There are unconverged intervals for juc ∈ [J ,J + EL − 1].
〈18〉 while ((all intervals are enough small) .or. (#iteration .gt. MAXITER))
〈19〉 Set the points of σ(1 : ML, 1 : EL) in the current intervals of [ajuc

, bjuc
];

〈20〉 Call the MME kernel with EL and ML;
〈21〉 Fix the intervals of [ajuc

,bjuc
] using returned numbers on σ(1 : ML, 1 : EL);

〈22〉 Check all intervals;
〈23〉 end while

〈24〉 enddo
〈25〉 if (#Eigenvalues is not divided by EL)
Call the Multisection kernel with ML for the rest eigenvalue computations;

Fig. 6. The details of the MME Method. The details of the dlarrb routine for the MME
method are also shown.

3 The Runtime Optimization Method

3.1 An Overview of the Process

We have already mentioned that runtime optimization is required to optimize the
parameters EL and ML, which are the number of eigenvalues and multisection
points for each target eigenvalue for the MME method, respectively. In this
section we propose a method for runtime optimization.

Figure 7 shows an overview of the runtime optimization. This method has
the following two phases: (1) At install time, the kernel is benchmarked using
the procedure described above for many different values of EL and ML, and
the time per point is determined and used to compute Count(x) (the total time
divided by EL ·ML). Then, the time is listed. The list is used to select the opti-
mal parameters (EL, ML) at runtime. (2) At runtime, the optimal parameters
(EL, ML) are selected, according to the runtime information on the number of
disjoint eigenvalues.
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(1) Install-time (2) Run-time

Best (EL,ML)
Database

Measure the best ML
according to specified EL
by the library developer 
to the MME kernel
using a benchmaring 
matrix. TheBest

(EL,ML) List

The Best 
(EL,ML) List Run-time

information
for the number 
of eigenvalues

Determining
The Best (EL, ML)

Fig. 7. The runtime optimization method for MME

The details are given in the following. At install time, the kernel times were
determined for all values of EL ∈ [1, MAXEL] and ML ∈ [1, MAXML], using
a single test matrix. On a Hitachi SR8000 supercomputer, MAXEL was set to
32, and MAXML to 24, and a random test matrix of size 10,500 (large enough
for accurate timing, while small enough to store in the cache) was used. Even
though this computation only needs to be performed once per architecture, it
can be sped up considerably by “pruning” large portions of the table where the
time per point can be easily predicted to be quite large. On the Hitachi SR8000
supercomputer this was done using the restriction EL · ML ≤ 16 for EL > 1,
where 16 is the value of ML that minimizes the time per point for EL = 1.

Next, still at install time, these timings were used to compute an optimal
strategy (a set of (EL, ML) pairs) for any possible number m of disjoint intervals:
for each m from 1 to MAXEL, the kernel was either run for EL = m and the
optimal value of ML determined, or else m was subdivided into two (or more)
segments m = m1 + m2, and the kernel was run twice (or more), once with
EL = m1 (and the optimal value of ML) and once with EL = m2 (and a
possibly different value of ML). The result of this search process was stored in
a list for use at runtime.

At runtime, at any point during the computation, there was a list of m not-
yet-converged disjoint intervals each containing one or more eigenvalues. The
table that had been constructed was used to rapidly select the optimal values of
(EL, ML) to use. If m > MAXEL, m was broken into segments of size at most
MAXEL.

3.2 Details of the Run-Time Optimization Method

Figure 8 shows the parameter optimization algorithm at install time.
In Fig. 8, there are two parts: I) Brute-force searching for a multisection in

〈1〉–〈2〉; II) Heuristic searching for MME in 〈3〉–〈13〉.
In part II), the ml is searched from 1 to MLE, such that MLE · el ≤ ML∗ to

reduce the searching time on the line 〈4〉 in Fig. 8. This is based on an empirical
fact that the optimal length of the outer loop for the MME kernel is constant
for the SR8000, and the length can be measured in the “pure” multisection case,
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〈1〉 Measure the kernel time for normal multisection, then find the best ml.
Thus, find the best for ml ∈ [1,..,MAXML] with el = 1.
〈2〉 Let the best multisection point ml be ML∗. Set EL(1) = 1 and ML(1) = ML∗.

〈3〉 do el = 2, MAXEL
〈4〉 Find the best ml with the MME kernel with EL = el and ml ∈ [1,...,MLE],
such that (MLE ≤ MAXML) and (MLE · el ≤ ML∗).
〈5〉 if (MLE .eq. 0) then ml = 1 is only measured.
〈6〉 Let the best ml be ML∗

el and the time be Tel.
〈7〉 do coel = 1, el − 1 : Check The Time for Co-problems.
〈8〉 Find the best time of (EL∗

co best, ML∗

co best) using the MME kernel
with EL = el for fixed EL(coel) and ML(coel).
〈9〉 enddo

〈10〉 Let the above best time be Tco best.
〈11〉 if (Tco best < Tel ) EL(el) = EL∗

co best; ML(el) = ML∗

co best;
〈12〉 else EL(el) = el; ML(el) = ML∗

el;
〈13〉 enddo

Fig. 8. The Parameter Optimization Algorithm at Install time

namely the case when EL = 1 on the line 〈1〉. This is a heuristic to reduce the
searching time for ml. We call this heuristic “reduced search for ml.”

The co-problems are solved in 〈7〉–〈9〉 using the table (EL(i), ML(i)),i =
1,..,el, which is the previously optimized table for parameter sets. The kernel is
called twice or more when solving the co-problems. The table for the previously
optimized parameter sets is also used to reduce the solving time for co-problems.
This method thus sorted using a dynamic programming method. We call the
table “the tuned table for co-problems.”

When the heuristics of the reduced search is used for ml and the optimized
table is used for co-problems, the frequency with which the kernel is called
is reduced from (1/2)MAXEL2 · MAXML + (1/2)MAXEL · MAXML to
(1/2)MAXEL2 + C · MAXEL, where C is a constant number. The algorithm
in Fig. 8 is faster than the simple implementation by a factor of approximately
MAXML. In our evaluation, we use MAXML = 24, hence the algorithm in
Fig. 8 is faster by a factor of 24.

4 Performance Evaluation

4.1 Machine Environment

We used the Hitachi SR8000 supercomputer, with 8 PEs per node (corresponding
to “job type E8E”), and the compiler used was the Hitachi OFORT90 version
V01-04-/B with compiler options -O4 and -parallel=4. FLOPS per node is
8 GFLOPS. This machine is installed at the Graduate School of Information
Systems, The University of Electro-communications, Tokyo, Japan. The MME
loops can be easily parallelized by using the Hitachi compiler.
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4.2 Benchmarking Details

Our benchmark included four matrices: Mat#1 with diagonals (-1,2,-1); Mat#2
with uniform random entries in [0, 1]; Mat#3, the Wilkinson matrix W+

n ;
Mat#4 built from 100 “glued“ copies of the Wilkinson matrix W+

21. These matri-
ces have very different eigenvalue distributions. The numbers for calling bisection
routine depends on the matrix. For example, more than 3000 times is called in
the Mat#3.

We used the dimension of n = 2100 for the Hitachi SR8000. We used the
development version of DSTEGR [3] for LAPACK 4.0, which is known as the latest
version 3.1, to compute all the eigenvalues and eigenvectors. It has two modes,
DQDS mode and “bisection” mode. In DQDS mode the dqds algorithm computes
the eigenvalues which are later refined using the bisection/multisection method.
In “bisection” mode, DSTEGR uses only the bisection/multisection method. The
latter mode is more appropriate for distributed memory parallelism.

Internally, we call the following different multisection variants:

– Bisection: The conventional algorithm (EL = ML = 1).
– Basic Multisection: EL = 1 and ML are selected to minimize the runtime

per point.
– Statically Tuned MME: For each matrix, a fixed pair (EL, ML) was chosen

from (1 : 4, 8, 16, 32)× (1, 2, 4, 8, 16, 32) to minimize the runtime. (EL, ML)
was chosen by trying all 7 · 6 = 42 possibilities and choosing the best.

– Run-Time Tuned MME: This is described in Section 3.

4.3 The SR8000 Results

The tuning time in the parameter optimization at install-time for our runtime
tuning method was about 120 seconds for the Hitachi SR8000.

Tables 1 and 2 show that in DQDS mode for the Hitachi SR8000, runtime
tuned MME speeds up up to 6.8x over bisection, 6.3x over basic multisection, and

Table 1. Performance of Statically Tuned MME for the Hitachi SR8000

(a) Total Execution Time for DSTEGR Routine in DQDS mode.
Method / Benchmarking Mat#1 Mat#2 Mat#3 Mat#4

bisection [s.] 0.347 1.83 15.2 8.20
Basic Multisection [s.], Best (ML) 0.323, (8) 1.45, (8) 5.90, (16) 3.30, (16)

Statically Tuned MME [s.], Best (EL,ML) 0.075, (16,2) 1.16, (2,8) 5.34, (2,8) 1.75, (16,1)

(b) Total Execution Time for the DSTEGR Routine in “bisection” mode.
Method / Benchmarking Mat#1 Mat#2 Mat#3 Mat#4

bisection [s.] 3.94 7.11 23.9 17.2
Basic Multisection [s.], Best (ML) 2.11, (16) 3.69, (16) 8.70, (16) 6.19, (16)

Statically tuned MME [s.], Best (EL,ML) 0.51, (16,1) 2.93, (2,8) 7.89, (2,8) 2.75, (16,1)
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Table 2. Performance of Run-Time Tuned MME for the Hitachi SR8000

(a) Total Execution Time for the DSTEGR Routine in DQDS mode.
Method / Benchmarking Mat#1 Mat#2 Mat#3 Mat#4

Run-Time tuned MME [s.] 0.051 0.935 5.44 1.29
Speedup over bisection 6.8x 1.9x 2.7x 6.3x

Speedup over Basic Multisection 6.3x 1.5x 1.08x 2.5x
Speedup over Static Tuning 1.47x 1.2x 0.98x 1.3x

(b) Total Execution Time for DSTEGR Routine in “bisection” mode.
Method / Benchmarking Mat#1 Mat#2 Mat#3 Mat#4

MME with Run-Time Fixing [s.] 0.53 2.08 7.21 2.33
Speedup over bisection 7.4x 3.4x 3.3x 7.3x

Speedup over Basic Multisection 3.9x 1.7x 1.2x 2.6x
Speedup over Static Tuning 0.96x 1.40x 1.09x 1.1x

1.47x over statically tuned MME. In one case it was 2% slower than statically
tuned MME, but in all other cases it was always faster.

In bisection mode, the corresponding maximum speedups are 7.4x, 3.9x, and
1.4x. Again, in just one case the runtime tuned MME was 4% slower than the
statically tune MME, but in all other cases it was always faster.

In Table 2, our run-time method especially can optimize the Mat#1. This is
because, the benchmark is using a random matrix. Improving the efficiency of
optimization is one of future work.

5 Conclusion

In this paper, we proposed a runtime auto-tuning method for the MME kernel
for symmetric tridiagonal eigenproblems.

In the performance evaluation using a Hitachi SR8000 supercomputer we ob-
tained considerable speedup using the runtime method compared to using the
conventional bisection method. In addition, several speedups were obtained rel-
ative to the statically tuned case for the MME kernel.

The efficiency of the method using statically tuning for MME depends on the
eigenvalue distribution for the input matrix. Hence, it is difficult to specify the best
parameter before the routine runs because the input matrix is determined at run-
time. The runtime tuning method can be used to obtain a tuning database, which
is created in install-time. The database archives the auto-tuning according to the
characteristics of input matrix without using manual-tuning. Thus, the runtime
tuning method proposed in this paper is very useful for actual numerical libraries.
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Abstract. Solvers for linear equation systems are commonly used in
many different kinds of real applications, which deal with large matri-
ces. Nevertheless, two key problems appear to limit the use of linear
system solvers to a more extensive range of real applications: comput-
ing power and solution correctness. In a previous work, we proposed a
method that employs high performance computing techniques together
with verified computing techniques in order to eliminate the problems
mentioned above. This paper presents an optimization of a previously
proposed parallel self-verified method for solving dense linear systems
of equations. Basically, improvements are related to the way communi-
cation primitives were employed and to the identification of the points
in the algorithm in which mathematical accuracy is needed to achieve
reliable results.

1 Introduction

Many real problems need numerical methods for their simulation and modeling.
The result of such methods must be of high accuracy to achieve a good sim-
ulation. For a given problem, self-verified methods compute a highly accurate
inclusion of the solution and automatically prove the existence and uniqueness
of a true result within the given enclosure interval [5]. Finding the verified result
often increases dramatically the execution times [8]. The use of these methods
can increase the quality of the result, but also the execution time. It is known
that interval arithmetic is more time consuming than real arithmetic, since the
computation must be performed on two bounding values in each step. The use
of parallel computing is a typical approach to improve the computational power
and thus to solve large problems in reasonable time. The use of clusters plays an
important role in such scenario as one of the most effective manner to improve
the computational power without increasing costs to prohibitive values.

However, in some numerical problems, accuracy is essential. For instance, even
in a simple linear system like presented in [1], the solution achieved with IEEE
double precision arithmetic is completely wrong indicating the need for verified
computation concepts. One solution for this problem can be found in [2], where
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the verified method for solving linear system using the C-XSC library is based
on the enclosure theory described in [9].

There are some other options for achieving verified results. Among them INT-
LAB [4] and other algorithms described in recent papers. The algorithms pro-
posed by Rump and Ogita [8,7] seem to be very promising. However there is no
publicly available implemented version. Therefore we could not compare with
our implementation. C-XSC seems to the authors the best option due to its
exact scalar product, which could make a difference in the result accuracy in
critical problems.

C-XSC [5], C for eXtended Scientific Computation, is a programming tool for
the development of numerical algorithms which provide highly accurate and au-
tomatically verified results. C-XSC is not an extension of the standard language,
but a class library which is written in C++. Therefore, no special compiler is
needed. With its abstract data structures, predefined operators and functions,
C-XSC provides an interface between scientific computing and the programming
language C++. Besides, C-XSC supports the programming of algorithms which
automatically enclose the solution of given mathematical problems in verified
bounds. Such algorithms deliver a precise mathematical statement about the
true solution.

Enclosure methods characteristics can be observed through the analysis of the
Newton-like iteration (Equation 1):

xk+1 = Rb + (I − RA)xk, k = 0, 1, ... (1)

This equation is used to find a zero of f(x) = Ax−b with an arbitrary starting
value x0 and an approximate inverse R ≈ A−1 of A. If there is an index k with
[x]k+1⊂̊[x]k (the ⊂̊ operator denotes that [x]k+1 is included in the interior of
[x]k), then the matrices R and A are regular, and there is a unique solution x of
the system Ax = b with x ∈ [x]k+1. We assume that Ax = b is a dense square
linear system and we do not consider any special structure of the elements of A.

A parallel self-verified linear equation solver proposed in [6] uses as base the
algorithm 1. This algorithm describes the implementation of the enclosure meth-
ods theory explained before.

As shown in Algorithm 1, the result of this method is a vector, where each
element is an interval which contains the correct result. These intervals are of
high accuracy, in the sense that for most problems, when these intervals are
rounded, they differs at most 1 unit in the last place from the exact result.

This paper presents an optimization of the parallel version of this algorithm
presented in [6], which uses technologies as MPI communications functions [10]
and C-XSC library to improve the precision [7]. Two points of optimization
were focused: the parts in which mathematical accuracy is relevant and the
communication cost. Our main contribution is to speed-up the performance of
the previous parallel self-verified linear solver. We also point out the advantages
and drawbacks of self-verified methods usage in clusters of computers.

This paper is organized as follows: next section briefly describes some im-
plementation issues. Section 3 shows the optimization strategies for the parallel
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Algorithm 1. Compute an enclosure for the solution of the square linear system
Ax = b.

1: R ≈ (A)−1 {compute an approximate inverse using LU-Decomposition algorithm}
2: x̃ ≈ R · b {compute the approximation of the solution}
3: [z] ⊇ R(b − Ax̃) {compute enclosure for the residuum (without rounding error)}
4: [C] ⊇ (I − RA) {compute enclosure for the iteration matrix (without rounding

error)}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: while [w] ⊆ int[y] or k > 10
11: if [w] ⊆ int[y] then
12: Σ([A], [b]) ⊆ x̃ + [w]
13: else
14: ”no verification”
15: end if

self-verified method. The analysis of the results obtained through those opti-
mizations is presented in section 4. Finally, conclusions and some future works
are highlighted in the last section.

2 Implementation Issues

We carried out some tests to find the most time-consuming steps of the algo-
rithm. We found out that the steps 1 and 4 consume together more than 90% of
the total processing time. The computation of an approximate inverse matrix of
A (matrix R on step 1) takes more than 50% of the total time, due to the eval-
uation with high accuracy. The computation of the interval matrix [C] (parallel
preconditioning) takes more than 40% of the total time, since matrix multiplica-
tion requires O(n3) execution time, and the other operations are mostly vector
or matrix-vector operations which require at most O(n2).

We assume the coefficient matrix A to be dense, i.e. in a C-XSC program,
we use a square matrix of type rmatrix, to store A and we do not consider any
special structure of the elements of A. Our goal is to make a parallel version of
the C-XSC algorithm that verifies the existence of a solution and computes an
enclosure for the solution of the system Ax = b for a square n×n matrix A with
a better performance as the sequential version.

Our parallel approach involves two slightly different techniques to solve the
main bottlenecks of the original algorithm. First, we used a parallel phases ap-
proach to achieve speedup in the core of the computation bottleneck: the compu-
tation of the inverse matrix. The second technique is a worker/manager approach
to achieve parallel preconditioning.
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The load balancing approach is made using a simple yet effective algorithm
that accomplishes two main constraints. (i) the load balancing must be dis-
tributed, in such a way that each process computes its own workload eliminat-
ing communication costs due to information exchanges; (ii) It also must be fast
in order to avoid long interruptions on the target computation. The algorithm
representing the load balancing strategy for both parallelization is shown in
algorithm 2.

Algorithm 2. Workload distribution algorithm.
1: if pr ≤ (N%P ) then
2: lbi = (N

P
× pr) + (pr)

3: ubi = lb + N
P

+ 1
4: else
5: lbi = (N

P
× pr) + (N%P )

6: ubi = lb + N
P

7: end if

Let N be the dimension of a matrix and P be the number of processes used on
computation. Also, pr represents the identification of a process (starting from 1
to P ), lbi is the lower bound and ubi is the upper bound of the ith process, i.e.,
the first and the last row/column that a process must compute. In this algorithm,
% is the remind of the integer division N

P . With this load balancing approach,
it is clear that processes receive continuous blocks of rows/columns. This choice
was considered the best by the authors, since it simplifies the implementation of
the communication step . However, other load balancing schemes could be used
without loss or gain of performance, once the computational cost to process a
row/column is the same.

Readers interested in a more detailed explanation of the parallel version of
the algorithm should read [6].

3 Optimization Strategies

After the analysis of the original work, two possible optimization points were
detected: the use of the mathematical accuracy primitives and the use of the
communication primitives.

The first optimization was related to the use of high accuracy on the compu-
tation of R (see algorithm 1 line 1). Since R is an approximation of the inverse
matrix of A, which does not necessarily need exact results, it can be computed
without high accuracy. The elimination of high accuracy on the computation of
R does not compromise the results obtained and decreases the overall executing
time (detailed results are presented in section 4).

On the other hand, the data types of the C-XSC library, which allow the
self-verification and were used on the parallel approach, do not fit with the MPI
library data types. In order to solve this problem, the parallel previous version
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used a simple, yet time consuming, solution. It is based on a pack and unpack
step before sending and receiving data. In the current work, we used an interface
for the MPI library that already implements the pack and unpack procedures
in a low level [2]. This improvement makes the data exchange among processes
faster, decreasing the communication cost of the parallel solution.

4 Results

In order to verify the benefits of these optimizations, two different experiments
have been performed. The first test is related to the correctness of the result.
Once we make a mathematical optimization, we need to verify that it did not
change the accuracy of the result. The second experiment was performed to
evaluate the speed-up improvement brought by the proposed optimizations.

The results presented in this section were obtained on the parallel environ-
ment ALiCEnext (Advanced Linux Cluster Engine, next generation) installed
at the University of Wuppertal (Germany). This cluster is composed of 1024 1.8
GHz AMD Opteron processors (64 bit architecture) on 512 nodes connected by
Gigabit Ethernet. ALiCEnext processors employ Linux as operating system and
MPI as communication interface for parallel communication.

Performance analysis of the optimized parallel solver were carried out varying
the order of input matrix A in three different grains: 500 × 500, 1, 000 × 1, 000
and 2, 500 × 2, 500. Matrix A and vector b were generated by two distinct
forms: using the Boothroyd/Dekker formula [3] and random numbers, to evalu-
ate the correctness and the performance of the new implementation respectively.
Boothroyd/Dekker matrices have the following structure:

Aij =
(

n + i − 1
i − 1

)
×

(
n − 1
n − j

)
× n

i+j−1 , ∀i, j = 1..N

b = 1, 2, 3, ..., N .

Figure 1(a) shows the comparison between the old parallel version (without R
optimization) and the new parallel implementation (with R optimization) both
using matrix A as 1, 000 × 1, 000.

Figure 1 shows two graphs about the the performance of the new parallel im-
plementation: (i) figure 1(a) presents a comparison between the results obtained
by the old and the new (with R optimization) parallel implementations both us-
ing as input matrix A size 1,000 x 1,000; (ii) figure 1(b) introduces experiments
varying the system of equations size.

In figure 1(a), it can be seen that the parallel version with optimization
reached lower execution times than the parallel version without optimization.
For dimension 1,000, the execution time with 2 processors is, however, a bit
large: around 350 seconds. Based on this information, we can project that the
execution time for dimension 10,000 would be around 4 days (350 ∗ 103). There-
fore we did not test larger dimensions.
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Fig. 1. Experimental Results

Looking at figure 1(b) it is possible to remark that, using the matrices orders
mentioned above, the proposed solution presents a good scalability. It is also im-
portant to highlight that for the largest input matrix, the speed-up achieved was
around 21 for 28 processors which is a representative result for cluster platforms.

Many executions were tackled using the Boothroyd/Dekker formula with a
matrix 10×10 with different number of processes (1..P ). The tests generated by
the Boothroyd/Dekker formula presented the same accuracy on both versions
(sequential and parallel) and indicate that the parallelization did not modify the
accuracy of the results.

Finally, we only could carry out experiments up to 28 processors due to clus-
ter nodes availability for our experiments. For all experiments, this number of
processors was not enough to achieve the inflexion point in the speed-up curves,
indicating that more processors could be used to improve even more the speed-
ups.

5 Conclusion

An optimized parallel implementation for the self-verified method for solving
dense linear systems of equations was discussed in this paper. The main objective
is to allow the use of this new algorithm in real life situations, which deal with
large matrices. The self-verification provides reliability but also decreases the
performance. Therefore, we optimized an implementation which was parallellized
aiming at a better performance. Two optimizations were carried out: the use of
the mathematical accuracy primitives (replacement of the exact scalar product
in the computation of R) and the use of the communication primitives.

Two different input matrices with three different sizes were used in several
experiments aiming to evaluate the speed-up achieved in this new implemen-
tation. All three granularities increased the performance with significant gain.
The correctness tests also point out a good implementation, where the results
were obtained without any loss of accuracy. Thus, the gains provided by the
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self-verified computation could be kept with a significant decrease in the execu-
tion time through its parallelization. The load balancing strategy seems to be a
good choice according to the results found in all tested input cases.

Our main contribution is to increase the use of self-verified computation
trough its parallelization, once without parallel techniques it becomes the bot-
tleneck of an application. We can notice rather interesting speed-ups for the
self-verified computation, reinforcing the statement related to the good paral-
lelization choices. However, more experiments with a higher amount of processors
and different matrices would be interesting to verify and validate this implemen-
tation to a larger range of input matrices.

Finally, it is the opinion of the authors that the results obtained are promis-
ing and the implementation allowed a quite good understanding of the problem,
leading to new directions for further investigations. Also, other possible opti-
mizations in the use of verified operations must be mathematically investigated
in order to guarantee that no unnecessary time consuming operations are being
executed.
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Abstract. A hybrid, asynchronous, block parallel method to approxi-
mately solve complementarity problems (CPs) in real-time on multicore
CPUs is described. These problems arise from interactive real-time sim-
ulations of systems of constrained, contacting rigid bodies, which are
useful in virtual operator training systems for instance. A graph analy-
sis phase identifies components which are weakly coupled using simple
heuristics. Each component is then solved in parallel using either a block
principal pivot or a projected block Gauss-Seidel method running in sep-
arate threads. Couplings which generate forces between the subsystems
are handled iteratively using a Gauss-Seidel process which communicates
updates between the interacting subsystems asynchronously. Preliminary
results show that this approach delivers good performance while keeping
overhead small.

1 Introduction

Interactive real-time simulation of systems of constrained rigid bodies and parti-
cles is an essential component of several commercially relevant applications, such
as virtual environment heavy machinery operator training systems. Numerical
integration of multibody systems needed for these simulations involves solution
of systems of equations with several hundred variables. The best known strategy
to simulate frictional contacts—ubiquitous in real-life systems—requires solv-
ing mixed linear complementarity problems (MLCP)s as described below. In
the real-time interactive simulation context, solutions of these MLCPs must be
delivered in less than 10ms to keep screen refresh rates above 60 frames per
second. Direct solution methods for MLCP are slow for large systems because
they rely on single pivot operations [3] for which sparsity exploitation is difficult.
For this reason, iterative methods based on pairwise interatcions—which are fast
but much less accurate—have dominated the 3D graphics and interactive games
literature [8] [4]. Parallelization has also been generally overlooked.

The present proposes a parallel hybrid solution method which uses either a
direct or an iterative solver on blocks of strongly coupled equations and Gauss-
Seidel (GS) iterations to approximate the coupling forces between those blocks.
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This scheme is easily implemented on multicore PCs using simple threads and
synchronization. The test application consists of a wheeled vehicle toting a long
tether. Such vehicles are used for various remote operations from de-mining to
underwater inspections. Virtual training systems have proved useful and com-
mercially relevant. The proposed hybrid scheme delivers good performance on
this example.

The rest of the article is organized as follows. Section 2 briefly introduces
the problem being solved in the context of interactive simulations. Section 3
presents the splitting strategy as well as the iterative algorithm which computes
approximate coupling forces between subsystems. Section 4 covers heuristics used
to split a physical system into interacting blocks, and Section 5 describes the
asynchronous execution framework implementing the GS scheme to compute the
approximate coupling forces. Results and conclusions are presented in Section 6
in which a simple system is analyzed to provide preliminary data. The present
report is part of work in progress.

2 Problem Formulation

Consider a general mechanical system with n-dimensional generalized velocity
vector v ∈ IRn. The system has a square, real, positive definite and block diagonal
n × n mass matrix M , with easily computed inverse U = M−1, and is subject
to a variety of constraints which have Jacobian matrix G of size m × n. The
essential computation of a large family of stepping schemes involves the solution
of a mixed linear complementarity problem (MLCP):

Sy + q = w = w(+) − w(−)

0 ≤ y − l ⊥ w(+) ≥ 0, 0 ≤ u − y ⊥ w(−) ≥ 0,
(1)

at each time step. The real, square m×m matrix S has the form S = GUGT . In
addition, q ∈ IRm is a real vector, w(+), w(−) are the real positive and negative
components of the residual vector w ∈ IRm, respectively. The lower and upper
bound vectors l, u ∈ ĪRm, with ĪR = IR + {±∞}, are extended real vectors. The
inequality and orthogonality signs in (1) are understood componentwise so that
a, b ∈ IRm, a ≥ b means ai ≥ bi, i ∈ {1, 2, . . . , m}, a ≤ b means ai ≤ bi, i ∈
{1, 2, . . . , m}, and a ⊥ b means aibi = 0 for all i ∈ {1, 2, . . . , m}, whenever
a, b ≥ 0. This problem of solving (1) is abbreviated as MLCP(S, q, l, u). The
solution of this MLCP is the vector y ∈ IRm, y = SOL(MLCP(S, q, l, u)), which
is unique as long as S is symmetric and positive definite [2]. The solution vector
y produces the constraint force vector GT y from which the updated velocities
and coordinates can be computed directly given a time-integration strategy.

For jointed mechanical systems, Jacobians have the simple block structure

GT =
[
G(1)T

G(2)T
. . . G(nc)T

]
, (2)

where each block row G(i) is of size ni × n, with
∑

i ni = m. The integer nc

is the number of constraints. Each block row G(i) contains only a few non-
zero column blocks, ci(1), ci(2), . . . , ci(pi) where pi is usually 1 or 2, as is the
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case for common joints and contact constraints. In this format, each column
block usually corresponds to a single physical body. This produces the first level
of partitioning of the system where the velocity vector v is decomposed into
blocks v(i), i = 1, 2, . . . , nb, where nb is the number of generalized bodies in the
system, which may or may not have the same dimensionality. Each block here
corresponds to a given physical body.

The connectivity structure at this level of partitioning is a bipartite graph,
where nodes are either physical bodies or constraints. Any common graph traver-
sal algorithm can identify the connected components. Processing these is an
embarrassingly parallel problem.

The solution of MLCP (1) for each connected component can be performed
using, e.g., a block pivot [3] (BP) method, which is equivalent to applying the
Newton-Raphson method on the nonsmooth formulation, mid((y − l)i, (Sy +
q)i, (y − u)i) = 0, where mid(a, b, c) is the midpoint function [6], defined
component-wise as:

mid(a, b, c) = a + c −
√

(a − b)2 +
√

(b − c)2. (3)

This is called a direct solver since it can produce the exact solution with appro-
priate smoothing strategy [6]. Other possibilities include iterative solvers such as
projected Gauss-Seidel (PGS) methods or projected Successive Overrelaxation
(PSOR) [3] methods which are extremely simple to implement and quickly yield
answers of moderate accuracy. The BP, PGS and PSOR can all be warm started
from an approximate solution and they typically decrease the infeasibility at
each stage. Warm starting is not possible for direct pivoting methods such as
the Lemke, Cottle-Dantzig, or Keller algorithms [3]. In addition, direct pivot-
ing methods do not reduce infeasibility monotonically and cannot be stopped
early to yield an approximate solution. Both features are key element for split-
ting methods in which slightly different MLCPs (1) with the same matrix S but
slightly different vectors q, l and u, are solved numerous times.

The BP method without smoothing performs well on average but it can cycle
over a set of candidates, none of which exactly solve the problem, when the
problem is nearly degenerate or infeasible which is common in practice due to
the use of a vertex based definition of contacts, large integration step, and a
posteriori collision detection [5]. Degeneracy problems are not considered further
here.

3 Splitting Strategy and MLCP Iterative Method

To parallelize further, we consider one of the connected components described in
the previous section and assume a partitioning of the bodies into two groups for
example, labeled as 1, 2, having block velocity vectors and block inverse mass
matrix v(i), Uii, i = 1, 2, respectively. Any given constraint Jacobian can then
be split into blocks: G(i) = [G(i)

1 , G
(i)
2 ], where block G

(i)
j acts only on the block

coordinates vj , j = 1, 2. The natural separation of constraints produces three
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groups, namely, those acting only on the first group, those acting only on the
second group, and those acting on both groups of bodies

G =

⎡
⎣
G11 0
0 G22

G31 G32

⎤
⎦ . (4)

After splitting the mass matrix correspondingly, with U = diag(Uii), matrix
S in (1) has the form

S =

⎡
⎣
S11 0 ST

31
0 S22 ST

32
S31 S32 S33

⎤
⎦ , (5)

where S3i = G3iUiiG
T
ii, i = 1, 2, and S33 =

∑2
i=1 G3iUiiG

T
3i. Obviously, if the

constraints in group 3 are chosen to be mass orthogonal to those in groups 1 and
2, there are no off-diagonal terms. Minimizing these coupling terms is likely to
improve the convergence rate and is subject of future work.

To formulate an iterative method for solving this problem, we need a definition
for the infeasibility error e ∈ IRm. Consider a candidate solution vector x and
residual w = Sx + q. For each component i, first check that it is within range,
i.e., li < xi < ui. If so, the residual should vanish so we set ei = wi. If the
bounds are finite and either xi = li or xi = ui, we use ei = min(xi − li, wi) or
ei = min(ui − xi, wi), respectively. If xi is out of bound, we use the midpoint
function ei = max(xi − ui, min(wi, zi − li)).

A projected block GS solution of MLCP(S, q, l, u) is formulated in Algo-
rithm 1.

Algorithm 1. Serial block projected Gauss-Seidel for solving partitioned
MLCP(S, q, l, u).
1: Set ν ← 1, choose τ > 0 and νm > 0
2: Initialize y

(1)
1 , y

(1)
2 , y

(1)
3 .

3: repeat
4: Solve: y

(ν+1)
1 ← SOL(MLCP(S11, q1 + ST

31y
(ν)
3 , l1, u1))

5: Solve: y
(ν+1)
2 ← SOL(MLCP(S22, q2 + ST

32y
(ν)
3 , l2, u2)))

6: Solve: y
(ν+1)
3 ← SOL(MLCP(S33, q3 + S31y

(ν+1)
1 + S32y

(ν+1)
2 , l3, u3))

7: ν ← ν + 1
8: Compute infeasibility e(ν)

9: until ‖e(ν)‖ < τ OR ν > νm

This GS process reduces the infeasibility monotonically for a positive definite
matrix, even in the case of MLCP [3] but the convergence is linear at best and
can be stationary in case the matrix S is degenerate or nearly so. This algorithm
can be parallelized with or without synchronization (see [1] for descriptions of
chaotic asynchronous schemes) by using threads so that solutions to each of the
subsystems are computed in parallel. Overhead can be kept small by only having
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mutex and condition variables to control block reading from and block writing
to the shared data, namely, the kinematic variables in subsystems 1, 2.

4 Heuristics for Splitting of Connected Components

Splitting of connected components into primary groups of bodies and constraints
and secondary groups of constraints should be done so as to minimize the cou-
pling between the primary groups. The theoretical and algorithmic treatment of
this minimization problem merits further investigation. Only a simple heuristic
has been implemented which is now described.

Each body is first labeled with a grouping identifier. It is expected that bodies
with the same grouping index are interacting strongly with each other, at least
when they are collected into the same connected component. This grouping
index also carries a priority so that bodies in grouping g1 are expected to be
more important than those in grouping g2 if g1 < g2.

The heuristic is to collect all connected components belonging to the same
grouping id, g, as well as all bodies and constraints which are connected to bodies
in g, have a grouping id higher than g, and are connected within depth k of a
body with grouping index g. An illustration of this process is found in Fig. 1(b).

Connected components are constructed by performing a breadth first search
in the rigid body system. After sorting the bodies in increasing order of grouping
index, the first untouched body in that list is selected and from it, connected
bodies are found by first listing attached constraints and then listing the bodies
found for each constraint. If one of these bodies has a different grouping index,
breadth first search is re-initiated at that body, going down to depth k. The
bodies found during this search necessarily have a higher grouping index than
current. Once this search terminates at a body with depth k, all the uncounted
constraints attached to this body are added to the secondary partition pool
containing all secondary constraints. This corresponds to the G3i blocks in the
previous section.

When this search terminates, we have a forest of primary partitions and a
secondary partition with all coupling constraints. This secondary partition could
be refined further but that is left for future work.

Consider the example of a tethered vehicle illustrated in Fig. 1. First assign
grouping index one for the vehicle and two for the tether, and set the maximum
depth to two. The partitioner will collect the main vehicle and the first two cable
segments into the first partition. The imported bodies are filled in circles and
octagons in Fig. 1(b). If the tether does not otherwise touch the vehicle or its
wheels, the tether is in a primary partition by itself and the secondary parti-
tion contains a single constraint. If the vehicle rolls over the cable though, the
first primary partition contains the main vehicle, the first two segments of the
tether, and at least two more cable segments near each contact, symmetrically
distributed about the contact location. This is illustrated in Fig. 1(b) where the
end of the cable touches one of the vehicle parts. This introduces two more im-
ported bodies in primary partition 1 illustrated with the gray bodies. This leads
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(a) A still from a simulation of a tethered
vehicle. Vertical white lines indicate nor-
mals at contact points.
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(b) A sample graph and its partitioning.

Fig. 1. An example application involving a tethered vehicle. A still from the simulation
is shown in (a) and a simplified graph analysis is shown in (b).

to four bodies, drawn with octagons instead of circles, which are influenced both
by their primary partition and the forces computed by the secondary partition
which contains the dashed constraints. The rest of the tether is then segmented
and cut into two or more primary partitions, and the secondary partition con-
tains two or more coupling constraints.

5 Asynchronous Execution

The shared variables in the system are the constraint forces applied on the rigid
bodies. Indeed, some of the bodies are listed both in a primary partition (once
only) and in secondary partitions (potentially several times).

When working on any given partition, a solver must first read the current
net forces from the global data, solve for updated forces, and add the updated
contributions back to the global data. To do this efficiently, the rigid body force
data is segmented along the primary partitions. One mutex and one global time
stamp is created for each of these, the stamp being incremented each time the
data is updated by one of the parallel solver. Secondary partitions must acquire
locks for all the primary partitions they are connected with but primary ones
only acquire one lock.

In order to know if a solver should compute a new solution, local time stamps
are kept for all the data sets used in a given partition. Reference counting the
global time stamps allows to know if a data set is coupled to others.

Partitions and associated local data are packaged as a work unit and put in a
priority queue so that partitions with lower iteration count have higher priority.
A thread pool, designed much as in Ref [7], Ch. 3, is started during program
initialization and each of the threads waits after a semaphore on which a thread
manager broadcast when there is fresh data. Threads report upon completion
to the manager via another semaphore by signaling.
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The thread manager first configures all the data for a new solve process, fills
the priority queue with the work units, and broadcast the workers in the thread
pool. Each work thread then picks up a work item from the top of the priority
queue and executes the solve operations on it. When this is done, a check is made
to see whether or not that work unit needs more computations done to it and
it is requeued accordingly. The work thread then picks up another work item
from the top of the queue or goes idling if that is empty. Meanwhile, the thread
manager listens for signals from the work threads and marshals them back to
work as long as processing is not completed.

For each work unit, the program first checks if it is coupled to others and
whether there is fresh data to consider by measuring the difference between
local and global time stamps. If there is fresh data, locks are acquired, data is
cached locally, locks are then released, and computations are performed. When
the results are ready, the global data set is locked while the local data is added to
it. Time stamps are then incremented and all locks are released. Local iteration
count is then increased and the work unit is requeued. If there are no couplings
when a work unit corresponding to a primary partition is processed, the final
integration stage is performed using the available global data.

Work stops when a maximum iteration count is reached though a strategy
based on global error would presumably be more accurate and potentially slower.
The latter is future work.

6 Results and Conclusions

An implementation of Algorithm (1) was realized using Vortex, a commercial
rigid multibody dynamics simulation library not originally designed to han-
dle couplings between partitions (see http://www.cm-labs.com). The reference
platform was Linux and the standard pthreads library. As a preliminary test,
a simple example of a tethered car was constructed. This consists of a simpli-
fied vehicle with a chassis and four wheels, dragging a long cable made of rigid
body sections attached with ball joints. A still of that simulation is shown in
Fig. 1(a). The graphics rendering is minimal here because the main goal was
to test the performance of the splitting scheme but a similar setup is used in a
commercial trainer application for remotely operated tethered vehicles. Such an
application demands hundreds of rigid bodies for the tether simulation because
of the combination of long cable length and tortuous paths in typical scenarios.

The natural partitioning here is to explicitly assign the rigid bodies compos-
ing the vehicle in group 1 and those composing the tether in group 2. Further
partitioning can be realized by segmenting the cable so that each segment con-
tains 10 rigid bodies, say. With this strategy, we can then use a direct BP or
iterative PGS solver on each primary partition, making the overall algorithm
hybrid. Since the main vehicle becomes unstable when using the PGS solver,
the direct solver is always used on that group. Therefore, without splitting, it is
necessary to use a direct solver for the entire system and this gives the reference
baseline for performance.
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Simulations were run on an Athlon 64 X2 Dual Core Processor 3800+ with
512MB secondary cache, 2.0 GHz clock speed, and 2GB of RAM. The vehicle was
set on a circular path so that it would eventually roll over the tether. Simulations
ran for 10000 steps which corresponds to nearly 3 minutes of real time. The
time step was set to h = 1/60 = 0.01667 which produces real-time for refresh
rates of 60 frames per second, with one integration step per frame. For cases
where splitting is used, we performed five (5) coupling iterations based on visual
inspection of the simulation. Global error estimate was not computed and not
used as a stopping criterion for these runs. This is left for future work. When the
iterative PGS was used, the stopping criteria was an absolute local error of less
than 10−3 or an iteration count exceeding 20—parameters selected by trial and
error. The direct solver used here is a BP method [3] with protection against
cycling and restart and the iterative solver is a PGS method. Both are part of
the Vortex toolkits.

Results are collected in Table 1 where the direct solver was used on each
subgroup, and Table 2 where the PGS solver was used for cable segments and
the BP solver for the main vehicle. In both these tables, the first column contains
the number of rigid body segment in the tether of the example illustrated in
Fig. 1(a). The second column is the number of parallel threads. Only cases with
1 or 4 threads were constructed. The third column indicates how many different
groups where used in the simulation. This number is two (2) if we only split
the tether in a group and the vehicle in the other but we also show results
of segmenting the cable into many more groups using segmenting. The next
column is the percentage CPU utilization which goes near 100% on single CPU
and remains less than 160% when both cores are used with four (4) parallel
threads. This is because other sections of the software are not multithreaded.
The fifth column is the average time used for solving the MLCP, isolated from
the other computations and the sixth column is the speedup of the solver time as
compared to the single thread, single group setting. The last two column contain
the total time taken by the simulation for one frame and the speedup, also with
respect to the single group, single thread configuration.

The first striking observation is that splitting alone produces a speedup of a
factor of 10 to 30. This is explained by the fact that we are now only computing
an approximation of the MLCP (1). In other words, time is saved by decreasing
the accuracy of the result. That would not be possible using a direct method
on the full problem for instance. Using four separate threads of execution and
enough groupings to saturate the thread pool, the speedup is up to 40 for small
systems, and 120 for large ones. This speedup is sufficient to make the application
truly interactive, both in speed and stability.

Since using the iterative method on the entire system produces unsatisfactory
results for the vehicle dynamics, the baseline in Table 2 is computed with two
groups, namely, one for the tether and one for the vehicle, both in the same
thread. A speedup of 1.5 is observed on average when using four (4) parallel
threads of execution as opposed to just one. This is close to what one would
expect since other components of the software take much time.
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Table 1. Timing results using a direct solver for each group. The baseline refers to a
single thread simulation with a simple group containing all bodies and constraints.

Length Threads Groups % CPU Solver Time Solver Speedup Total Time Speedup

60

1 1 99 98.3 98.9 1.0 1.0
1 2 99 7.8 8.2 12.6 12.1
1 7 100 6.7 7.0 14.7 14.0
4 7 137 2.1 2.3 46.2 42.4

80

1 1 99 67.7 68.2 1.0 1.0
1 2 100 6.8 7.1 9.9 9.6
1 9 100 5.7 6.0 11.9 11.3
4 9 147 2.9 3.2 23.4 21.4

100

1 1 99 186.9 187.3 1.0 1.0
1 2 99 7.6 8.0 24.6 23.4
1 11 99 8.7 9.1 21.5 20.6
4 11 157 6.9 7.4 26.9 25.3

120

1 1 99 393.2 393.8 1.0 1.0
1 2 99 11.7 12.2 33.7 32.2
1 13 99 11.7 12.2 33.7 32.2
4 13 151 3.2 4.7 121.3 83.2

140
1 1 97 513.9 514.5 1.0 1.0
1 15 100 11.2 11.8 46.1 43.8
4 15 152 3.8 4.3 134.7 120.5

Table 2. Timing results using an iterative solver for each group. The baseline here
refers to a single thread simulation with two groups, the cable being processed with
the PGS and the vehicle with BP solver respectively.

Length Threads Groups % CPU Solver Time Solver Speedup Total Time Speedup

60
1 2 99 5.6 5.8 1.0 1.0
4 7 149 3.5 3.7 1.6 1.5

80
1 2 100 7.8 8.2 1.0 1.0
4 9 158 5.2 5.5 1.5 1.5

100
1 2 99 7.9 8.3 1.0 1.0
4 11 160 5.7 6.2 1.4 1.3

120
1 2 99 9.3 9.8 1.0 1.0
4 13 158 5.2 5.6 1.8 1.7

140
1 2 100 10.6 11.0 1.0 1.0
4 15 163 8.7 9.3 1.2 1.2

The conclusion we draw from the data is that combining problem splitting
and a direct solver is attractive in comparison to the far less accurate GS method
which, unsurprisingly, does not benefit significantly from the parallelization. Fur-
ther work is necessary to assess the error margin of this strategy and is work
in progress. Also part of future work is the investigation of more sophisticated
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partitioning schemes based on spectral analysis as well as conjugate gradient-
type methods for computing inter-partition couplings.
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Abstract. PyTrilinos is a collection of Python modules targeting se-
rial and parallel sparse linear algebra, direct and iterative linear solution
techniques, domain decomposition and multilevel preconditioners, non-
linear solvers and continuation algorithms. Also included are a variety
of related utility functions and classes, including distributed I/O, col-
oring algorithms and matrix generation. PyTrilinos vector objects are
integrated with the popular NumPy module, gathering together a va-
riety of high-level distributed computing operations with serial vector
operations.

PyTrilinos uses a hybrid development approach, with a front-end in
Python, and a back-end, computational engine in compiled libraries. As
such, PyTrilinos makes it easy to take advantage of both the flexibility
and ease of use of Python, and the efficiency of the underlying C++, C
and FORTRAN numerical kernels. The presented numerical results show
that, for many important problem classes, the overhead required by the
Python interpreter is negligible.

1 Introduction

The choice of the programming language for the development of large-scale,
high-performance numerical algorithms is often a thorny issue. It is difficult for a
single programming language to simultaneously support ease-of-use, rapid devel-
opment, and optimized executables. Indeed, the goals of efficiency and flexibility
often conflict. The key observation to approaching this problem is that the time-
critical portion of code requiring a compiled language is typically a small set of
self-contained functions or classes. Therefore, one can adopt an interpreted (and
possibly interactive) language, without a big performance degradation, provided
there is a robust interface between the interpreted and compiled code.

This article describes a collection of numerical linear algebra and solver li-
braries, called PyTrilinos, built on top of the Trilinos [3] project. The main
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goal of PyTrilinos is to port to a scripting language most of the Trilinos ca-
pabilities, for faster development of novel numerical algorithms.

Among the available scripting languages, we decided to adopt Python. Python
is an interpreted, interactive, object-oriented programming language, which com-
bines remarkable power with very clean syntax (it is often observed that well-
written Python code reads like pseudo code). Perhaps most importantly, it can
be easily extended by using a variety of open source tools such as SWIG [1],
f2py or pyfort to create wrappers to modules written in C, C++ or FORTRAN
for all performance critical tasks.

PyTrilinos adds significant power to the interactive Python session by pro-
viding high-level commands and classes for the creation and usage of serial
and distributed, dense and sparse linear algebra objects. Using PyTrilinos,
an interactive Python session becomes a powerful data-processing and system-
prototyping environment that can be used to test, validate, use and extend
serial and parallel numerical algorithms. In our opinion, Python naturally com-
plements languages like C, C++ and FORTRAN as opposed to competing with
them. Similarly, PyTrilinos complements Trilinos by offering interactive and
rapid development.

This paper is organized as follows. Section 2 reports more details on the choice
of Python and the interface generator tool, SWIG [1]. Section 3 gives an overview
of the structure of PyTrilinos, which closely reflects the structure of the Trili-
nos framework. The organization of PyTrilinos is briefly outlined in Section 4,
while Section 5 describes the strategies adopted in parallel environments. Com-
parisons with MATLAB and Trilinos are reported in Section 6. Finally, Section 7
draws the conclusions.

2 Why Python and SWIG

Python has emerged as an excellent choice for scientific computing because of its
simple syntax, ease of use, object-oriented support and elegant multi-dimensional
array arithmetic. Its interpreted evaluation allows it to serve as both the devel-
opment language and the command line environment in which to explore data.
Python also excels as a “glue” language between a large and diverse collection
of software packages—a common need in the scientific arena.

The Simple Wrapper and Interface Generator (SWIG) [1] is a utility that facil-
itates access to C and C++ code from Python. SWIG will automatically generate
complete Python interfaces (and other languages) for existing C and C++ code.
It also supports multiple inheritance and flexible extensions of the generated
Python interfaces. Using these features, we can construct Python classes that
derive from two or more disjoint classes and we can provide custom methods in
the Python interface that were not part of the original C++ interface.

Python combines broad capabilities with very clean syntax. It has modules,
namespaces, classes, exceptions, high-level dynamic data types, automatic mem-
ory management that frees the user from most hassles of memory allocation, and
much more. Python also has some features that make it possible to write large
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programs, even though it lacks most forms of compile-time checking: a program
can be constructed out of modules, each of which defines its own namespace.
Exception handling makes it possible to catch errors where required without
cluttering the code with error checking.

Python’s development cycle is typically much shorter than that of traditional
tools. In Python, there are no compile or link steps—Python programs simply
import modules at runtime and use the objects they contain. Because of this,
Python programs run immediately after changes are made. Python integration
tools make it usable in hybrid, multi-component applications. As a consequence,
systems can simultaneously utilize the strengths of Python for rapid develop-
ment, and of traditional languages such as C for efficient execution. This flexi-
bility is crucial in realistic development environments.

3 Multilevel Organization of PyTrilinos

PyTrilinos is designed as a modular multilevel framework, and it takes advan-
tage of several programming languages at different levels. The key component is
Trilinos [3], a set of numerical solver packages in active development at Sandia
National Laboratories that allows high-performance scalable linear algebra op-
erations for large systems of equations. The source code of the current Trilinos
public release accounts for about 300,000 code lines, divided in about 67,000
code lines for distributed linear algebra objects and utilities, 20,000 code lines
for direct solvers and interfaces to third-party direct solvers, 128,000 code lines
for multilevel preconditioners, and 76,000 code lines for other algebraic precon-
ditioners and Krylov accelerators. This count does not include BLAS, LAPACK,
MPI, and several other libraries used by Trilinos. This explains why a “pure”
Python approach is of no interest; instead, we generate interfaces between the
language in which most of Trilinos packages are written, C++, and Python.

Although C++/Python interfaces can be generated by hand, it is more con-
venient to adopt code generators to automate the process. We have adopted
SWIG, the Simplified Wrapper and Interface Generator, which is a preproces-
sor that turns ANSI C/C++ declarations into scripting language interfaces, and
produces a fully working Python extension module.

It is important to note that PyTrilinos is well-connected to other scientific
projects developed within the Python community. Indeed, PyTrilinos vectors
inherit from the NumPy vector class. NumPy is a well-established Python mod-
ule to handle multi-dimensional arrays including vectors and matrices. A large
number of scientific packages and tools have been written in or wrapped for
Python that utilize NumPy for representing fundamental linear algebra objects.
By integrating with NumPy, PyTrilinos also integrates with this sizeable col-
lection of packages. It also adopts Distutils, a Python module with utilities
aimed at the portable distribution of both pure Python modules and compiled
extension modules. Distutils has been a part of the standard Python distribution
since Python version 2.2.



PyTrilinos: High-Performance Distributed-Memory Solvers for Python 969

4 PyTrilinos Organization

PyTrilinos reflects the Trilinos organization by presenting a series of modules,
each of which wraps a given Trilinos package, where a package is an integral unit
usually developed by a small team of experts in a particular area. Trilinos pack-
ages that support namespaces have a Python submodule for each namespace.
Algorithmic capabilities are defined within independent packages; packages can
easily interoperate since generic adaptors are available (in the form of pure vir-
tual classes) to define distributed vectors and matrices. The modules currently
included are briefly described below.

The first and most important PyTrilinos module is Epetra [2], a collection
of concrete classes to support the construction and use of vectors, sparse dis-
tributed graphs, and dense and distributed sparse matrices. It provides serial,
parallel and distributed memory linear algebra objects. Epetra supports double-
precision floating point data only, and uses BLAS and LAPACK where possible,
and as a result has good performance characteristics. All the other PyTrilinos

modules depend on Epetra.
EpetraExt offers a variety of extension capabilities to the Epetra package,
such as input/output and coloring algorithms. The I/O capabilities make it pos-
sible to read and write generic Epetra objects (like maps, matrices and vectors)
or import and export data from and to other formats, such as MATLAB, the
Harwell/Boeing or Matrix Market format, therefore accessing a large variety of
well-recognized test cases for dense and sparse linear algebra.
Galeri allows the creation of several matrices, like the MATLAB’s gallery
function, and it can be useful for examples and testing.
Amesos [4] contains a set of clear and consistent interfaces to the following third-
party serial and parallel sparse direct solvers: UMFPACK, PARDISO, TAUCS,
SuperLU and SuperLU DIST, DSCPACK, MUMPS, and ScaLAPACK. As such,
PyTrilinos makes it possible to access state-of-the-art direct solver algorithms
developed by groups of specialists, and written in different languages (C, FOR-
TRAN77, FORTRAN90), in both serial and parallel environments. By using
Amesos, more than 350,000 code lines (without considering BLAS, LAPACK,
and ScaLAPACK) can be easily accessed from any code based on Trilinos (and
therefore PyTrilinos).
AztecOO [7] provides object-oriented access to preconditioned Krylov acceler-
ators, like CG, GMRES and several others, based on the popular Aztec library.
One-level domain decomposition preconditioners based on incomplete factoriza-
tions are available.
IFPACK [5] contains object-oriented algebraic preconditioners, compatible with
Epetra andAztecOO. It supports constructionanduse ofparallel distributedmem-
ory preconditioners such as overlapping Schwarz domain decomposition with sev-
eral local solvers. IFPACK can take advantage of SPARSKIT, a widely used soft-
ware package.
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ML [6] contains a set of multilevel preconditioners based on aggregation proce-
dures for serial and vector problems compatible with Epetra and AztecOO. ML
can use the METIS and ParMETIS libraries to create the aggregates.
NOX is a collection of nonlinear solver algorithms. NOX is written at a high
level with low level details such as data storage and residual computations left to
the user. This is facilitated by interface base classes which users can inherit from
and define concrete methods for residual fills, Jacobian matrix computation, etc.
NOX also provides some concrete classes which interface to Epetra, LAPACK,
PETSc and others.
LOCA is the library of continuation algorithms. It is based on NOX and provides
stepping algorithms for one or more nonlinear problem parameters.
New Package is a parallel “Hello World” code whose primary function is to
serve as a template for Trilinos developers for how to establish package interop-
erability and apply standard utilities such as auto-tooling and automatic docu-
mentation to their own packages. For the purposes of PyTrilinos, it provides
an example of how to wrap a Trilinos package.

5 Serial and Parallel Environments

Although testing and development of high-performance algorithms can be done
in serial environments, parallel environments still constitute the most important
field of application for most Trilinos algorithms. However, Python itself does
not provide any parallel support. Because of this, several projects have been
developed independently to fill the gap between Python and MPI. All of these
projects allow the use of Python through the interactive prompt, but additional
overhead is introduced. Also, none of these projects define a well-recognized
standard, since they are still under active development.

The PyTrilinos approach is somewhat complementary to the efforts of
these projects. We decided to use a standard, out-of-the-box, Python inter-
preter, then wrap only the very basics of MPI: MPI Init(), MPI Finalize(), and
MPI COMM WORLD. By wrapping these three objects, we can define an MPI-
based Epetra communicator (derived from the pure virtual class Epetra Comm
class), on which all wrapped Trilinos packages are already based. This reflects the
philosophy of all the considered Trilinos packages, that have no explicit depen-
dency on MPI communicators, and accept the pure virtual class Epetra Comm
instead.

The major disadvantage of our approach is that Python cannot be run in-
teractively if more than one processor is used. Although all the most important
MPI calls are available through Epetra.Comm objects (for example, the rank
of a process is returned by method comm.MyPID() and the number of processes
involved in the computation by method comm.NumProc()), not all the functions
specified by the MPI forum are readily available through this object. For exam-
ple, at the moment there are no point-to-point communications, or non-blocking
functions (though they could be easily added in the future).
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In our opinion, these are only minor drawbacks, and the list of advantages
is much longer. First, since all calls are handled by Epetra, no major overhead
occurs, other than that of parsing a Python instruction. Second, all PyTrilinos

modules that require direct MPI calls can dynamically cast the Epetra.Comm
object, retrieve the MPI communicator object, then use direct C/C++ MPI
calls. As such, the entire set of MPI functions is available to developers with
no additional overhead. Third, a standard Python interpreter is used. Finally,
serial and parallel scripts can be identical, and PyTrilinos scripts can be run
in parallel from the shell in the typical way.

6 Numerical Results

We now present some numerical results that compare the CPU time required by
PyTrilinos and MATLAB 7.0 (R14) to create a serial sparse matrix. The test
creates a sparse diagonal matrix, setting one element at a time. The MATLAB
code reads:

A = spalloc(n, n, n);
for i=1:n
A(i,i) = 1;

end

while the PyTrilinos code contains the instructions:

A = Epetra.CrsMatrix(Epetra.Copy, Map, 1)
for i in xrange(n):
A.InsertGlobalValues(i, [1.0], [i])

A.FillComplete()

Clearly, other techniques exist to create in MATLAB and in PyTrilinos sparse
diagonal matrices. However, the presented example is representative of several
real applications, which often have the need of setting the elements of a matrix
one (or a few) at a time. Numerical results for this test case are reported in
Table 1, left. Even for mid-sized sparse matrices, PyTrilinos is much faster
than MATLAB’s built-in sparse matrix capabilities. Table 1, right, reports the
CPU required for a matrix-vector product. The sparse matrices arise from a 5-pt
discretization of a Laplacian on a 2D Cartesian grid (as produced in MATLAB
by the command gallery(’poisson’, n)). Note that PyTrilinos is up to
50% faster than MATLAB for this very important computational kernel.

Since PyTrilinos is intended largely for sparse matrices, these results con-
firm the achievement of project goals compared to MATLAB, especially because
the set of algorithms available in PyTrilinos to handle and solve sparse linear
systems is superior to that available in MATLAB.

We now report numerical comparisong for a matrix-vector product performed
in PyTrilinos and in Trilinos, using the Epetra package. The results are given
in Figure 1. Experiments were conducted on a 16-node Linux/GCC/LAM-MPI
cluster where each node has a single AMD Athlon (Barton 2600) processor and
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Table 1. On the left, CPU time (in seconds) required by MATLAB and PyTrilinos

to set the elements of a sparse diagonal matrix of size n. On the right, CPU time
(in seconds) required by MATLAB and PyTrilinos to perform 100 matrix-vector
products. The sparse matrices, of size n × n, correspond to a 5-pt discretization of a
2D Laplacian on a rectangular Cartesian grid.

n MATLAB PyTrilinos

1,000 0.00397 0.0059
10,000 0.449 0.060
50,000 11.05 0.313

100,000 50.98 0.603

n MATLAB PyTrilinos

50 0.02 0.0053
100 0.110 0.0288
500 3.130 1.782

1,000 12.720 7.150

Fig. 1. Wall-clock time (in seconds) on 16-node Linux/GCC cluster. The bars report
the time required by Trilinos (scale on the left), while the line reports the ratio between
the time required by PyTrilinos and the time required by Trilinos (scale on the right).

the cluster has a dedicated Fast Ethernet switch for inter-node communication.
The timing results show that there is essentially no difference in timing results
for either version, and that parallel scalability is excellent, as it should be for
this type of problem.

7 Conclusions

In this paper we have presented an overview of the PyTrilinos project, an
effort to facilitate the design, integration and ongoing support of Python access
to a large collection of mathematical software libraries. PyTrilinos provides a
simple but powerful rapid development environment, along with the integration
tools needed to apply it in realistic environments. In our opinion, the most
significant impact of PyTrilinos is in the following areas:

– Rapid Prototyping. Because Python is a simple language, coding is much
faster than in other languages. For example, its dynamic typing, built-in
containers, and garbage collection eliminate much of the manual bookkeeping
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code typically required in languages like C or C++. As most bookkeeping
code is missing, Python programs are easier to understand and more closely
reflect the actual problem they’re intended to address. Often, well-written
Python code looks like pseudo code, and as such it is easier to write, read,
and maintain.

– Brevity. Python codes can be short and concise. Since things like type
declaration, memory management, and common data structure implementa-
tions are absent, Python programs are typically a fraction of their C or C++
equivalents. Brevity is also promoted by the object-oriented design of both
PyTrilinos and Trilinos itself. Python scripts are short, generally with few
jump statements, and therefore have good software metrics in terms of code
coverage.

– Modularity and Reusability. Python allows the code to be organized in
reusable, self-contained modules. This also reflects the natural structure of
Trilinos itself. Since Python supports both procedural and object-oriented
design, users can adopt their preferred way of writing code.

– Explorative Computation. Since Python is an interpreted and interactive
scripting language, the user can undertake computations in an explorative
and dynamic manner. Intermediate results can be examined and taken into
account before the next computational step, without the compile-link-run
cycle typical of C or C++.

– Integration. Python was designed to be a “glue” language and PyTrili-

nos relies on the ability to mix components written in different languages.
Python lends itself to experimental, interactive program development, and
encourages developing systems incrementally by testing components in iso-
lation and putting them together later. By themselves, neither C nor Python
is adequate to address typical development bottlenecks; together, they can
do much more. The model we are using splits the work effort into front-
end components that can benefit from Python’s easy-of-use and back-end
modules that require the efficiency of compiled languages like C, C++, or
FORTRAN.

– Software Quality. Software quality is of vital importance in the develop-
ment of numerical libraries. If the quality of the software used to produce a
new computation is questionable, then the result must be treated with cau-
tion as well. If, however, the quality of the software is high, it can reliably
be made available to other research groups.

Producing high quality software for state-of-the-art algorithms is a chal-
lenging goal. Therefore, the production of high quality software requires a
comprehensive set of testing programs. A way to do that without influenc-
ing the rapid development of prototype code, is to write tests in Python.
By helping to detect defects, PyTrilinos can become an important testing
tool for Trilinos itself. (Clearly, PyTrilinos tests require a bug-free inter-
face between Trilinos and PyTrilinos.) Using PyTrilinos in the Trilinos
test harness, one can experiment with the code to detect and manage dy-
namic errors, while static errors (like argument checking) must be detected
by other types of testing.
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– Stability. The only Python module on which PyTrilinos depends is
NumPy, for both serial and parallel applications. Since NumPy is a well-
supported and stable module, users can develop their applications based on
PyTrilinos with no need to change or update them in the near future.

– Data Input. All scientific applications require data to be passed into the
code. Typically, this data is read from one or more files and often the input
logic becomes extensive in order to make the code more flexible. In other
words, the scientific code developers often find themselves implementing a
rudimentary scripting language to control their application. We have found
that applications developed in Python avoid this distraction from more sci-
entific work because the Python scripts themselves become high-level “input
files,” complete with variable definitions, looping capabilities and every other
Python feature.

Of course, Python (and by extension PyTrilinos) is not the perfect lan-
guage or environment for all problems. The most important problems we have
encountered are:

– Portability. PyTrilinos is developed concurrently on both Linux and Mac
OS X, and it should port successfully to most other platforms where Trilinos,
Python, NumPy and SWIG are available. However, configuring Trilinos, and
thus PyTrilinos, for a new platform can be a non-trivial exercise.

– Shared Libraries on Massively Parallel Computers. Another problem
is related to the shared library approach, the easiest way of integrating third-
party libraries in Python. Most massively parallel computers do not support
shared libraries, making Python scripts unusable for very large scale com-
putations.

– Lack of Compile-time Checks. In Python all checks must be performed at
run-time. Furthermore, Python does not support strong typing of variables,
so user mistakes related to incorrect variable types can be a challenge to
find and correct, where these types of mistakes would be caught quickly by
a strongly-typed language and compiling system such as C++ and Java.

– Performance Considerations. By using a Python wrapper, a perfor-
mance penalty is introduced due to decoding of Python code, the execution
of wrapped code, and returning the results in a Python-compliant format.
These tasks may require thousands of CPU cycles, therefore it is important
to recognize this situation when it occurs. The performance penalty is small
if the C/C++ function does a lot of work. Therefore, for rarely called func-
tions, this penalty is negligible. All performance critical kernels should be
written in C, C++, or Fortran, and everything else can be in Python.

– Management of C/C++ Arrays. Although SWIG makes it easy to wrap
Python’s lists as C and C++ arrays (and vice-versa), this process still re-
quires the programmer to define wrappers in the interface file, that converts
the array into a list, or a list into an array. Without an explicit wrapper, the
proper handling of arrays can result in non-intuitive code, or memory leaks.

The most important feature of Python is its powerful but simple program-
ming environment designed for development speed and for situations where the
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complexity of compiled languages can be a liability. Of course, Python enthusi-
asts will point out several other strengths of the language; our aim was to show
that Python can be successfully used to develop and access state-of-the-art nu-
merical solver algorithms, in both serial and parallel environments.

We believe that PyTrilinos is a unique effort. For the first time a large num-
ber of high-performance algorithms for distributed sparse linear algebra is easily
available from a scripting language. None of the previously reported projects for
scientific computing with Python handles sparse and distributed matrices, or
the diversity of solver algorithms. We hope that PyTrilinos can help to make
the development cycle of high-performance numerical algorithms more efficient
and productive.
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Abstract. We present the Amesos project, which aims to define a set
of general, flexible, consistent, reusable and efficient interfaces to direct
solution software libraries for systems of linear equations on both serial
and distributed memory architectures. Amesos is composed of a collec-
tion of pure virtual classes, as well as several concrete implementations
in the C++ language. These classes allow access to the linear system
matrix and vector elements and their distribution, and control the so-
lution of the linear system. We report numerical results that show that
the overhead induced by the object-oriented design is negligible under
typical conditions of usage. We include examples of applications, and we
comment on the advantages and limitations of the approach.

1 Introduction

This paper describes the design and the implementation of interfaces to serial
and parallel direct solution libraries for linear systems of type

Ax = b, (1)

where A ∈ R
n×n is a real and sparse square matrix, and x, b ∈ R

n are the
solution and the right-hand side vectors, respectively.

Generally speaking, a direct solution algorithm for (1) is any technique that
computes three matrices, L, D and U , such that P AQ = L D U , where P and
Q are permutation matrices and the linear systems with matrices L, D and U
are easy to solve. The process of computing these three matrices is called fac-
torization. Generally, L is a lower triangular matrix, U is an upper triangular
matrix, D is a diagonal matrix (or possibly the identity matrix), and the algo-
rithm adopted for their computation is some variant of the Gaussian elimination
method.
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The point of view of this paper is the one of application developers, inter-
ested in using direct solver libraries for a specific problem. As such, we will not
consider the development of direct solvers; instead, we suppose that software
libraries offering algorithms for the direct solution of (1) are already available.
The objective is interfacing one or more of these libraries with the application
code of interest. This usually involves the following steps. First, a library is cho-
sen because of its robustness, performances in terms of CPU time and memory,
documentation, usage, availability. Then, an interface between the application
code and the library is written, and this may require storing the linear system
matrix A using the storage format required by the library. Finally, the calling
sequence is hard-wired in the final application code. The outlined process is typ-
ically repeated every time a new application is developed, and every time a new
solver is under consideration.

Note that, for both serial and distributed sparse solvers, no “gold standard”
exists. Therefore, application developers aiming to solve (1) generally have to
look for a suitable library that meets their needs. The choice is affected by several
criteria, like the ease of use, availability, quality of documentation and support,
and, of course, the set of capabilities, the solution time, and the memory usage.
The relative importance of these aspects is usually subjective. For relatively
simple problems, the performance is usually the key point, followed by mem-
ory usage. For complicated problems, and especially in industrial applications,
reliability is of paramount importance.

In our opinion, writing a custom interface between the selected library and the
application is sub-optimal for both application and library developers because
it:

1. Offers partial coverage. Writing a custom-made interface means that only
the targeted library will be used. This is inconvenient because of the already
mentioned difficulty to choose a-priori the best library for a given applica-
tion. In some cases, a theoretical analysis of the problem at hand can suggest
the right algorithm. Alternatively, one can consider numerical comparisons
on test matrices available in the literature. Often, however, one has to vali-
date a given library on the application, architecture, and data set of interest,
and this can be done only if the interface is already available;

2. Produces maintenance problems. Including the interfaces within the
application code requires the application developers to manipulate the ma-
trix format, the memory management, and the calling conventions, that can
vary from one library to the following. Although not necessary difficult, these
activities are usually time-consuming;

3. Delays the usage of new libraries. Large application codes usually have
a long life. The sheer size of the codes and a natural reluctance to change
successful projects discourage any effort of rewriting unless absolutely nec-
essary. Since a new library (or a new version of a given library) may require
a new matrix format or distribution, or new calling conventions, applica-
tion developers may simply decide to continue using the interface already
developed.
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In this paper, we present a software project, called Amesos which aims to
address these problems by using object-oriented (OO) design and programming.
Amesos is composed of a set of clean, consistent and easy-to-use interfaces
between the application and the direct solver libraries. Each interface takes care
of dealing with the direct solver library, in a manner that is transparent to the
application developers, and automatically manages matrix formats, data layout,
and calling conventions.

The paper is organized as follows. Section 2 describes the requirements and
the design of the Amesos project. The basic classes are outlined in Section 3, and
the list of supported solvers is given in Section 4. Section 5 reports an example
of usage and some numerical results that quantify the overhead required by the
generality of the approach. Finally, Section 6 outlines the conclusions.

2 Project Design

The Amesos design is based on the following requirements:

1. Simplicity of usage. Solving linear system (1) in a language like MATLAB
is very easy, i.e. one just writes x = A \ b. It should not be much more
difficult in a non-MATLAB code;

2. Flexibility. More than one algorithm/library must be available, for both
serial and parallel architectures;

3. Efficiency. The overhead due to the framework must be minimal.

The basic ideas of this design are indeed quite old, and can be traced back
to almost 30 years ago [8,11]. More recently, articles [10,6] discussed the usage
of abstract interfaces and OO design for the direct solution of sparse linear sys-
tems. We extend these ideas by abstracting the concepts to a higher level, and
making the interfaces independent of the supported libraries. The interfaces are
presented and implemented as a set of C++ classes using several well-known de-
sign patterns. C++ supports object-oriented programming, and it is relatively
easy to interface Fortran 77, Fortran 90 and C libraries with C++ code. The
C++ language supports abstraction through classes, inheritance and polymor-
phism. For application developers, abstraction is important because it brings
simplicity, by allowing components with a minimal interface. It also ensures
flexibility because it decouples the different algorithmic phases from the data
structures. Finally, abstraction allows extensibility in the sense that new (yet to
be developed) libraries can be easily added, at almost no cost to the application
developer. Another candidate language could have been Fortran 90, but it does
not have inheritance and polymorphism.

Regarding the parallel computing mode, we consider parallel architectures
with distributed memory, and we suppose that the message passing interface
MPI is adopted. This approach is the de-facto standard in scientific computing.
As a result, the presented design can be easily interfaced with the aforementioned
projects.
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3 Basic Classes

The key point of our design is to manage all direct solver libraries by a workflow
structured as follows:

1. Definition of the sparsity pattern of the linear system matrix;
2. Computation of the symbolic factorization, which includes preordering and

analysis. The symbolic factorization refers to all operations that can be per-
formed by accessing the matrix structure only (without touching the values
of the matrix entries);

3. Definition of the values of the linear system matrix;
4. Computation of the numeric factorization, that is, the computation of the

entries of the factored terms;
5. Definition of the right-hand side b;
6. Solution of the linear system, that is, computation of x.

Steps 1, 3 and 5 are application-dependent and will not be discussed here; in-
stead, our aim is to standardized steps 2, 4 and 6 by adding an intermediate
layer between the application and the direct solver libraries. The design dis-
cussed below uses several common design patterns [9]. The first is the Builder
Pattern, by which we define an abstract class whose methods are steps 2, 4 and
6. Because each of these steps could in principle be replaced with an alternate
algorithm, our design also represents the Strategy Pattern. Finally, we use the
Factory Pattern as a means of selecting a specific concrete solver instance by
use of a string argument.

Presently we introduce a set of abstract classes, which will be used to define
interfaces to the data layout of distributed objects, vectors, matrices, linear
system, and the solver. The design is reported here as a set of C++ classes, but
the concepts are more general and the discussion is largely language-independent.

Our design is based on a set of C++ pure virtual classes, which will be used
to define interfaces to the data layout of distributed objects, vectors, matrices,
linear system, and the solver. These classes are: a Map class that specifies the
layout of matrix rows; a Vector class that defines distributed vectors; a Matrix
class which offers a standard calling sequence to access matrix elements. We
suppose that each matrix row is assigned to exactly one processor, and it is easy
to access all nonzero elements of any locally owned row by calling a GetRow()
method which returns the nonzero indices and values for the specified (local)
row1; a LinearProblem class which contains the linear system matrix, the solu-
tion and the right-hand side vectors; a Solver class that manages the underlying
solver library.

The pure virtual class Solver deserves more details. This class contains the
following methods:

– void SetLinearProblem() sets the linear problem to solve;

1 A row-based approach is adopted or supported by most parallel linear algebra li-
braries, like PETSc, AztecOO, Epetra and HYPRE.
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– void SetParameters(List) specifies all the parameters for the solver by
using a generic container (hash table);

– int SymbolicFactorization() performs the symbolic factorization, that
is, all the operations that do only require the matrix graph and not the
actual matrix values;

– int NumericFactorization() performs the numeric factorization, that is,
it computes the matrices L, D and U by accessing the matrix values. Both
the solution and the right-hand side vectors are not required in this phase;

– int Solve() solves the linear system. This phase requires the solution and
the right-hand side vectors.

Note that a concrete implementation may decide to skip the symbolic factoriza-
tion (that is, the method returns without doing nothing) and perform the entire
factorization within NumericFactorization(). Equivalently, one can implement
both factorization and solution within Solve(), and let both factorization phases
are no-operation methods.

The design is organized as follows: each interface is defined by a class, derived
from the pure virtual Solver class, and it internally allocates and manages all
the objects required by the underlying solver. This insulates the user from lower-
level details.

4 Supported Libraries

Amesos offers interfaces to the following direct solvers: LAPACK, ScaLAPACK,
KLU2 [4], UMFPACK [3], SuperLU and SuperLU DIST [5] DSCPACK [14],
MUMPS [1], TAUCS [13], and PARDISO [17,18]. Other interfaces are under
development.

Amesos takes advantage of the Epetra package [12] to specify the Map,
Vector, Matrix and LinearProblem interfaces. The Standard Template Li-
brary (STL) is used to increase performances whenever possible.

To increase portability, Amesos is configured using Autoconf and Automake;
each interface can be enabled or disabled at configure time. Users can take ad-
vantage of the bug-tracking tool Bugzilla to provide feedback or request im-
provements. Amesos can be downloaded as part of the Trilinos framework
at the web page http://software.sandia.gov/trilinos/packages/amesos.
More details on the usage of Amesos can found in [15] and the on-line docu-
mentation, while the design is presented in greater details in [16].

5 Example of Usage and Numerical Results

An example of usage of Amesos is reported in Figure 1. Although this particular
example requires MPI, Amesos can be compiled with or without support for
MPI. (Clearly, distributed solvers are available only when compiled with MPI

2 The sources of KLU are distributed within Amesos.
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support.) The only Amesos include file is Amesos.h, which does not include
the header files of the supported library. The required interface is created by
using the factory class Amesos. Factory classes are a programming tool that
implements a sort of “virtual constructor,” in the sense that one can instantiate
a derived (concrete) object while still working with abstract data types. The
example reported in Figure 1 adopts UMFPACK as a solver; however by using
the factory class, other interfaces can be created by simply changing the input
string. Note that the supported solver can be serial or parallel, dense or sparse:
the user code still remains the same, except for the name of the solver; Amesos

will take care of data redistribution if required by the selected solver.

#include "Amesos.h"
#include "mpi.h"
#include "Epetra_MpiComm.h"
...
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

<define Map, x, b, A>

Epetra_LinearProblem Problem(A, x, b); // Interface 3.4

Amesos Factory; // create a factory class
Amesos_BaseSolver* Solver = Factory.Create("Umfpack", Problem);

Teuchos::ParameterList List; // allocate container for params,
List.set("PrintTiming", true); // set one in the container, then
Solver->SetParameters(List); // pass the container to the solver

Solver->SymbolicFactorization(); // symbolic factorization
Solver->NumericFactorization(); // numeric factorization
Solver->Solve(); // linear system solution
delete Solver;

MPI_Finalize();
return(EXIT_SUCCESS);

} // end of main()

Fig. 1. Example of code using Amesos. The parallel code uses the Amesos interface to
the serial UMFPACK library to solve the linear system. Amesos takes care of gathering
the matrix and vectors on processor 0 and scattering the solution as required. The
creation of the matrix, solution and right-hand side are not reported.
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The example code of Figure 1 has shown the facility of usage of Amesos. We
now address the effectiveness of the interface. Table 1 reports the percentage of
CPU time required by the Amesos interface with respect to the time required by
the underlying library. We have considered the SuperLU interface for the solution
of some of the matrices in the FIDAP collection, available at [2]. The matrix sizes
range from 1159 (FIDAP032) to 22294 (FIDAPM11). All problems are solved using
a 1.67 GHz G4 processor with 1024 Mbytes of RAM, running MAC OS X 10.4
and gcc 4.0.0. The table reports the percentage of the CPU time required by
the interface with respect to the time required by the considered solver, and
quantifies the overhead required by Amesos. We have used the default set of
parameters for both solvers.

As expected, for small matrices (for example FIDAP005 or FIDAPM05, of size
27 and 42, respectively) the overhead is considerable. When considering bigger
matrices (n > 3000), then the overhead is always below 5%. All the overhead is
spent in converting the matrix from the abstract matrix format to the format
required by the library, and performing additional safety checks. Note that this
overhead can indeed be reduced by adding specialized classes, that satisfies the
interface and internally store the matrix in the format required by a given solver
library, then perform a dynamic cast to obtain the already allocated data struc-
ture containing the matrix. This solution is inelegant and requires knowledge of
derived classes in the solver interface, but could greatly increase performance.

Table 1. Additional time required by the Amesos interface with respect to the time
required by the solver for different matrices. n represents the size of the matrix, nnz the
total number of nonzeros, and δ is defined as (additional Amesos time)/(time spent
within SuperLU)* 100. The results were obtained on a G4 1.67 GHz with 1 GByte of
RAM.

Name n nnz nnz/n δ

FIDAP015 6867 96421 14.04 2.89
FIDAP018 5773 69335 12.01 2.14
FIDAP019 12005 259863 21.64 3.34
FIDAP020 2203 69579 31.58 1.77
FIDAP031 3909 115299 29.49 3.51
FIDAP032 1159 11343 9.786 4.84
FIDAP033 1733 20315 11.72 13.1
FIDAP035 19716 218308 11.07 2.53
FIDAPM03 2532 50380 19.89 1.61
FIDAPM11 22294 623554 27.96 0.403
FIDAPM29 13668 186294 13.62 1.57

6 Concluding Remarks

In this paper, we have presented the Amesos project, which defines a model to
access direct solver libraries. The advantages of this model are the following:
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– The actual data storage format of the linear system matrix becomes largely
unimportant. Each concrete implementation will take care, if necessary, to
convert the input matrix to the required data format. This means that the
application can choose any matrix format that can be wrapped by the ab-
stract matrix interface.

– Issues like diagonal perturbations, dropping, reordering or fill-reducing algo-
rithms can be easily introduced within the abstract matrix interface. For ex-
ample, a dropping strategy or a modification of the diagonals simply requires
a new GetMyRow()method, without touching the actual matrix storage. Also,
reordering techniques can be implemented and tested independently of the
library used to perform the factorization.

– The actual calling sequence required by each library to factor the matrix
and solve the linear system is no longer exposed to the user, who only has
to call methods SymbolicFactorization(), NumericFactorization() and
Solve().

– Interfaces can be tested more easily because they are all located within
the same library and not spread out into several application codes. The
framework is also quite easy to learn and use, since a basic usage requires
about 20 code lines (see the example of Figure 1).

– It is easy to compare different solvers on a given set of problems. The Ame-

sos distribution contains a (working) template that reads a linear system
from file in the popular Harwell/Boeing format [7] and solves it with all
the enabled solvers. Users can easily modify this template to numerically
evaluate the optimal library for their problems.

– The framework can serve users with different levels of expertise, from the
usage of libraries as black-box tools, to a fine-tuning of each library’s pa-
rameters.

– The framework can be easily extended to incorporate libraries for the resolu-
tion of over-determined and under-determined systems. Solving such systems
may involve algorithms other than Gaussian eliminations; nevertheless, the
interfaces will remain almost untouched.

The generality of the proposed model comes at a price. The presented model
has the following limitations:

– Overhead may be introduced when converting or redistributing the matrix
and/or the vectors into the library’s format. For very large matrices, this
can constitute a problem especially in terms of memory consumption, but is
often not a first-order concern.

– Fine-tuning of solver’s parameters can be difficult. Also, we offer no “intel-
ligent” way of setting these parameters.

– There is no standard way to convert MPI communicators defined in C to MPI
communicators defined in Fortran 90. On some architectures it is difficult or
even impossible to perform such a task. Some hacks may be required.

– No support is offered for matrices in elemental format.
– It is almost impossible to support different releases of a given software library,

because function names usually do not change from one version to the next,
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making it impossible for the linker to select the appropriate version of the
library.

– Some libraries offer a one-solve routine without storing any data after the
solution is completed; this option is not supported by the presented design,
but it could be easily added.

– There are no capabilities to obtain the L, D and U factors, or the reorderings
P and Q. This is because each supported package uses a different stor-
age format and distribution. Reordering and scaling can be made library-
independent by extending the presented abstract interfaces.

– Problematic user-package communications. Because of the high-level view,
the code is safer: it is more difficult to make errors or call the solver with
the wrong set of parameters. Amesos classes automatically perform safety
checks, and return an error code when something goes wrong. However, it is
often difficult to abstract the error messages from all supported libraries and
report them in a uniform fashion. Users still need to consult the library’s
manual to decode the error messages.

– Finally, adding support for new direct solvers, or updating to newer versions
of already supported libraries depends on the reactivity of the Amesos de-
velopers. The Amesos web page reports several mailing lists that can be
used to communicate with developers.

Despite these issues, we find that the presented set of interfaces brings its
users the well-known benefits of reusable libraries. Thanks to their generality,
these interfaces (and the corresponding codes) can be used to easily connect
intricate applications with state-of-the-art linear solver libraries, in a simple
and easy-to-maintain way. From the point of view of application developers, the
small amount of required code makes it very convenient to adopt a project like
Amesos. For the developers of linear solver libraries, writing one interface for
their own solver can help to make it applicable and testable to a vast range of
applications.

One of our goal in the design of Amesos was to reduce the intellectual effort re-
quired to use direct solver libraries. We feel that this objective has been achieved,
and the performance penalty is very limited in most cases. In our opinion, the
main limitation of Amesos is that it supports double precision only, while most
direct solvers allows the solution in single precision and complex arithmetics.
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Abstract. In this paper, we introduce a new d-Spline based Incremen-
tal Performance Parameter Estimation method (IPPE ). We first define
a fitting function d-Spline, which has high flexibility to adapt given data
and can be easily computed. The complexity of d-Spline is O(n). We
introduce a procedure for incremental performance parameter estima-
tion and an example of data fitting using d-Spline. We applied the IPPE
method to automatic performance tuning and ran some experiments. The
experimental results illustrate of the advantages of this method, such as
high accuracy with a relatively small estimation time and high efficiency
for large problem sizes.

Keywords: automatic performance tuning, performance parameter es-
timation, Givens method, mathematical library.

1 Introduction

Automatic performance tuning is an optimization of performance parameters
suitable for a certain computational environment in ordinary mathematical li-
braries [1,2,3]. The target computers include supercomputers, PC servers, PC
clusters and MPPs. Viewpoints of the optimization include the number of ALUs,
cache size, communication latency and/or bandwidth. Performance parameters
such as unrolling depth and block size for cache are estimated for these compu-
tational environments.

In conventional performance parameter estimation the following procedure is
applied to get the optimal values in a mathematical library:

step1. Choose static sampling points from values of the performance parameter,
step2. Run the target mathematical library to obtain execution time (executed

value) at each sampling point,
step3. Define a fitting function and fit it to the executed values,
step4. Search a minimum value point of the fitting function which corresponds

to the optimal value of the performance parameter.

In conventional methods the optimal performance parameters are estimated
using a previously fixed number of (such as static) sampling points. When the

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 986–995, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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number of fixed sampling points is large, the accuracy for estimation is high,
but the computational efficiency is low and when the number of fixed sampling
points is small, vice versa. This is a problem for the fixed number of sampling
points.

In general, conventional performance parameter estimation has been used in
automatic performance tuning.

In the case of automatic performance tuning, the possibility to execute the
target mathematical library at any sampling point exists. It is possible to dy-
namically increment sampling points. In this paper we introduce a new method,
named the Incremental Performance Parameter Estimation (IPPE ), in which
the estimation is started from the least sampling points and incremented dy-
namically to improve accuracy.

The IPPE method has two major issues. The first issue is the selection of
a fitting function under the following conditions: 1) it should be calculated by
a small number of sampling points because the estimation is started from the
least number of sampling points and 2) the calculation cost should be sufficiently
small because it is necessary to calculate a fitting function for every sampling
point incremented dynamically. The second issue is the criteria for incrementing
sampling points; 1) terminating and 2) selecting sampling points.

Section 2 of this paper describes d-Spline based incremental performance pa-
rameter estimation. Section 3 presents the procedure for IPPE. Section 4 illus-
trates an example of data fitting using d-Spline. Section 5 gives an application
to automatic performance tuning. Section 6 provides summary, conclusions and
future work.

2 d-Spline Based Incremental Performance Parameter
Estimation

2.1 Fitting Function d-Spline

Fig.1 illustrates the fitting function d-Spline with sampling points and executed
values. Regarding the first issue of the IPPE method, we define a fitting function

(1<=i<=k, k<n)
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“d-Spline”(discrete spline function), which has high flexibility to adapt to a given
data set and which can be easily computed. d-Spline is presented as the value
of discrete point fj = f(xj), 1 ≤ j ≤ n. i.e. f = (f1, f2, f3, . . . , fj , . . . , fn)t,
where t means transposition (Fig.1). Each xj has the same interval. Parame-
ter values are a portion of x. For smoothness, the number of xj (n) must be
sufficiently greater than the number of parameter values (N). The executed
value yi (1 ≤ i ≤ k, k ≤ N) for k sampling points out of N is the execution
time of the target mathematical program. Executed values at sampling points y
= (y1, y2, y3, . . . , yi, . . . , yk)t. The smoothness of f presents |fj−1 −2fj + fj+1|,
2 ≤ j ≤ n − 1. f is selected to minimize the following expression(1).

min
f

(‖y − Ef ‖2 + α2‖Df ‖2), (1)

where α is sufficiently small to adapt well to the executed values y. The first
term of expression(1) denotes distance between executed values y and f. The
second term of expression(1) denotes the smoothness of f. Fig.2 depicts matrices
E and D each of the size is k × n and (n − 2)× n, respectively. d-Spline is not a
spline function because the continuity of the derivatives is not guaranteed, hence
it is named d-Spline for discrete spline.

2.2 Analysis of d-Spline Using Givens Method

To solve expression(1), following least square problem is solved [4].

min
f

‖b − Zf ‖2. (2)

Fig.3 shows the structure of matrix Z and vector b. To suppress fill-in, changing
zero elements to non-zero elements, ‖y − Ef ‖ is transferred to ‖Ety − EtEf ‖.
EtE has non-zero data on some of the diagonal points. All non-diagonal elements
are zero. To solve the least square problem, the Householder method is commonly
used. However, for a sparse matrix, Givens method is better than Householder
method [5]. Moreover, in our parameter estimation method, Givens method is
better for suppressing fill-in because of the special structure of the matrix Z.

By applying Givens method, Z is transferred to R, which is a tri-diagonal
matrix (half bandwidth is 3), whose computational complexity is O(n), where n
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Fig. 4. Adding a New Row at Incrementing Sampling Point

is the number of the parameter value. The computational complexity of mathe-
matical program is O(L2) or O(L3), where L is matrix size. Therefore, the com-
putational complexity of solving d-Spline can be ignored. Fig.4 illustrates adding
a new row at incrementing sampling point. When a new sampling point xs is in-
cremented, Givens transformation is performed to make R (obtained by existing
points, Fig.4) plus one row. It is not necessary to apply Givens transformation
for Z. Therefore, the same O(n) requires less computation (approximately 1/5)
in the increment phase. This shows that the method of adding sampling points
and the fitting function d-Spline makes an efficient combination.

3 Procedure for Incremental Performance Parameter
Estimation

This section describes a procedure for estimating the optimal parameter value
by applying d-Spline. The second issue of the IPPE criteria for incrementing
sampling points, 1) terminating and 2) selecting sampling points are considered
here. Fig.5 shows the procedure for IPPE. The procedure is outlined below:
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Step1: Select initial sampling points

Step2: Execute target mathematical library
at each sampling point

Step5: Increment sampling points 

No

Step3: Calculate d-Spline
to estimate optimal value

Step4:
Terminate?

End
Yes

Fig. 5. Procedure for the IPPE method

step1. Select four initial sampling points from x, including both end points,
step2. Execute the target mathematical library for each point xj to obtain y,
step3. Compute d-Spline f adaptable to executed values y, and estimate xs

which corresponds to fs, the smallest of f,
step4. If xs is the same for successive p times(p=2,3,4,5), then exit(criterion 1),

otherwise go to the next, step5,
step5. If estimated xs is not included in the existing sampling points, then add

the xs as a new sampling point, otherwise select an other xs to make fs,
such that maxs |fs−1 − 2fs + fs+1| (criterion 2) and go to step2.

In step4, the number of succession p is defined considering the balance between
the accuracy for estimation and the computational efficiency.

4 An Example of Data Fitting Using d-Spline

This section introduces one example for data fitting using d-Spline. The target
computer is a PC cluster and the target mathematical library is a Househoder
tri-digitalization routing using the QR method, and the problem size is 800. The
performance parameter of unrolling depth, from 1 to 16, will be estimated.

Fig.6a shows execution times for all of the performance parameter values.
In Fig.6a, the X-axis contains values of performance parameter and Y-axis is
the execution time for the target mathematical library. The dotted line shows
various tops and bottoms, where data fitting is not easy.

Fig.6b shows the phase 1 execution times for all of the performance parameter
values. In phase 1, we first select the initial four sampling points with equivalent
intervals. The four bold points are initially executed values for a target mathe-
matical library corresponding to the four initial sampling points. We will fit the
executed values using d-Spline, and find its minimum point, which corresponds
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Fig. 6. Example for Data Fitting Using d-Spline
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to #7 for values of performance parameter. So we estimate #7 for optimal value.
Next, we select a new sampling point #7, because the estimated optimal value
of #7 was not included in the initial sampling points.

Fig.6c shows the phase 2 execution times for all of the performance parame-
ter values. In phase 2 #7 is incremented in the sampling points. We fit d-Spline
including the new executed value. Now the estimated optimal value is #5 cor-
responding to the minimum point on the d-Spline. #5 is a new sampling point.

Fig.6d, Phase 3, shows a new d-Spline including the new sampling point #5.
We find the minimum point on the d-Spline and estimate the optimal value #6.
This point is already included in the existing sampling points. In this case we
select #8, where the difference equation of the second order has the largest value.

Fig.6e, Phase 4, includes the new sampling point #8. Now the estimated
optimal value is #9, which is a new sampling point.

Fig.6f, Phase 5, includes the new sampling point #9. By the same procedure,
the new sampling point selected is #6. The figure shows that fitting by d-Spline is
similar to the dotted line for a set of all executed values. But, because the dotted
line (the actual answer) is unknown, we continue to increment new sampling
points.

Fig.6g shows that a new sampling point #13 is included in Phase 9. Twelve
sampling points out of sixteen have already been selected. The estimated optimal
value is #6, which has been the same for five successive times. The optimal value
#6 was the same for the remaining four phases.

5 Application to Automatic Performance Tuning

Fig.7 shows the experiment parameters and their notations. Some experiments
to evaluate the performance of our method are made on the Hitachi SR8000 and
our PC cluster. The Hitachi SR8000 has 2 nodes with 8 processors per node and
the compiler is the Hitachi OFORT90 version V01-04-/B with a compiler option

1. Computers
(a) Supercomputer Hitachi SR8000

(a1) 1 node and 8 processors per node   � [SRn1p8]
(a2) 2 nodes and 8 processors per node � [SRn2p16]

(b) PC Cluster (4 nodes, IA32 per node) � [PCp4]

2. Mathematical libraries (test program)
(a) Householder tri-diagonalization
(a1) Unrolling depth of matrix-vector multiply phase (1-16) � [TRD1]
(a2) Unrolling depth of matrix updating phase (1-16) � [TRD2]

(b) Householder inverse transformation - Unrolling depth of outer loop (1-16) � [HIT]
(c) Gram-Schmidt QR decomposition - Block length (1-16) � [MGS]

3. Problem size (matrix size)
(a) 100 to 1000 (with intervals of 100), 2000, 3000 and 4000   13 patterns
(b) In (only) PCp4, adding 16 to 256 (with intervals of 16 )   16 patterns � [PCp4 small]

Fig. 7. Experiment Parameters and their Notations
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Fig. 8. Experimental Results–Mathematical Libraries

of -O4. Our PC cluster has 4 nodes with a single IA32 processor per node and
the compiler is the PGI Fortran90 version 4.0-2 with a compiler option of -Fast.

The test programs are Householder tridiagonalization (TRD1 and TRD2 with
different performance parameters), Householder inverse transformation (HIT )
and Modified Gram-Schmidt QR decomposition (MGS ). The problem sizes are
from 100 to 1000 (strides of 100), 2000, 3000, and 4000. The total number of
test patterns for our evaluation amounted to 216. The ABCLib [3] is used.

Fig.8 shows the results of our experiments in terms of the mathematical li-
braries. In X-axis the used portion is a ratio of the number of sampling points
per number of parameter values. In Y-axis the accuracy ratio represents the cor-
rectly selected optimal value. Each line is the result of each mathematical library.
Each point is the average of the results from four tested computers. The bold
line is the average of four mathematical library lines. Each ellipse is a group with
the same criteria of termination, which is indicated by the number of succession.
The diagonal line represents sampling points selected at random. The following
are our observations of the Fig.8:

1. All five lines are above the random line, which shows the usefulness of the
IPPE method,

2. In the ellipse where the criterion of termination is four successive times:
(a) The square point is the average of four mathematical library points,

whose used portion is 68%, and the accuracy ratio was higher by 20%
compared with the circle point on the random line. This shows the ef-
fectiveness of IPPE method,

(b) The range of accuracy ratio increased from 80% to 92% while the range
of used portion increased from 58% to 72%. To achieve an accuracy ratio
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of 90%, in the case of MGS, the used portion was less than 60%. On the
other hand, in case of TRD1 and TRD2, it was more than 70%. If the
used portion is fixed at 68%, the used portion is more than necessary for
MGS, while TRD1/TRD2 get less accuracy. Therefore, using the number
of succession for the criteria of termination is more efficient than fixing
used portion, or fixing the number of sampling points.

Fig.9 shows the results of our experiments in terms of computers. Each line
is the average of mathematical libraries. We found:

1. All five lines were above the random line, which shows the usefulness of IPPE
method,

2. The problem size or matrix size can be compared between PCp4 and PCp4
small. The results of PCp4 was better than PCp4small. This means the
IPPE method is more useful in the case of large problem sizes.

Fig.10 is the histogram result when the selected optimal values were not cor-
rect in our experiments. When the criterion of termination was four successive
times, the selected optimal values were incorrect for 28 patterns out of 216
patterns. The X-axis is the ratio of increased execution time for incorrectly es-
timated values vs the execution time for correct optimal values. The Y -axis is
the number of patterns. The ratio of the increased execution time was 4.0% on
average and 12.6% at the maximum, which were not considerable.

To summarize, the results of our experiments show the following advantages
of the IPPE method :

1) Achieves high accuracy with relatively low usage portion,
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2) Achieves high accuracy in all cases,
3) High efficiency for large problem sizes.

6 Conclusion

This paper presented the results of our study on performance parameter estima-
tion in automatic parameter tuning. First, we proposed the Incremental Perfor-
mance Parameter Estimation (IPPE ) method. Then we introduced the fitting
function d-Spline. Finally, the evaluation of the IPPE method by 216 patterns
of mathematical libraries showed the effectiveness of the criteria for termination
and the selection of sampling points.

Our future work will include: 1) Enhancement of d-Spline for multi-dimensional
simultaneous evaluation of plural performance parameters, and 2) Application of
d-Spline to estimate performance parameters for the interpolation of matrix sizes
or problem sizes.
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Abstract. A generic scientific simulation environment is presented
which imposes minimal restriction regarding topological, dimensional,
and functional issues. Therewith complete discretization schemes based
on finite volumes or finite elements can be expressed directly in C++.
This work presents our multi-paradigm approach, our generic libraries,
some applications based on these libraries, and performance aspects.

1 Introduction

In the last decades numerous software environments and libraries have been
developed to handle the many areas in the field of scientific computing. Due
to the diversity of the mathematical structures, combined with efficiency con-
siderations, the development of high performance simulation software is quite
challenging. These challenges are becoming more difficult to meet, when the
purpose of the software is to validate novel algorithms and complex methods, or
to investigate physical phenomena that have not yet been fully understood. High
performance computations have turned the attention especially to C++, since
Blitz++ has shown that the run-time behavior is comparable to Fortran [1], the
traditional language for scientific computing. In addition, distinct programming
paradigms and their respective advantages can be combined in a multi-paradigm
language, such as C++.

2 Motivation

Many library approaches [1,2,3] focus on topics such as expression templates,
high performance matrix operations and calculations, and discretization of dif-
ferential operators. The nature of dealing with different types of partial differen-
tial equations (PDEs) with the inherent coupling of topological traversion and
functional description complicates the use of these libraries.

Our main area of work is focused on Technology Computer-Aided Design
(TCAD), which deals with the assembly of large equation systems by utilizing
discretized partial differential equations from different fields of physics. All types
of PDEs (parabolic, elliptic, hyperbolic) and their discretization schemes such

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 996–1005, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A High Performance Generic Scientific Simulation Environment 997

as the finite element method [4] or the finite volume method [5] have to be con-
sidered for the diverse types of problems. Types of topological cell complexes,
different dimensions, and solving strategies have to be considered during appli-
cation development [5,6,7]. Most of these applications use data structures such
as list and array as well as triangles, quadrilaterals, tetrahedra, cuboids, each
with their own access mechanisms, traversal operations, and data storage.

These issues demand great care to ensure high software quality while also
addressing performance issues, when source code is being written. This is the
primary motivation to develop generic libraries for high performance applications
in the field of scientific computing. Generic library design deals with the con-
ceptual categorization of computational domains, the reduction of algorithms
to their minimal conceptual requirements, and strict performance guarantees.
The benefits of this approach are the re-usability and the orthogonality of the
resulting software.

3 Related Work

Various research groups have put a lot of effort into the development of libraries
for sub-problems occurring in scientific computing. We briefly review the most
important library approaches suitable for application design:

– The Boost Graph Library (BGL [2]) is a generic approach to the topic of
graph handling and traversal with a standardized generic interface.

– The Computational Geometry Algorithms Library (CGAL [8]) implements
generic classes and procedures for geometric computing with generic pro-
gramming techniques.

– The Grid Algorithms Library (GrAL [9]) is a generic library for grid and
mesh data structures and algorithms operating on them.

– deal.II [3] provides a framework for finite element methods and adaptive
refinement for finite elements.

– ExPDE [10] collects efficient high-performance libraries for PDEs using the
C++ technique of expression templates

Our analysis has revealed that, up to now, no related work can be used directly.
All of these libraries have not been developed with emphasis on interoperability.
This issue complicates the transition from one library to another. Therefore, our
approach (Section 4.1) introduces a common layer with data structure definition
and access routines, where all of these libraries can be used. With the generic
programming paradigm and the implementation with templates in C++ the
abstraction penalty can be minimized (Section 6).

Deal.II and the ExPDE library collection offer support for application de-
sign in the field of scientific computing. These libraries are an important step
into library centric application design. But, as mentioned before, none of these
libraries were developed with interoperability as a necessary constraint. As a
consequence, additional code has to be introduced which slows the development
process down and impedes the execution speed of the final application.
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4 The GSSE

Based on the experience of developing high performance applications a generic
scientific simulation environment (GSSE) with an overall high performance
was developed, which does not impose restrictions on topological treatment or
functional description. Different programming paradigms were used for the non-
trivial and highly complex scenario of scientific computing. The generic pro-
gramming paradigm realized by the template mechanism offers homogeneous
interfaces between algorithms and data structures by the iterator/cursor pat-
tern. Functional programming enables an efficient means to specify equations
and offers extensible expressions.

Investigations of the applications developed at our institute have shown that
the topological structures can be abstracted and generalized into a generic topol-
ogy library (GTL), which is presented in more detail in Section 4.1. This new
approach of a generalized topology enables a new functional description for the
discretization of PDEs without sacrificing any performance. This is accomplished
in our generic discretization library (GDL, Section 4.2), which fulfills the require-
ments for scientific computing, especially TCAD [11].

To introduce the base libraries of the GSSE, we examine different topolog-
ical traversal operations without any assumption about the dimension. This
dimension independent programming eases software development considerably
and reduces the probability of errors.

4.1 Generic Topology Library: GTL

Topological functionality is mostly needed to fulfill the requirements of dis-
cretization schemes. All these schemes need a set of neighboring elements based
on the topological property of incidence. Therefore the GTL [12] provides com-
prehensive incidence traversal and orientation operations with a generic interface
similar to the C++ STL [13] and is based on GrAL [9]. Problems which can be
formulated only with difficulty using existing libraries, can thereby be handled
easily.

The following example presents an incidence traversal mechanism starting
with an arbitrary cell iterator which is evaluated on a cell complex (grid). Then a
vertex on cell iterator is initialized with a cell of the cell complex (cell container).
The topological traversal is started with the for loop. During this loop an edge
on the vertex iterator is created and initialized with the evaluated vertex. This
edge iterator starts the next topological traversal. The valid() mechanism is
used, because there is no end() iterator on inter dimensional objects.

c e l l i t e r a t o r c i t = ce l l c omp l ex . c e l l b e g i n ( ) ;
for ( c e l l v e r t e x v o c i t (∗ c i t ) ; v o c i t . va l i d ( ) ; ++vo c i t ) {

for ( v e r t e x edge e ov i t (∗ vo c i t ) ; e o v i t . va l i d ( ) ; ++e ov i t ) {
// operat ions on edges

}
}
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4.2 Generic Discretization Library: GDL

One of the base operations in the context of PDEs is the assembly procedure
of discretized equations into a matrix. To ease this procedure the GDL was
developed. This library implements the ability to specify whole equations in a
concise yet expressive way. The availability of a topology or traversal library, e.g.
the GTL, is a fundamental requirement to specify equations in a functional way.
Together these two libraries offer mechanisms to separate discrete mathematics
into topological and numerical operations. To present the application of the
GDL, we examine a simple equation:

∑

v→e

(Δe→v quan) = 0

where v → e denotes the traversal of all edges incident to the vertex, e → v de-
notes the traversal of the vertices incident to the edge, quan denotes the quantity
located on a vertex, and Δ denotes the difference of this quantity.

The implementation with the GTL and the GDL without any dependence on
the dimension or the type of cell complex is presented in the next code snippet.
The addition over all edges incident to the given vertex are traversed by the
vertex edge expression with the sum functor. All elements have a standard
local orientation, e.g. an edge provides a source and a sink vertex. We define an
orientation function O(a, b) between an edge and a vertex, which returns +1 if
a vertex coincides with the source and −1 if the vertex coincides with the sink
(Figure 1).

Fig. 1. Orientation of an edge. The orientation function returns either +1 or −1 de-
pending on whether the vertex is the sink or the source of the edge.

Finally, the e and 1 are local variables (placeholders). The e variable passes
the edge into the next context [ quan * orient( 1, e) ], and 1 stands for
the local vertex.
for ( v i t = ce l l c omp l ex . v e r t e x beg in ( ) ;

v i t != c e l l c omp l ex . ve r tex end ( ) ; ++v i t ) {
equat ion = sum<vertex edge>
[

sum<edge vertex >(0.0 , e ) [ quan ∗ o r i en t ( 1 , e ) ]
] (∗ v i t )

// . . eva luate the equation ob je c t
}

The complex resulting from this mapping is completed by specifying the current
vertex object *v it at run-time, which clearly demonstrates the compile-time
and run-time border. The datatype equation is explained in more detail in
Section 4.4.
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4.3 Matrix Assembly

Differential equations are discretized on elements of the topological structure
and entered in a matrix by assembly methods. In general there exist two main
methods of equation assembly which differ in the type of sub-matrices assembled
in one step.

Element-wise assembly (Figure 2) is typically used in the finite element method.
All cells (finite elements) are traversed and for each of the cells a local matrix
is calculated. This matrix introduces coupling factors between the various shape
functions. As each shape function is mapped to an element of the underlying cell
complex, couplings between functions can be seen as couplings between values on
elements. The local matrix entries are written into the global matrix according to
a global vertex/cell numbering scheme. The finite volume scheme uses a different

Fig. 2. Element-wise assembly. All cells are
traversed and sub-matrices are calculated.
The sub-matrices are inserted into the sys-
tem matrix.

Fig. 3. Line-wise assembly. All vertices are
traversed and linear equations are assem-
bled. Linear equations are inserted into the
system matrix.

technique of matrix assembly (Figure 3). The differential equation is discretized
on a vertex of the simulation domain. Couplings to other values are described by
sums over topological elements. One of the major advantages of this method is that
each degree of freedom causing a matrix entry has its own governing equation. This
also implies that the matrix regions of assembly are disjoint, which allows a larger
degree of parallelization, because each assembling element has exclusive access to
matrix lines.

4.4 Linear Functions

In order to simplify the line-wise assembly method, e.g. for finite volumes, we in-
troduce the notion of a linear function data type. We consider some differential
operator L(ψ) and the differential equation L(ψ) = 0. Figure 4 shows a one-
dimensional simulation domain with a quantity distribution. While the depicted
values are not the solution of the considered equation, the residual can be deter-
mined by using the finite volume formulation. We consider not only the residual
value but also the effects of linear changes of single values on the residuum. In
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Fig. 4. Linear equation. The linear equation data structure stores the value as well as
the dependence on the unknown variables Δxi.

order to provide an environment which is able to handle small variations, we
assign an index i to all variables. The small variations are called Δxi and the
function value is denoted by ψi. A function value including dependencies thus
yields ψi + Δxi. Based on these considerations we introduce addition.

(ψi + Δxi) + (ψj + Δxj) = (ψi + ψj) + (Δxi + Δxj) . (1)

In order to define a closed algebraic structure, we use the concept of a linear
function. This function can be written in the following manner

∑

i

ai · Δxi + ci . (2)

The relations described in Equation 1 can be generalized to algebraic expressions.
A data structure which implements these operations consequently, provides the
following property: specifying the residuum and replacing the function value ψi

by ψi + Δxi results in a linear equation for the values of Δxi.
The following example uses finite volume schemes in order to assemble a

simple Laplace equation. We use the linear equation data type instead of the
standard numerical types (e.g. double) and replace the function values by linear
equations. The constructor of the linear equation contains the value ψi as well
as the index i and returns an equation object with the meaning ψi + Δxi. The
following code snippet presents an application of the introduced linear function
concept to obtain the formulation of the Laplace equation:
l i n e a r equ a t i o n l ap l a c e eqn ;
v e r t e x edge e ov i t ( ve rtex )
for ( ; e o v i t . va l i d ( ) ; ++e o v i t ) {
l i n e a r e qu a t i o n equat ion ;
edge ve r t ex v o e i t (∗ e ov i t ) ;

for ( ; v i t . va l i d ( ) ; ++v i t )
{

equat ion += l i n ea r e qu a t i o n ( f (∗ v i t ) , i (∗ v i t ) ) ∗
o r i en t (∗ v i t , ∗ e ov i t ) ;

}
equat ion ∗= A(∗ e o v i t ) / d(∗ e ov i t ) ;
l ap l a c e equ += equat ion ;

}

The linear equation can also be specified using functional programming.
l ap l a c e equ = sum<vertex edge>
[ sum<edge vertex >( e )

[ l i n eqn ( p s i ( 1 ) , i ( 1 ) ) ∗ o r i e n t ( 1 , e )
] ∗ A( 1 ) / d( 1 )

] ( ve r tex ) ;
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5 Application Design Using the GSSE

We demonstrate the development of simple applications which solve partial
differential equations based on the facilities of the GTL and the GDL. These
equations can be divided into elliptic equations, such as the Laplace or Poisson
equation, parabolic equations which describe diffusive processes, and hyperbolic
equations, such as wave equations. Examples for each of these equations are often
found in TCAD. The first example presents the capability of reducing complex
discretization to simple topological iterations, mostly based on the GTL. The
second example utilizes the GDL based on a piecewise construction of functional
parts to form a complex equation.

5.1 Maxwell’s Equation

We present an implementation using Yee’s algorithm for Maxwell’s equations
[14] in the following. While the Yee formulation makes use of staggered grids,
the application on structured topologies based on the GTL and inter-dimensional
iterators causes an enormous simplification. Instead of special grids, we employ
different dimensional elements such as edges and faces for the representation of
the electrical field strength and magnetic field. It turns out that the tensorial
character of the quantities fits into the dimensionality concept of the topological
elements. We present the special case of a transversal magnetic mode only. The
following formulation can be derived by applying the Yee discretization scheme.

En+1
z (i, j) = En

z (i, j) +Δt
l

Δx
[Hn+1/2

y (i +
1
2
, j) − Hn+1/2

y (i − 1
2
, j)

−Δt
l

Δy
[Hn+1/2

x (i, j +
1
2
) − Hn+1/2

x (i, j − 1
2
)

With the transfer of all index calculations to topological iteration and traversal
mechanisms, e.g. the electric field quantity to edges Ee and the magnetic field
quantity to facets Hf the formula can be rewritten as:

Ee − Eold
e = Δt leΔe→f

[Hf

Af

]
,

where e → f denotes the traversal of all facets incident to the edges, and Af
represents the area of the corresponding facet. The evaluation of all quantities
on their corresponding dimension and topological objects is completed auto-
matically. The final source code is presented in the following code snippet. The
minimal requirement to specify such complex equations can be seen clearly.

equation E += dt ∗ l ∗ sum<edge face t >(0.0 , e )
[

H / A ∗ o r i en t ( e , 1 )
]
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5.2 Applications for Device Simulation

Good understanding of electron transport in semiconductors is one key require-
ment for the progress in microelectronic devices. For device simulation we present
the drift-diffusion model which reads in a simple form for electrons [5]:

div (ε grad (Ψ)) = q (n − ND) (3)
div (Jn) − q ∂tn = qR

Jn = q n μn grad (Ψ) + q Dn grad (n)

Discretizing the continuity relation (as presented in Equation 3) using the
Scharfetter-Gummel scheme [15] results in:

∑

v→e

q μnUt
A

d

∑

e→v

n Bern
[ ∑

e→v

ψ

Ut

]
(4)

Bern(x) = x/(ex − 1) represents the Bernoulli function and Ut describes the
thermal voltage. This discretized form can be transformed into C++ code using
our formalism to yield:

// Poisson equa t i on
equa t i on po i s s=
sum<vertex edge >
[ A / d ∗ eps ∗

sum<edge vertex >(0.0 , e ) [ pot∗ o r i en t ( 1 , e ) ]
] − q∗(n−nD)

// Continui ty equa t i on f o r e l e c t r o n s
equat ion n = sum<vertex edge >
[ q ∗ mu n ∗ U t ∗ A / d ∗

sum<edge vertex >(0.0 , e )
[

o r i en t ( e , 1 )∗n( 1 )∗
Bern ( l o ca t e ( e ) [ sum<edge vertex >[ pot∗ o r i en t ( 1 , e ) ] / U t ] )

] ]

Due to the functional specification, a special mechanism has to be introduced
locate( e) to obtain the edge information in the innermost loop. The main
problem with this type of programming in C++ is that the expression between
[] opens up a new scope and new local variables. The locate function passes
the edge information from the second sum to the Bern function.

5.3 Number of Code Lines

To implement a complete application, one line of code is used to import a given
cell complex (mesh) from a file and another line is used to assemble the linearized
functions into a generic matrix interface. The overall number of lines of code
to implement an application can thereby be greatly reduced. This results in a
minimization of maintenance of source code as well as the learning time for new
developers.
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6 Performance

The basic parts of how to achieve high performance in C++ are based on the us-
age of templates. Therewith the compiler’s data-type-based function selection at
compile time leading to a global optimization with inlined function blocks is pos-
sible. Additionally lightweight object optimization [16] with frequent allocation
to registers is made available.

To circumvent the problems with benchmarking different techniques, we re-
strict the performance analysis on a simple but often used detail, namely the addi-
tion of several small matrices which occur in the discretization schemes described
before. This simple expression can be compared to other benchmark studies [17].
The test is performed using the vector addition Af = Ab + Ac + Ad, evaluated
with different vector sizes on a Pentium 4 (2.4 GHz) with the GCC 4.1.0. Sev-
eral approaches, a naive C++ implementation with std::vector<T>, Blitz++, a
simple version of expression templates [18] , the C++ std::valarray, and finally
the GDL approach are compared to a hand-optimized Fortran 77 implementation
(F77) as can be seen in Figure 5 . Although functional and generic programming
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Fig. 5. Performance of the evaluated expression on a P4 (left) and an AMD64 (right)

support the parallelization significantly, the currently used computer technology
restricts this effort due to their architecture. For vector lengths smaller than 104,
cache hits reveal the full computation power of the CPU, longer vectors show the
limits imposed by memory band width.

7 Conclusion

The application of several modern programming paradigms solves the problem
of portability while insuring high performance by providing orthogonal means of
optimization. Currently no language other than C++ offers sufficient support for
all the necessary programming paradigms to enable this high-level abstraction
at unmatched performance. As we have demonstrated in the complex field of
TCAD, applications can be developed with a reasonable amount of effort.
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Abstract. Many parallel computing applications are used for simula-
tion of complex engineering applications and/or for visualization. To
handle their complexity, there is a need for raising the level of abstraction
in specifying such applications using high level mathematical modeling
techniques, such as the Modelica language and technology. However, with
the increased complexity of modeled systems, it becomes increasingly
important to use today’s and tomorrow’s parallel hardware efficiently.
Automatic parallelization is convenient, but may need to be combined
with easy-to-use methods for parallel programming.

In this context, we propose to combine the abstraction power of Mod-
elica with support for shared memory bulk-synchronous parallel pro-
gramming including nested parallelism (NestStepModelica), which is
both flexible (can be mapped to many different parallel architectures)
and simple (offers a shared address space, structured parallelism, deter-
ministic computation, and is deadlock-free). We describe NestStepModel-
ica and report on first results obtained with a prototype implementation.

1 Introduction to Mathematical Modeling and Modelica

Modelica is a modern language for equation-based object-oriented mathemati-
cal modeling which is being developed through an international effort [4,9]. It
allows defining simulation models in a declarative manner, modularly and hi-
erarchically and combining various formalisms expressible in the more general
Modelica formalism. The multidomain capability of Modelica allows combin-
ing electrical, mechanical, hydraulic, thermodynamic, etc., model components
within the same application model.

To summarize, Modelica has improvements in several important areas:

– Object-oriented mathematical modeling. This technique makes it possible to
create model components, supporting hierarchical structuring, re-use, and
evolution of large and complex models covering multiple technology domains.

– Acausal modeling. Modeling is based on equations instead of assignment
statements as in traditional input/output block abstractions. Direct use
of equations significantly increases re-usability of model components, since
components adapt to the data flow context in which they are used. However,
for interfacing with traditional software, algorithm sections with assignments
as well as external functions/procedures are also available in Modelica.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1006–1015, 2007.
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– Physical modeling of multiple application domains. Model components can
correspond to physical objects in the real world, in contrast to established
techniques that require conversion to “signal” blocks with fixed input/output
causality. In Modelica the structure of the model becomes more natural in
contrast to block-oriented modeling tools. For application engineers, such
“physical” components are particularly easy to combine into simulation mod-
els using a graphical editor.

2 Integrating Parallelism and Mathematical Models

There are several levels of parallelism to be exploited in simulation code gener-
ated from high-level mathematical models:

– Parallelism over the method. One approach is to adapt the numerical solver
for parallel computation, i.e., to exploit parallelism over the method, for
example, by using a parallel ordinary differential equation (ODE) solver (see
e.g. Korch and Rauber [7]) that allows computation of several intermediate
results in parallel. However, at least for ODE solvers, only limited parallelism
is available. Also, the numerical stability can decrease by such parallelization.

– Parallelism over time. A second alternative is to parallelize the simula-
tion over the simulated time. This is however best suited for discrete event
simulations, since solutions to continuous time dependent equation systems
develop sequentially over time, where each new solution step depends on the
immediately preceding steps.

– Parallelism over the system. This means that the computations given in
the model equations derived from the high-level model specification are dis-
tributed across several processors. For an ODE or DAE system, this usually
means parallelization of the right-hand sides of such equation systems which
are available in explicit form. Moreover, in many cases implicit equations
can automatically be symbolically transformed into explicit form.

– Parallelism over the model. Under certain conditions, the model of a system
can be split into loosely coupled submodels that are simulated in parallel on
different processor subsets. This model distribution technique is known as
transmission line modeling, TLM. This approach is justified if the connec-
tors between submodels correspond to physical interactions that incur effect
delays, which are included in the TLM coupling equations in a way that
communication delays in exchanging data between submodel simulations at
simulation time approximately match similar delays in simulated time, lead-
ing to numerically stable simulations without increased inaccuracy [10].

The following approaches are being investigated in the context of parallel
simulation of Modelica models.

(1) Automatic parallelization. One obstacle to parallelization of traditional
computational codes is the prevalence of low-level implementation details in
such codes, which also makes automatic parallelization hard. Instead, it would
be attractive to directly extract parallelism from the high-level mathematical
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model, or from the numerical method(s) used for solving the problem. Aronsson
and Fritzson [1] investigated the automatic parallelization of computations in
the right-hand side of the generated model equation system, using techniques
for fine-grained task scheduling.

As automatic parallelization methods have their limits, the environment should
enable the programmer to explicitly expose (additional) parallelism.

(2) Model distribution with TLM. A natural idea is to let the programmer
structure the application—if possible, already at the model level—into compo-
nents representing submodels, using strongly-typed communication interfaces for
loose couplings between submodels (TLM connectors). Ongoing work using this
approach for Modelica is reported by Nyström et al. [10].

(3) GridNestStep. Mattsson and Kessler [8] proposed an explicit parallel pro-
gramming language that provides bulk-synchronous parallel computing with a
global address space on computational grids. In the Modelica domain, this frame-
work is mainly intended to support the implementation of parallel solvers on a
grid platform, thus exploiting parallelism over the method.

(4) NestStepModelica. Our fourth approach to soliciting parallelism is pro-
viding general easy-to-use explicit parallel programming constructs within the
algorithmic part of the modeling language, thus also exploiting parallelism over
the system that is embedded in algorithm sections and called functions. This
is the approach we explore in this paper, with the NestStepModelica language
embedded into the algorithmic part of the Modelica language.

3 Introduction to NestStepModelica

In this section we give a short overview of the most characteristic features of
NestStepModelica and show an example program. For the interested reader we
provide a survey of the language constructs in Section 4.

NestStepModelica is conceptually based on NestStep [5,6], which in turn is
based on the BSP (Bulk-Synchronous Parallel) computation model [13]. The BSP
model is an abstraction of a restricted message passing architecture and charges
a cost for communication. It requires that the execution of parallel programs
be organized as a sequence of supersteps. Each superstep consists of a phase of
local computation where only process-local data can be accessed, followed by a
global communication phase where processes first send and then receive values
that will be needed later. Finally, a (conceptual) barrier synchronization marks
the end of the superstep and the beginning of the next one.

NestStep is defined as a set of language extensions that may be added, with mi-
nor modifications, to any imperative programming language, be it procedural or
object oriented. The sequential aspect of computation is inherited from the base
language, which here is the algorithmic (non-equational) part of Modelica. Such
algorithm sections of Modelica models encapsulate imperative specifications of
model subcomputations that would be too complicated or too inefficient if coded
in equation form. An algorithm section comprising the body of a function
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is executed when the function it belongs to is called. Such calls occur in
conjunction with the solution of the equation system that the function be-
longs to. From the solver of the overall equation system, the function is viewed
as a subsystem and is thus executed when needed, as given by data dependencies
from/to the rest of the system of equations.

The new NestStepModelica language constructs provide shared variables and
process coordination. NestStepModelica processes run, in general, on different
processors (possibly on different machines) that are coupled by the NestStep-
Modelica runtime system to a virtual parallel computer. Each processor executes
one process with the same imperative fragment of a simulation program (SPMD),
and the number of processes remains constant throughout the entire execution
of that program fragment. Initially, all processes assigned for the execution of
the program fragment form a single group. Processes are ranked (indexed) con-
secutively within a group from 0 upwards.

NestStepModelica enforces the superstep structure of the BSP model. A su-
perstep is framed by the keywords step and endstep:

Integer k ( mem="shared");
...
step

...
k = ... ;
...

endstep;

At any point of time, all processes of a process group must be working within
the same superstep.

Variables declared by processes are private (process-local) by default, i.e.,
each executing process creates its own copy and has exclusive access to it. Vari-
ables explicitly declared shared, such as k in the example above, generally exist
in several copies, one per executing process (replication); write accesses dur-
ing the local computation phase in the superstep may, of course, cause these
copies to vary in contents, as each process only can access its local copy, but
NestStepModelica guarantees that their contents is kept consistent at superstep
boundaries. This means that, after passing the barrier corresponding to endstep,
all copies of k on all processes will again have the same value—which one, can
be programmed individually for each shared variable and for each superstep. For
instance, an arbitrary written value may be committed to all copies, or the global
sum or global maximum of all values written by the processes in the superstep
could be computed and committed, as in the following code

Real maxerr ( mem="shared" );
...
step

...
err = local_error( ... );
...
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endstepReduce ( result=err, op=Operators.max );
endstep;

where the global maximum of all values written to err is to be committed to all
copies at the end of the superstep.

Moreover, even prefix sums computations can be performed as a side effect
of a global sum computation. Technically, such reduction and prefix combinings
come at virtually no extra cost, as the run-time system manages them pick-a-
back on the interprocessor communication messages that are needed anyway for
barrier synchronization and for restoring consistency of shared variables [5,6].

Example. We use the parallel computation of prefix sums as an example because
it is simple and short enough to demonstrate the main ideas within a single page
of code.

Figure 1 shows NestStepModelica code computing parallel prefix sums. The
function parPrefix takes a distributed shared parameter array x of reals, which
is distributed block-wise over the executing group of processes, and the maximum
local problem size as an input parameter, and shall return a likewise block-
wise distributed shared array y of the same extent as x. The function defines
several (local) variables, all of which are private (exist once on each participating
process) except sum, which is declared shared by all executing processes.

parPrefix consists of three supersteps. The first one contains a parallel loop
that simply copies the contents of x to y; only locally accessible array elements
are read and written by each process.

In the second superstep, each process computes prefix sums for the local par-
tition of array y in the private array prefix and accumulates the sum of all local
elements in the process-local copy of the shared variable sum. By endstepReduce
the programmer dictates making the various write accesses to sum consistent by
a plus-reduction where, in addition, each process gets the partial sum over the
contributions by all processes with a rank less than the executing process written
in its local variable myPrefixSum.

The third superstep sweeps once more over the local partition of array y and
adds the offset value myPrefixSum to the process-relative values in prefix to
derive the final prefix sums vector in y.

We notice that even in the imperative algorithm sections some restrictions
of the functional programming core of Modelica apply. For instance, there are
no global variables in Modelica. Functions must be free of side-effects, which
makes it impossible to use naive approaches to compute e.g. the parallel prefix
sums in place (i.e., in the same array that contained the input data). How-
ever, an advanced optimizing compiler could actually perform such optimiza-
tions on function calls such as vec := func(vec) or similar, provided that
analysis of the body of func shows that the semantics of its body is not de-
pendent on the input vector and that the result vector is not aliased to the same
memory.
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function parPrefix "Compute prefix sums in parallel"

input Real[:] x ( mem="shared", distr="block" );

// x is a block-wise distributed shared array parameter

input Integer ndp; // Process-private parameter

output Real[size(x,1)] y ( mem="shared", distr="block" );

// y is block-wise distributed shared array return value

protected

Real[ndp] prefix; // Process-private prefix array

Real myPrefixSum; // Prefix offset for this process

Real sum(mem="shared"); // Shared variable

Integer i,j;

algorithm

step(); // First BSP superstep:

// Iterate over local elements of y and copy contents of x to y:

for i in localStart(y):localStride(y):localEnd(y) loop

y[i] := x[i];

end for;

sum := 0;

endstep();

j := 1; // In Modelica lowest index for arrays is 1

step(); // Second BSP superstep:

for i in localStart(y):localStride(y):localEnd(y) loop

prefix[j] := sum;

sum := sum + y[i];

j := j + 1;

end for;

endstepReduce( result=sum, op=Operators.plus, prefixVar=myPrefixSum );

endstep();

j := 1;

step(); // Third BSP superstep:

for i in localStart(y):localStride(y):localEnd(y) loop

y[i] := prefix[j] + myPrefixSum;

j := j + 1;

end for;

endstep();

end parPrefix;

Fig. 1. NestStepModelica code computing parallel prefix sums in parallel. (Note that
in the current prototype implementation we simulate NestStepModelica keywords such
as step and endstep by standard library functions instead; this workaround will be
resolved in a final frontend implementation.)
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4 Survey of NestStepModelica Language Constructs

4.1 Reflective Functions

noProcessors() gives the total number of processes allocated to this fragment.
thisgroup() returns a reference to an object providing information about the
current group of the executing process. In particular,
thisgroup().rank() gives the rank of the executing process within its current
group;
thisgroup().gid() gives the relative group ID (i.e., its rank among all child
groups of its parent group);
thisgroup().size() returns the number of processes in the current group;
thisgroup().parent() provides a reference to the parent group’s group infor-
mation object.

4.2 BSP Supersteps and Nested Parallelism

step() and endstep() denote the start resp. end of a superstep. These should
be keywords but are currently realized as function calls, for pragmatic reasons.

Nested parallelism is desirable where massive parallelism should be exploited
or where sufficient parallelism only can be solicited if parallelism-generating con-
structs are nested. Statically nested parallelism occurs e.g. for nested parallel
loops, while dynamically nested parallelism is created e.g. by recursive paral-
lel divide-and-conquer computations. In NestStepModelica, this is achieved by
splitting a process group into disjoint subgroups that behave like disjoint BSP
submachines—they execute the superstep(s) framed by neststep and endnest-
step independently of each other and in parallel. In particular, different
subgroups may execute a different number of supersteps; processes restore con-
sistency and barrier-synchronize only within their subgroup.
neststep ( nsubgroups=intexpr ) denotes the start of a nested superstep,
where the current process group is split into nsubgroups child groups of ap-
proximately equal size that execute the sub-superstep between neststep and
endneststep independently and rejoin at endneststep. In the variant
neststep ( nsubgroups=intexpr, subgrouptojoin=intexpr ) a process can
dynamically determine the index of the subgroup it will join.
endneststep() denotes the end of a nested superstep where all processes barrier-
synchronize and the original group is restored. Additionally, pending consistency-
restoring operations to variables shared by all processes of the parent group are
committed here.

4.3 Data Sharing and Array Distribution

mem="shared" is a shared memory allocation specifier for a variable or array
that is to be shared between the processes of a group.
distr="block" is a type qualifier for block distribution of a shared array.
distr="cyclic" is a type qualifier for cyclic distribution of a shared array.
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localStart() and localEnd() return the first and last locally available index
in a distributed shared array, respectively;
localStride() returns the number of steps between two consecutive indices in
a distributed shared array (this is always 1 for blockwise distributed arrays).

With localStart(), localStride(), and localEnd() available it becomes
easy to express parallel loops as ordinary Modelica for loops, see Figure 1.

BSP-compliant mechanisms to access remote elements of distributed shared
arrays, similar as in NestStep [6], are provided but omitted here for lack of space.

4.4 Combining

At the end of a BSP superstep, i.e., at the conceptual barrier synchronization,
NestStepModelica enforces that all copies of shared variables on the processes
of a group contain the same value. How the consistency of possibly different
values in these copies (which are caused by write operations within the super-
step) should be made consistent again can be programmed individually for each
shared variable and superstep, according to the following predefined policies for
resolving (concurrent) write operations:
– Arbitrary Concurrent Write BSP A value written by any of the processes

will be chosen and committed to all copies of that shared variable. This is
the default policy.

– Reduction-Combine Concurrent Write BSP
– Prefix-Combine Concurrent Write BSP

endstepReduce ( result, op ) specifies for individual shared variables or ar-
ray sections how concurrent write conflicts should be resolved by use of a binary
associative reduction operator op at the end of this superstep. Such operators
are predefined in the Modelica standard library.
endstepReduce ( result, op, prefixVar ) specifies that, as a side effect of
the reduction computation, prefix-op results are returned to the private variable
prefixVar supplied as output parameter, where the process with rank i obtains
the global op over the result values written by processes ranked 0, ..., i − 1.

5 Some Experimental Results

At the time of writing, the run-time system of NestStepModelica [12] is oper-
ational; it is implemented on top of MPI and the Tlib library which enhances
process group management for nested SPMD parallelism in message passing
programs [11]. A NestStepModelica front end (compiler) is under development
as an extension of the Modelica language within the OpenModelica framework
[3]. Currently, flat supersteps containing parallel loops over distributed shared
arrays, such as in Figure 1, can be compiled; frontend support for nested paral-
lelism is a subject of future work.

Figure 2 shows execution times and relative speedups on a Linux cluster with
Xeon processors: for the parallel prefix sums program of Figure 1, run with
N = 100000 and N = 9, 999, 800 array elements, and for Gaussian elimination
without pivoting for a matrix of 5000 × 5000 elements.
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Number of Processors 1 2 4 8 16 32
Parallel Prefix Sums, N = 105, Time [ms] 24.76 12.7 6.61 3.46 1.90 1.36
Parallel Prefix Sums, N = 107, Time [ms] 2470 1261 632 318 162 83
Gaussian Elimination, N = 5000, Time [ms] 2725 2788 1422 729 389 258
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Fig. 2. Execution times and relative speedup on a Linux cluster for the parallel prefix
program with 105 and 107 floats, and for Gaussian elimination with a 5000 × 5000
matrix without pivoting

6 Conclusion

Parallelization allows to simulate larger models in reasonable time. Moreover,
the effective use of contemporary and future processor architectures makes par-
allelization a necessity anyway. Simulation code derived from equation-based
mathematical models offers parallelism at several levels (method, time, system,
and model), albeit each of these levels usually exhibits only very limited paral-
lelism. Soliciting a sufficient amount of parallelism is therefore only possible if
parallelization is done at several or all levels.

In this paper we described the NestStepModelica language and system that
allows explicit parallel programming of heavy subcomputations in the model
equation system, typically occurring on the right-hand side of the system. In
addition, NestStepModelica could be used to program stand-alone imperative
parallel computations within the Modelica environment. By marking parallelism
explicitly with BSP supersteps, parallel loops, data sharing classifiers, and array
distributions, automatic parallelization and scheduling methods at the equation
system level, such as [1], can be complemented.

NestStepModelica offers several important features that allow for convenient
expression of parallel computations: It offers a shared address space instead of
message passing. Its simple but programmable memory consistency model is
compliant with the superstep structure of the BSP model and thereby also
coincides with the synchronization. Moreover, the BSP structure guarantees
deadlock-free programs. Together this results in deterministic parallel program
execution.
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The explicitly parallel extensions in NestStepModelica should nevertheless
be used with care, because each parallel computation incurs some overhead in
the form of startup time and communication times. Therefore, only sufficiently
heavy computations should be parallelized.

Finally, the parallel simulation program resulting from NestStepModelica can
and should be complemented with other techniques for parallelization e.g. at
the model or solver level to solicit more parallelism, which will result in a nested
parallel simulation program.
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Abstract. Numerical simulations involving multiple, physically differ-
ent domains can be solved effectively by coupling simulation programs,
or solvers. The coordination of the different solvers is commonly handled
by a coupling shell. A coupling shell synchronizes the execution of the
solvers and handles the transfer of data from one physical domain to
another. In this paper, we introduce Flecs, a flexible coupling shell, de-
signed for implementing and applying an interface for multidisciplinary
simulations with superior accuracy. The aim is not to achieve the best
possible efficiency or to support a large feature set, but to provide a flex-
ible platform for developing new data transfer algorithms and coupling
schemes.

1 Introduction

Fluid-Structure Interaction (FSI) considers coupled fluid-solid problems, char-
acterized by the interaction of fluid forces and structural deformations, which
occur in many applications in industry and science. Nowadays, the simulation of
FSI becomes more and more important, since future structures become lighter
and more flexible and can be applied, e.g., to reduce the load on turbine blades,
or, to reduce the noise on cars. Such applications require a real interdisciplinary
approach, that can deal with complex physical models and very different scales.

The Faculty of Aerospace Engineering of the Delft University of Technology
has started a project to develop a generic, open-source coupling shell, named
Flecs [2], that can be used to join two or more arbitrary solvers. Flecs should
provide an innovative combination of high order coupling in space and time.
Moreover, to improve the accuracy and the efficiency of the computation, mul-
tilevel acceleration techniques for the coupling process [6], and fast prototyping
and parallelization techniques will be supported.

The majority of coupling shells are embedded subprograms that have been
developed for coupling two specific solvers. One exception is the coupling library

� Funding for this work was provided by the National Computing Facilities Foundation
(NCF), under project numbers NRG-2005.03.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1016–1025, 2007.
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MpCCI (Mesh based Parallel Code Coupling) [4], which can be used as a sep-
arate program. Although MpCCI is relatively easy to use and provides many
advanced features, it is less suitable for a scientific research community that is
aimed at developing new data transfer algorithms. Numerical acceleration algo-
rithms, like Krylov and multilevel methods - urgently required for efficiency -
are not incorporated. Moreover, since MpCCI only provides the binary code,
the user can not modify the implementation schedule of MpCCI.

In addition to accurate coupling in space, we want to reduce the partition-
ing errors in time by using specially designed high-order time integration meth-
ods [5]. It is our goal for Flecs to support solvers that run on parallel computers,
in order to make Flecs suitable for large applications. In particular, Flecs must
be able to deal with data sets that have been distributed over multiple paral-
lel processes. In addition, Flecs should support the implementation of parallel
data transfer algorithms. At the present stage of the project, experiments are
limited to sequential solvers; each solver, running on its own processing unit,
deals with one particular physical domain. The coupling server, running on a
third processing unit, takes care of the exchange of data between the solvers.
Since Flecs has to deal with separate solver processes, that have been started
independently, it is not possible to use MPI-1 for exchanging data between those
processes. For that reason, Flecs is based on MPI-2 [3].

The remainder of the paper is structured as follows. In Sect. 2, we describe the
importance of coupling two solvers properly to solve interdisciplinary problems
in an efficient and accurate way. Sect. 3 gives an overview of the design of Flecs.
Through the help of a test problem, Sect. 4 illustrates how Flecs can be used.
And finally, Sect. 5 contains some conclusions and future plans.

2 Coupling Methods

Interdisciplinary problems can be solved in two ways. In the first way, the so-
called monolithic approach, a new dedicated solver is developed that solves the
whole system at once. Major advantage is that the solver can be optimized for
the specific problem. Development of such a complex, entirely new solver, will
take an enormous effort, while there already exists many highly efficient and
accurate solvers for the separate domains. The other way, called the partitioned
approach, is to reuse monodisciplinary solvers, that have been developed and
tuned for tens of years. In that case, each physical system is solved individually
and interaction effects are treated as external conditions. A disadvantage of this
approach is that the coupling algorithm is not as straightforward as it looks.
Without much care the accuracy of the coupled problem easily reduces to first-
order in time, irrespective of the order of the separate solvers.

Flecs provides an efficient coupling interface for partitioned computation of
multidisciplinary problems. The design of Flecs allows all kinds of data transfer
algorithms to couple different domains in space and time. Numerical acceleration
techniques, like multigrid, can be incorporated, too.
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Fig. 1. (a) Non-matching grids in 2D and (b) Configuration of the quasi-1D test prob-
lem

2.1 Non-matching Grids

If different grid generators are used for both domains, the mesh interface may
not only be non-conforming (nodes at the interfaces do not match, different
discretization and/or interpolation order on both discrete interfaces), but also
non-matching (cf. Fig. 1(a)) in the way that there are gaps and/or overlaps be-
tween the meshes. We remark, that generating matching grids is most of the
time not desirable, because, in general, the simulation on one physical domain
requires a much finer grid than the simulation on the other one. In the remain-
der of this paper, we consider FSI rather than some arbitrary physical domain
interaction.

De Boer et al. [1] gives a detailed study of data transfer methods, and FSI
simulations are performed on non-matching meshes. As coupling method in this
paper, we take the radial basis function method (RBF) with large compact
support. This method, favored by [1], because of its accuracy and efficiency,
does not need orthogonal projection or search algorithms. The coupling between
fluid and structure equations arises from the dynamic and kinematic boundary
conditions (BC) at the fluid-structure interface. The BC for the displacement
on the continuous fluid-structure interface Γ , given by dxA(x) = dxB(x), where
dx denotes the displacement on either the flow (A) or structure (B) side of
the interface. The displacements of the flow points have to be predicted once
the displacements of the structure points have been determined. The discrete
version of the BC can be formulated as

dxA = HABdxB ,

where HAB ∈ R
NA×NB is the transformation matrix prescribed by the RBF

method. The numbers NA, the number of flow, and NB, the number of structure
points on the fluid-structure interface, are usually very small compared to the
total number of structure and flow points. Analogously, the discrete version of
the BC for the pressure forces leads to

pB = HBApA,



Flecs, a Flexible Coupling Shell Application to Fluid-Structure Interaction 1019

where the transformation matrix HBA is of size NB×NA. The computation of the
matrices HAB and HBA involves the inversion of a small matrix. The matrices
HAB and HBA depend on the coordinates of the interface points. If the positions
of the interface points have been moved, these matrices are recalculated.

2.2 Coupling Algorithm

We consider, as an example of use, a quasi 1-D channel with a flexible curved
wall as shown in Fig. 1(b). The main velocity, u, of the compressible flow is in
the x-direction and the structure is modeled as a membrane. The diameter of
the tube may vary due to a pressure difference between the pressure in the flow
and in the wall. For more details on this test problem, we refer to [1].

The simulation of the compressible flow and the membrane is solved effec-
tively by coupling two solvers. The solvers exchange data to take into account
the effects on the other domain. Starting at time tn, each solver computes the
solution at time tn + Δtn on its own particular domain. In general, Δtn will be
determined by the flow solver. The following steps are carried out to obtain the
solution at tn+1 from the solution at tn :

step 1. compute transformation matrices Hn
AB and Hn

BA
step 2. obtain the pressure on the structure interface points pn

B,γ = Hn
BApn

A,γ

step 3. calculate the displacements of the structure dxn+1
B from the structure

equations using the old value of the pressure pn
B

step 4. use the coupling method to compute the displacements of the tube wall
dxn+1

A,γ = Hn
ABdxn+1

B,γ

step 5. calculate the new pressure pn+1
A,γ from the fluid equations with the new

displacements of the tube dxn+1
A .

The subscript γ denotes that the operations are only performed on data at
the discrete interface points. The steps to gather and scatter the data on the
interface points have been omitted. The computation of Hn

AB and Hn
BA requires

the coordinates on the same time tn. In Sect. 4, we will return to this example
of use.

3 Design Overview

Flecs is decomposed into a client library that is to be called from the solver
programs, and a coupling server, in short server, that coordinates the execution
of the solvers, takes care of the coupling of the domains and handles the transfer
of data between the solvers. Both the client library and the server have been
implemented in C, so that it is relatively simple to use Flecs in solver programs
that have been written in different programming languages like C++ and Fortran
90. In the simplest case the server comprises a single process (as in Fig. 2) that
executes the transfer algorithm sequentially.

To limit the complexity of the server, it can only couple two solvers at a time.
However, one can couple a solver to two other solver processes by starting a
second server.
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Fig. 2. Schematic representation of Flecs

3.1 The Client Library and Its Usage

The client library provides subroutines for establishing a connection with the
server; for describing the geometry of the coupling interface; for describing the
data that are to be transferred to and from the server; for sending data to the
server; and for receiving data back from the server. If a solver program comprises
multiple parallel processes, then each process will contain its own copy of the
client library (see Fig. 2), and will establish a separate connection with the
server.

Each solver program can be started independently, using its standard start-
up procedure; there is no need to change the structure of the solver program.
In fact, one only needs to extend the solver program with a small number of
subroutine calls to the client library. For an overview of the functions exported
by the Flecs client library, see Table 1.

To start a coupled simulation, both solvers set up a connection to the server
by calling the client function FLECS Connect. Then the solvers inform the server
about the data to be transferred between them. Therefore, one or more point sets
and data sets are created at each side of the interface, and, transferred to the
server by calling the functions FLECS NewPointSetand FLECS New- DataSet. The
solvers exchange data via the server by calling the functions FLECS SendDataSet,
FLECS RecvDataSet, FLECS Send and FLECS Recv. The first pair transfers a data
set from one solver to the other, and typically invokes a transformation algorithm
on the server. The second pair transfers an arbitrary data array between the
solvers, and is particularly used to communicate convergence and time stepping
information between both solvers. Both pairs of functions require that a send op-
eration matches a corresponding receive operation. The description of a single
iteration step of the test problem of Sect. 2.2 can be found in Sect. 4.

3.2 The Coupling Server

The server consists of two parts, as shown in Fig. 3: a communication and coor-
dination layer, and a transfer algorithm. The communication and coordination
layer handles the initialization and finalization of the server; exchanges data
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Table 1. An overview of the functions exported by the Flecs client library

Initialization functions
FLECS Init Initializes MPI, parses the program names, opens the MPI port,

publish the name of the server, save the server address
FLECS Connect Connects solver and coupling server
FLECS NewPointSet Registers point set on coupling interface with coupling server
FLECS NewCoupling Defines coupling between point set on this solver to point set on

another solver
FLECS NewElemSet Defines element set on coupling interface with coupling server
FLECS NewDataSet Defines data set associated with point set

Finalization functions
FLECS Disconnect Disconnects solver from coupling server
FLECS Shutdown Calls MPI finalize and cleans up the allocated memory
FLECS DelPointSet Deletes registered point set
FLECS DelCoupling Deletes created coupling
FLECS DelElemSet Deletes created element set
FLECS DelDataSet Deletes defined data set

Data exchange functions
FLECS SendDataSet Sends data set to other solver via coupling server
FLECS RecvDataSet Receives transformed data set from other solver
FLECS Send Sends arbitrary data array to other solver
FLECS Recv Receives arbitrary data array from other solver

Miscellaneous functions
FLECS SetCoords Updates coordinates of registered point set
FLECS ErrorString Converts error code to human-readable error message
FLECS UseElemSet Use element set

Transfer Algorithm

Communication and Coordination Layer

Fig. 3. The coupling server, consisting of a communication and coordination layer and
a transfer algorithm. The arrows indicate the flow of data between the coupling server
and two solver programs.

between the server and the two solver programs; manages the data structure –
including point sets, couplings, and data sets – that have been created by the
client library on behalf of the solver programs; and manages the coupling-specific
data structures that have been created by a transfer algorithm. Obviously, more
than one data set can be associated with a point set. To associate a data set to
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a particular point set, an integer value pset, which uniquely identifies a point
set, must be involved in the data set message.

The transfer algorithm handles the conversion of a data set from one point set
to another point set. This part of the server is based on a plug-in architecture,
that makes it easy to implement new transfer algorithms, see also Sect. 4.1.
The transfer algorithm itself can be implemented in any programming language.
Since the transfer algorithm is a self-contained module of the coupling server,
one can experiment with different types of transfer algorithms without having
to worry about non-essential details such as communication between the server
and the solver programs.

4 Execution of Test Problem Using Flecs Routines

Again, we consider the quasi-1D test problem described in Sect. 2.2. For sim-
plicity, we assume that flow solver A and structure solver B have not been
parallelized and that each solver process runs on a single processing unit. The
server Γ becomes a third process which takes care of the communication and the
interpolation of the meshes.

Fig. 4 represents a single FSI iteration outlined in nine (parallel) stages. The
various steps of the coupling algorithm, as listed in Sect. 2.2, are shown, and,
on the solvers A and B the calls to the client library of Flecs are inserted. We
choose, that the flow solver determines the progress of the integration process,
i.e., the time step is calculated by the flow solver. In addition, the flow residual
Rn+1

A controls the complete system. When the solver A has computed the next
time step Δtn, (stage i) its value must be sent via the server Γ to the solver B
using the pair (FLECS Send, FLECS Recv, stage a).

Figure 4 illustrates that by breaking the computation of the transformation
matrices Hn

AB and Hn
BA (step 1) into two separate parts, the server can compute

these matrices simultaneously with other operations performed by the solvers
(stages c and g). More precisely, no extra wall clock time is needed to compute
these matrices. Let us assume that Hn

BA has been calculated in a previous inte-
gration step (stage g), then the force on the structure can be updated (step 2,
stage b). As a result, we obtain the vector pn

B,γ asked by solver B, by means of a
call of FLECS RecvDataSet. Next, solver B computes the solution at the struc-
ture domain (step 3, stage b) at time tn+Δtn. We observe that the computation
of Hn

AB can be postponed, allowing the solver B to start the computation of step
3 earlier. As a consequence, the computation of Hn

AB can be carried out simul-
taneously with step 3 (stage c). The vector dxn+1

B,γ is needed to carry out step
4, and corresponds to calls of FLECS SendDataSet and FLECS RecvDataSet on
the solvers B and A, respectively (stage d).

Again, by transferring dxn+1
B,γ (calling FLECS SendDataSet) first and then the

new point set xn+1
B,γ (calling FLECS SetCoords, stage f ) more parallelism can be

obtained. However, as stated above, the transformation must be applied on up-
dated values of dxn+1

B,γ . The transformation operation delivers new values dxn+1
A,γ

to be transferred to solver A (calling FLECS RecvDataSet, stage d). Next, the
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Flow Solver A Coupling Server Γ Structure Solver B Stage

FLECS Send(Δtn)

FLECS SendDataSet
(pn

A,γ)

FLECS RecvDataSet
(dxn+1

A,γ )

xn+1
A,γ = xn

A,γ +dxn+1
A,γ

FLECS SetCoords
(xn+1

A,γ )

SolveFlow ⇒ pn+1
A

Compute R
n+1
A

finish = Rn+1
A < ε

.or. tn+1 > te

FLECS Send(finish)

if finish
FLECS Disconnect
FLECS ShutDown

else
Compute Δtn+1

end

Transfer(Δtn)

Receive( pn
A,γ )

pn
B,γ =

Update(Hn
AB ,pn

A,γ)
Send( pn

B,γ )

Hn
AB =

Coupling(xn
A,γ ,xn

B,γ)

Receive( dxn+1
B,γ )

dxn+1
A,γ =

Update(Hn
AB , dxn+1

B,γ )
Send( dxn+1

A,γ )

Receive( xn+1
B,γ )

Receive( xn+1
A,γ )

Hn+1
AB =

Coupling(xn+1
A,γ ,xn+1

B,γ )

Transfer(finish)

if finish
Break both
connections

end

FLECS Recv(Δtn)

FLECS RecvDataSet
(pn

B,γ)

SolveStructure

⇒ dxn+1
B

FLECS SendDataSet
(dxn+1

B,γ )

FLECS SetCoords
(xn+1

B,γ )

FLECS Recv(finish)

if finish
FLECS Disconnect
FLECS ShutDown

end

a

b

c

d

e

f

g

h

i

Fig. 4. The n +1-th iteration step of the FSI process expressed in Flecs routines (see
Table 1). The superscript n stands for the time step, whereas the subscript A or B
indicate that the values belong to the domain of the flow solver A or the structure solver
B. A vector refers to interface values in case the underscore γ is present. Here, tn and
Δtn denote the current time and time step, x and dx the position and displacement
of the coordinates, R

n
A the residual, ε indicates the required accuracy of x for FSI

iteration. SolveFlow performs a single iteration with the flow solver, resulting in, among
others, the updated value pn+1

A , whereas SolveStructure carries out a single iteration
with the structure solver, producing, among others, the updated value dxn+1

B . The
interface points of pn+1

A and dxn+1
B are input for the transformation matrices. Finally,

the boolean finish determines whether the program terminates.
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flow solver carries out an integration step from tn till tn+1 (step 5). Simultane-
ously, the matrix Hn+1

AB for the flow-structure interface can be calculated using
the new point sets xn+1

A,γ and xn+1
B,γ (step 1, stage g).

Let ε be some given tolerance, and, let te be the end time, then if

finish = Rn+1
A < ε | tn + Δtn ≥ te

is not true, a new iteration step n + 1 can be started after calculating the new
time step Δtn+1. In case of convergence, the process terminates, and solver A
sends messages to server Γ and solver B. This can be carried out by calls to the
routines FLECS Send and FLECS Recv (stage h) to notify solver B to terminate
the calculation, followed by calls to FLECS Disconnect and FLECS Shutdown to
disconnect the connections and to clean up all MPI states.

4.1 The Server Program

The main loop of the server program can look like

int main ( int argc, char** argv )
{ flecs_transfer_t transf;
int result;

FLECS_InitTransfer ( &transf );
transf.NewCoupling = NewCoupling;
transf.DelCoupling = DelCoupling;
transf.InitPoints = InitPoints;
transf.SetCoords = SetCoords;
transf.TransferData = TransferData;

FLECS_SetTransfer ( &transf );
FLECS_SetErrorMode ( FLECS_ERRORS_ABORT );
FLECS_Init ( &argc, &argv );
FLECS_Connect ( );

do
{ result = FLECS_MainLoop ( ); }
while ( ! result );

FLECS_Shutdown (); return 0;
}

The do while loop is executed repeatedly until result becomes FALSE. The
subroutine FLECS MainLoop ’listens’ whether there is a message to be received,
where after the server copies the data out of the send buffer and will act accord-
ingly. A message can be one of the functions listed in Table 1. Assume that the
application demands a multigrid approach, and, assume that FLECS MainLoop
receives a message from solver A for a new coupling (i.e., solver A has called
FLECS NewCoupling). Then the server Γ may expect a similar request by solver
B, followed by new point sets and associated data sets of both solvers. We



Flecs, a Flexible Coupling Shell Application to Fluid-Structure Interaction 1025

remark that as a consequence of this simple approach, illustrated by the above
program listing, the Flecs’ user does not have to implement the server program,
but only adds some simple programs NewCoupling, DelCoupling, InitPoints,
SetCoords and TransferData. The latter must include the coupling algorithm.
Moreover, the user has to include in his/her solver programs some calls to Flecs

routines. Such calls must correspond, e.g., FLECS Send and FLECS Recv are ap-
pearing in pairs, otherwise an error will be generated.

5 Conclusions and Future Plans

In this paper, we have introduced Flecs, a coupling shell, which can be used
as an interface for multidisciplinary simulations, e.g., for fluid-structure inter-
action computations. A very simple quasi one-dimensional test problem is used
to show the usage of an preliminary implementation of Flecs, and an overview
of the available routines is given. More investigations are needed to prove its
functionality, to experiment with different kind of coupling methods, such as
nearest neighbor or Gauss interpolation. We would like to extend the parallel
capabilities of Flecs to be able to simulate realistic cases on parallel computer
platforms.
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Säumerstrasse 4, Rüschlikon, CH-8803, Switzerland

{bek, cur, and}@zurich.ibm.com

Abstract. In recent years the BlueGene/L supercomputer (BG/L) has
significantly extended the computational frontiers in several important
problems of science and engineering. In this paper we focus on ab initio
electronic structure calculations, which have enabled accurate model-
ing and prediction of the properties of materials by using first principle
quantum-mechanical calculations. We report our progress in scaling the
CPV code on EPFL’s recently installed BG/L system using a Task Group
(TG) hierarchical parallelization strategy for 3D FFTs. We illustrate that
TG permits scaling of the 3D FFTs to the extent that the dense linear
algebra kernels dominate in the overall cost.

1 Introduction

Ab initio electronic structure calculations, in the framework of Density Func-
tional Theory (DFT) [5,7], have proven remarkably accurate in providing a
wealth of information concerning several important physical properties of com-
plex materials. However, DFT calculations are extremely demanding and have
stretched our computational capabilities to their very limits. Therefore, advances
in better simulation techniques and algorithms as well as advanced supercom-
puter architectures receive much of attention in this very active field of research.

The advent of the BG/L supercomputer has triggered a lot of excitement in
the electronic structure calculation community, mainly caused by the prospect
of highly increased scalability (see for example [4] where excellent scalability
results are presented for up to 32000 cpus). In this paper, we report our progress
in scaling the CPV code [2,8], which is part of the quantum Espresso package1, on
the recently installed BG/L supercomputer at EPFL, Lausanne, Switzerland2.

The core problem in DFT calculations is the solution of the Kohn-Sham equa-
tions

HρΨρ = EΨρ, (1)

1 http://www.pwscf.org
2 http://bgl.epfl.ch

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1026–1035, 2007.
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where ρ is the charge density of the electrons distribution, Hρ is the Kohn-Sham
Hamiltonian operator, Ψρ are the wavefunctions and E is the energy of the sys-
tem. Observe that this is a nonlinear eigenvalue problem, since the Hamiltonian
and the wavefunctions depend upon each other through the charge density ρ.
The last decades have seen many methods that attempt to efficiently solve equa-
tion (1). All of them utilize some short of iteration which aims at improving some
initially selected wavefunctions so that at the end of the iteration the approxi-
mate energy E is as small as possible, or in other words the solution of equation
(1) is self-consistent. The computational complexity of practical algorithms for
this problem stems mainly from two factors:

Discretization. The Hamiltonian operator and thus the wavefunctions have
to be discretized in some suitably selected basis. This typically results in
a very large discretized Hamiltonian (in the order of millions of degrees
of freedom). Consequently, the eigensolvers for dense matrices, such as the
ones in LAPACK3, cannot be applied in this case. Thus, one has to utilize
instead iterative techniques that only use the application of the discretized
Hamiltonian operator on a likewise discretized function (i.e. vector). In plane
wave implementations, such as in the present case, this results in a sequence
of inverse and forward 3D FFT transforms, the efficient implementation of
which is crucial for overall performance.

Orthogonality. The wavefunctions Ψρ are orthogonal among each other. Thus,
the approximate discretized wavefunctions must likewise form an orthogonal
basis. This has the consequence that all iterative methods that target to solve
the nonlinear eigenproblem (1) have to maintain a set of mutually orthogonal
approximate wavefunctions at each iteration. Maintaining orthogonality will
of course come at a cost, which scales as the cube of the total number of
valence electrons in the system.

2 Task Groups Strategy for 3D Parallel FFTs

The CPV code uses a plane wave basis to discretize the Schrödinger equation and
thus relies on heavy use of 3D Fast Fourier transforms. We have investigated
the efficient parallelization of 3D FFTs. In particular, we have adopted a scheme
based on a Task Groups parallelization strategy that concurrently performs sev-
eral parallel 3D FFTs, one per each group of processors. Similar to the approach
in [6] for the CPMD code4, we exploit opportunities for hierarchical parallelism in
CPV.

In plane wave codes, the wavefunctions Ψρ = [ψ1, . . . , ψocc] are expanded
in Fourier space, where occ is the total number of valence electrons, which in
turn depends on the type and number of the involved atoms. In medium size
simulations occ is in the order of several hundreds, while large simulations will

3 http://www.netlib.org/lapack
4 http://www.cpmd.org
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Fig. 1. Structure of the standard parallel 3D FFT

push occ to thousands or even tens of thousands. The charge density ρ(r) at
position r in real space is given as

ρ(r) =
occ∑

i=1

|ψi(r)|2. (2)

Observe that since the wavefunctions are expanded in Fourier space, computa-
tion of charge density in Fourier space would entail doubly nested summations.
Instead, it is performed in real space. To this end, the wavefunctions are trans-
formed back to real space by means of inverse 3D FFTs. In the case of P available
processors, all of them can be devoted to a single parallel 3D FFT. On the other
hand, we can do G, (G < occ) parallel 3D FFTs concurrently. We define G groups
of processors, each of which works on a single parallel 3D FFT. Thus, the number
of loops in computing the charge density is �occ/G� (special handling of the last
loop takes care of the case that occ is not divided exactly by G).

Performing one parallel 3D FFT at a time, as is the common practise in elec-
tronic structure calculations, limits scalability. Here is why: The Fourier coeffi-
cients of the wavefunctions are organized in a x−y−z 3D mesh in Fourier space.
For all wavefunctions, each processor is assigned a number of pencils across the
z (vertical) direction. Figure 1 (left cube) illustrates the case for two processors
and one wavefunction. The 3D inverse FFT is performed as follows:

1. 1D inverse FFTs across the z (vertical) direction are computed independently.
2. An all-to-all global communication distributes the results to all processors,

so that each processor ends up with a number of complete x − y planes (see
right cube of Fig 1).

3. Then, 2D inverse FFTs are performed independently by each processor with-
out the need for further communication.

It is clear that if the number P of available processors is larger than the number of
x−y planes, which is the mesh dimension across the z direction, some processors
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will get no planes at all. In general, the scalability of this scheme is limited by the
largest dimension of the FFT mesh. For parallel architectures with a moderate
number of available processors this limitation is not severe as practical runs of
ab initio codes use hundreds of x − y planes. However, on the BG/L we need
to utilize thousands of processors and thus we need a different parallel 3D FFT
scheme. Our solution is to exploit opportunities for hierarchical parallelism.

Observe that in order to calculate the charge density ρ(r) by means of (2)
we need to iterate through a loop of 3D FFTs, equal to the number occ of va-
lence electrons. The Task Groups (TG) strategy will assign different groups of
processors to different wavefunctions. Suppose that a processor pe is empty, in
the sense that no x − y planes would be assigned to it if all P processors were
to participate in an inverse 3D FFT. Then, since the number of its peers in the
group will be P/G we can choose the number of groups G so that a processor
will be never empty. We outline the TG scheme in Table 1.

The concurrent implementation of G 3D FFTs is organized on a 2D mesh of
processors. Each processor belongs to its row group as well as to its column
group. Global communications are restrained within these groups. Iteration k
performs the 3D FFTs needed for wavefunctions (k-1)*G+i, i=1,...,G. Re-
member that each processor holds only part of the Fourier coefficients for each
wavefunction. Thus, the all-to-all within the row group (line 2) brings to
each column group all the Fourier coefficients for the wavefunction assigned to
it. For example, at iteration k the j − th processor of the first column group
will send its parts of the (k-1)*G+i, i=2,...G wavefunctions, to its row group
peers i = 2, . . . , G, respectively, while it will receive from them all needed parts
for the (k − 1) ∗ G + 1 wavefunction. Then, all processors in each column group
can perform a parallel 3D FFT (line 3). Finally, the charge density ρ can be ac-
cumulated by means of a global reduction across processors in each row group
(line 4).

The Task Groups scheme requires additional memory. Remember that each
processor holds a part of the wavefunctions coefficients for all eigenvalues. Thus,
in order for a column group to work exclusively on a single eigenvalue each
processor needs to receive additional wavefunction coefficients from its row group
peers. The amount of the extra memory depends upon the number G of Task
Groups. There is a tradeoff between the number of available processors P and
the number of Task Groups. In order to exploit a large number of available
processors we need many Task Groups. On the other hand, this will increase the
amount of additional local memory as well as the traffic on the interconnect for
the initial all-to-all. However, the 3D FFTs within each column group will
also require less communication, since only P/G processors are involved in each
column group.

Similar to the calculation of charge density, forces contribution to the orthog-
onality constraints for the wavefunctions requires a loop of forward 3D FFTs
across the occupied states. A parallel 3D FFT is implemented following the same
steps as in the inverse transformation in exactly the opposite order: i) Each pro-
cessor holds a number of complete x − y planes on which it performs 2D FFTs,
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Table 1. The TG parallel 3D FFT scheme for the calculation of charge density ρ(r)

Define a 2D processor array
The number of columns is equal to the number G of Task Groups
The number of rows is equal to the number of processors in each Task Group

1. DO k = 1, occ/G
2. all-to-all communication in row group: brings all needed Fourier

coefficients for 3D FFT
3. parallel 3D FFT within column group
4. allreduce to accumulate charge density within row group

5. ENDDO

ii) a global all-to-all assigns to each processor a number of z sticks on which
independent 1D FFTs are performed. The Task Groups strategy is analogously
adopted, so that each column group works on different wavefunctions.

We note that very good scaling for parallel 3D FFTs has been achieved by
means of the Volumetric FFT algorithm [3], which employs distribution of the FFT
mesh across all three x−y−z directions. However, employing this scheme in CPV
would require a major redesigning of the data organization and the corresponding
data structures. The Task Groups scheme allows for very good scalability while
requiring only minimal changes to the underlying electronic structures code.

Customizing for the BG/L. The decisive parameters in order to select the
optimal G involve i) the amount of memory available to each processor core, 512
MB in coprocessor mode and 256 MB in virtual mode, and ii) the unsurpassed
latency and bandwidth of the dedicated collective communication tree intercon-
nect: latency of tree traversal 2.5 μs, 2.5 GB/s bandwidth per link, 23TB/s total
binary tree bandwidth (64k machine). It is typical in our practical applications
to use 8-32 Task Groups.

3 Orthogonalization

CPV implements the Car-Parrinello method that casts the nonlinear eigenproblem
(1) in a constrained optimization framework using a suitable Lagrangian. The
constraints ensure the orthogonality of the approximate wavefunctions. In par-
ticular, the Lagrange multipliers involved are given as solutions of a non-linear
equation [8]:

A + ΛB + B�Λ + ΛCΛ� = I, (3)

where, A, B and C are given occ × occ matrices and Λ is the matrix of Lagrange
multipliers. All of these matrices change at each Molecular Dynamics step. This
equation is typically solved iteratively where the first iterate Λ(0) is determined
by solving the

Λ(0)Bh + BhΛ(0) = I − A, (4)
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where Bh = B+B�

2 is the Hermitian part of matrix B. This equation is solved
exactly if we consider the unitary matrix U that diagonalizes matrix Bh. Then,
the next iterate Λ(k+1) is calculated by solving the following equation

Λ(k+1)Bh + BhΛ(k+1) = I − A − Λ(k)Ba + BaΛ(k) − Λ(k)CΛ(k), (5)

where Ba = B−B�

2 is the skew-symmetric part of matrix B, which is also solved
similarly to equation (4). Observe that we need to diagonalize matrix B only
once, in order to calculate the first iterate Λ(0). However, this matrix changes at
each MD step. This incurs a cubic cost O(occ3) in terms of the valence electrons,
which is the well known cubic cost of DFT electronic structure calculations.

Observe that the solution of equation (5), in particular its right hand side,
requires matrix-matrix multiplications. These operations are easy to distribute
across the available processors. Furthermore, an extremely efficient DGEMM li-
brary, which utilizes both floating point units (FPUs) of both cores on each
computing node, is available for the BG/L nodes and has been used to achieve
unprecedented levels of performance for ab initio simulations on the BG/L [4]
(see also www.cpmd.org).

Traditionally, the major cost of plane wave codes has been the Fourier trans-
forms. However, as it will be illustrated in the experiments section, the Task
Groups strategy allows for excellent scaling of the FFTs on massively parallel ar-
chitectures. Thus, efficiently scaling dense eigensolvers become crucial in order
to exploit the full potential of the BG/L. Currently, we are not aware of dense
eigensolvers able to adequately scale to thousands or even hundreds of processors.
Although very good existing such software, i.e. SCALAPACK5, PLAPACK6 can
help, our goal is to prepare for large scale simulations that inherently will require
thousands of processors.

3.1 Improved Orthogonalization Using Parallel Jacobi

We now briefly sketch an alternative approach, which is the subject of a forth-
coming report [1]. It is well known that the Jacobi method for eigenvalues is
in general much slower than the standard approach for computing eigenvalues
and eigenvectors of dense matrices (see LAPACK), which utilizes reduction to
Hessenberg form (or tridiagonal for symmetric matrices). However, parallel Ja-
cobi schemes, such as the BFG library7 have been shown to exhibit much better
scaling than the standard approach. What is particular to the current applica-
tion is that the iterative orthogonalization scheme is repeated at each step of
the molecular dynamics simulation. That is, matrix B

(i)
h , which we need to di-

agonalize at the i − th molecular dynamics step, is usually a small perturbation
of matrix B

(i−1)
h that was diagonalized at the previous step. The strategy is now

straightforward to describe:

5 http://www.netlib.org/scalapack/
6 http://www.cs.utexas.edu/∼plapack/
7 http://www.cse.clrc.ac.uk/arc/bfg.shtml
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Fig. 2. Approximately diagonal matrices D̂2 and D̂6 for steps 2 and 6 (left and right
respectively) of wavefunction optimization for a 32 water molecule simulation using
CPV. The size of the matrices is 320 × 320, and we plot the absolute value of matrix
elements in logarithmic scale.

1. Diagonalize matrix B
(1)
h = U0D0U

�
0 at the first MD step using the fastest

available parallel dense eigensolver (i.e. SCALAPACK).
2. At each step: approximately diagonalize matrix B

(i)
h as D̂i = U�

i−1B
(i)
h Ui−1.

3. At that step: Use very few passes of the parallel Jacobi iteration to diago-
nalize matrix D̂i and compute Di, Ui.

It is expected that matrix D̂i will be almost diagonal and thus very few passes
(perhaps even one) will be needed for the Jacobi iteration to converge, rendering
it much faster than the traditional reduce-diagonalize approach (see Figure 2).
This, combined with the good scaling of the parallel Jacobi method will yield
a highly efficient scheme for the calculation of the orthogonality constraints. In
addition, the calculation of D̂i is easy to parallelize and again uses the excellent
double FPU - dual core DGEMM library available for the BG/L nodes.

4 Scalability Experiments

We experimented with a molecular system comprised of 80 water molecules, that
represents a problem of intermediate size (240 atoms). The size of the FFT mesh
used was 1283. The number of occupied electrons of the system is occ = 320,
which is the size of the square matrices that need to be diagonalized for the
calculation of the orthogonality constraints.

The left plot of Figure 3 illustrates scalability results (total run time) for the
calculation of the charge density and the forces contribution to the orthogonality
constraints with and without the TG strategy. There are 128 x−y planes across
the z direction. Thus, the standard parallel 3D FFT implementation scales only
up to 128 computing nodes. Note that for the FFT, only a single computing core
is used on each node, as the remaining is exclusively devoted to communication.
On the other hand, the TG implementation continues to scale, where we have
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Fig. 3. Left: Scalability experiments for charge density and force contribution to the
orthogonality constraints. Right: Comparison of total percentages for charge density
and force contribution against orthogonalization. The test case is a system of 80 water
molecules.

16 32 64 128 256 512

10

20

30

40

50

60

70
80

Number of compt. nodes

T
im

e 
pe

r 
st

ep
 (

se
cs

)

Orignal CPV
New CPV

Fig. 4. Comparison of run times per step of old and new CPV implementations on the
BG/L. The test case is a system of 80 water molecules.

used 2 Task Groups in the case of 256 computing nodes and 4 Task Groups in
the case of 512 computing nodes.

The right plot of Figure 3 illustrates the percentage, in terms of run time, of
the FFT related computation (with TG) compared with the percentage of the
orthogonalization related computations. We stress that the latter is dominated
by the diagonalization of the dense matrix Bh at each MD step. These constitute
the main computational kernels of the application. What remains involves input-
output operations and other tasks whose relative load reduces drastically as the
size of the simulation increases. It is evident that the improved scaling of the 3D
FFTs causes the diagonalization to become dominant in terms of cost: 40% for the
orthogonalization while 25% for the 3D FFTs in the case of 512 computing nodes.
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It is important to note that diagonalization is based on a BLAS 3 implementation
that uses the dual-core, dual-fpu DGEMM library available for the BG/L nodes.

Figure 4 illustrates a comparison of our current BG/L implementation of CPV
with the original porting to the machine. Introducing the TG parallel 3D FFT
and using the dual-core, dual-fpu DGEMM library yields a five-fold decrease in time
per step for the CPV code on BG/L. It is also very interesting to point out that in
the latest version scaling continues up to 512 computing nodes. After that point
and on most of the run time per step is spent in diagonalizing dense matrices for
the orthogonalization, which as we showed does not scale in the current version
of the code.

5 Conclusion

The TG strategy permits the efficient scaling of 3D FFTs. However, in codes
such as CPV, that can use a lesser number of plane waves in the expansion of
the wanefunctions, dense linear algebra kernels quickly dominate as the num-
ber of processors increases and impair scalability. Thus, efficient scaling in such
kernels, even for small matrices, are of crucial importance in order to exploit
current as well as emerging massively parallel architectures such as the BG/L.
We have outlined a strategy that permits scalable diagonalization in the context
of orthogonalization of the wave functions. Preliminary results are encourag-
ing and suggest that the proposed approach can effectively push the scalability
frontier of such codes. The Task Groups strategy is already implemented in the
latest release of the CPV code (available through the quantum Espresso software
package), exhibiting very satisfactory performance in real-world simulations.

Acknowledgements. The first author would like to thank Z. Drmač for useful
discussions concerning the parallel Jacobi iteration.
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Abstract. The IBM BlueGene/L (BG/L) super-computer holds 3 of
the top 10 rankings on the 26th TOP500 list of LINPACK performance.
The system is novel in its design in many aspects when compared to
other more traditional high-performance computing systems.

When developing system libraries as well as when tuning application
code for BG/L it is essential to be able to measure the impact of code
modifications and algorithmic choices. PAPI is a platform neutral user
level library to accomodate programmers’ need to access on-chip perfor-
mance counters. This paper describes the implementation of the low-level
kernel interface for hardware performance counter access on BG/L and
the accompanying PAPI implementation.

1 Introduction

1.1 Hardware Performance Counters

The central processing unit (CPU) found in many appliances today is a complex
system in itself consisting of several cooperating functional units. The design of
the modern CPU is the result of an evolutionary process where the experience of
previous designs is combined with simulation of possible future designs to decide
upon the next version of a particular CPU.

The simulation process is augmented by having probes (hardware performance
monitors) available in the CPU that can be used to measure events visible to the
CPU. These measurements can be used to validate the accuracy of the simulator
and to diagnose performance bottlenecks in the current CPU design to guide
future CPU enhancements.

Over the years computer systems vendors have become more open to publicize
the implementation of these hardware performance monitors. This has allowed
advanced application programmers to measure the behaviour of their codes on
the particular CPU which in turn can be used as information for code tuning
and guidance to further development of the application to enhance performance
on that particular CPU.

1.2 PAPI

Even in the case where public information about the hardware performance
monitors on the chip was available from the vendor, their use has been restricted
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to a select group of highly skilled programming experts. The reason is that the
information generally available have most often been sparse or incomplete and
the implementation is specific for every CPU and may even vary between CPU
versions.

To alleviate the work of adapting an application code that has been modified
to take measurements using the probes available on a particular CPU to another
CPU, a hardware independent application programming interface (API) has
been designed as described by Brown et al. [1]. This interface is known as the
hardware performance counter API, PAPI.

PAPI allows access to hardware counters using high-level programming lan-
guages such as e.g. C and Fortran. Access to the counters is simplified by pro-
viding a set of predefined commonly available counter events, while architecture
specific events still can be accessed by means of so called “native” events. The
interface provides for simple construction of event “bundles” – event sets – that
can be started, stopped and read independently. Counter conflicts, availability
of the user selected events and similar hardware dependent aspects is handled
by the PAPI library and underlying substrate and reported back to user level
by return codes.

1.3 IBM BlueGene/L

The IBM BlueGene/L supercomputer is targeted at creating a highly scalable
system capable to be used in the most demanding computational tasks. The
design described by Adiga et al. [2] uses a system-on-a-chip (SOC) design to ob-
tain high-reliability, relatively low power consumption and cooling requirements
while still maintaining high-bandwidth, low-latency communication and a large
capacity in floating point operations. Its design has also introduced new concepts
in the field of hardware performance monitoring as the SOC design has enabled a
hardware performance counter architecture that is capable of registering events
not only in the memory hierarchy, but also in the network controllers.

2 Implementation

2.1 The IBM BlueGene/L Hardware Performance Counters

The IBM BlueGene/L compute node CPU is a number of functional units col-
lected in a single chip. The functional units include 2 PowerPC 440 cores, 2
Gbit ethernet controllers, 6 torus network controllers, 3 tree network controllers,
a barrier network controller, a system management JTAG (IEEE 1149.1-1990)
network, 2 floating point units and a unified performance counter (UPC). The
CPU cores and floating point units run at a clock frequency of 700MHz while
the remaining functional units, including the UPC, run at 350MHz.

The UPC contains 48 counter registers, each register being 32 bit wide. The
registers can be programmed to register counts from a total of 311 available
events on the chip [3]. The events correspond to activities in the different func-
tional units whose events tracing mechanisms are routed to the UPC. The chip
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also has access to a 64 bit wide clock cycle counter or time-stamp counter (TSC)
that counts the number of core CPU cycles that pass.

In addition to the TSC and UPC registers, the floating point units (FPU)
each have 2 32 bit wide counter registers capable of registering events in the
respective FPU. There are 8 FPU events available. All in all this amounts to 52
counter registers and 319 events, not counting the TSC.

All counters are accessible from the running thread by reading special CPU
registers. To enable a lower latency access mode the UPC counters can be
mapped into user memory. The hardware counters are also accessible from the
management network, JTAG, which allows for remote non-intrusive system wide
counter monitoring.

2.2 BGLperfctr API

To allow for user level access to the UPC a low-level API was designed that
abstracts some of the hardware specific aspects of the IBM BlueGene/L per-
formance counter infrastructure. The implemented BGLperfctr interface defines
access to the hardware counters by abstract names of the events as illustrated
in table 1. The API also hides hardware implementation details such as possible
mappings of counter events on to physical counters, free vs. occupied counters
and the generation of control words for the UPC and the FPU counters.

Table 1. Example of IBM BlueGene/L specific events

BGLperfctr name Description
BGL FPU ARITH OEDIPUS OP All symmetric, asymmetric, and complex

Oedipus multiply-add instructions
BGL UPC L3 CACHE HIT Hit in level 3 cache
BGL UPC TR RCV 2 VC0 DPKT RCV Data packet arrived in tree receiver 2, chan-

nel 0
BGL UPC TS YM 32B CHUNKS 32 byte chunk sent in torus channel Y-

Counters are controlled by the user to either count the rising or falling edge of
the condition, or alternatively to count the elapsed number of UPC clock cycles
where the condition is one of either true or false. The counter infrastructure has
a clock cycle that is twice the cycle of the CPU cores (350MHz vs. 700MHz).

The counters are virtualized by BGLperfctr into 64 bit unsigned counters to
prevent counter overflow. These virtual counters are updated from the physi-
cal counters when a BGLperfctr read instruction is issued. In theory there is a
risk of alias errors unless the virtual counters are updated within a 6.135s pe-
riod since the UPC and FPU physical counters are only 32 bit wide and there
can potentially occur up to one count per core clock cycle in a counter. The
BGLperfctr library can set up a timer based interrupt to update the virtual
counters at a predefined interval 0.1s short of the undersample limit. In a large
scale parallel run there is a potential performance problem if these timer based
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interrupts are not synchronized among all the computational nodes participating
in a run, c.f. Petrini et al. [4]. For this reason the BGLperfctr library optionally
can initiate the timer in a synchronized fashion across the nodes by issuing a
hardware assisted barrier at library initiation.

In the IBM BlueGene/L compute node chip the counter hardware is a single
resource in the SOC design. This is reflected in the BGLperfctr library as its
datastructure is a single instantiation located in a part of SRAM memory that
is shared between the two PPC440d cores. Any modification to the counter

Table 2. IBM BlueGene/L-specific PAPI events. The PAPI event name is listed with
a short description and a list of the hardware events used for the metric.

BGLperfctr Name Description
Events used
PAPI BGL OED Oedipus instructions executed in FPU 0
BGL FPU ARITH OEDIPUS OP
PAPI BGL TS 32B 32 byte data chunks sent in any direction
BGL UPC TS XM 32B CHUNKS
BGL UPC TS XP 32B CHUNKS
BGL UPC TS YM 32B CHUNKS
BGL UPC TS YP 32B CHUNKS
BGL UPC TS ZM 32B CHUNKS
BGL UPC TS ZP 32B CHUNKS
PAPI BGL TS FULL Cycles where any torus channel is waiting for tokens
BGL UPC TS XM LINK AVAIL NO VCD0 VCD VCBN TOKENS
BGL UPC TS XP LINK AVAIL NO VCD0 VCD VCBN TOKENS
BGL UPC TS YM LINK AVAIL NO VCD0 VCD VCBN TOKENS
BGL UPC TS YP LINK AVAIL NO VCD0 VCD VCBN TOKENS
BGL UPC TS ZM LINK AVAIL NO VCD0 VCD VCBN TOKENS
BGL UPC TS ZP LINK AVAIL NO VCD0 VCD VCBN TOKENS
PAPI BGL TR DPKT Number of data packets sent in any tree channel
BGL UPC TR SNDR 2 VC1 DPKTS SENT
BGL UPC TR SNDR 2 VC0 DPKTS SENT
BGL UPC TR SNDR 1 VC1 DPKTS SENT
BGL UPC TR SNDR 1 VC0 DPKTS SENT
BGL UPC TR SNDR 0 VC1 DPKTS SENT
BGL UPC TR SNDR 0 VC0 DPKTS SENT
PAPI BGL TR FULL Cycles with any tree channel full
BGL UPC TR RCV 0 VC0 FULL
BGL UPC TR RCV 0 VC1 FULL
BGL UPC TR RCV 1 VC0 FULL
BGL UPC TR RCV 1 VC1 FULL
BGL UPC TR RCV 2 VC0 FULL
BGL UPC TR RCV 2 VC1 FULL
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set-up made using BGLperfctr in either of the cores is immediately visible to
the other core. Efficient locking routines are used to ensure data integrity of the
BGLperfctr state.

2.3 IBM BlueGene/L PAPI

The IBM BlueGene/L PAPI implementation is derived from the standard PAPI
distribution with some minor modifications. The implementation fully supports
the PAPI event set concept. The user defines what events are to be in a set and
operations such as start, stop and read are performed on these event sets.

PAPI is divided into a platform independent library and a platform dependent
substrate. Porting PAPI to a new platform is equivalent to implementing a new
PAPI substrate for the computer platform at hand.

In the IBM BlueGene/L PAPI port some small modifications are made to
the platform independent library: The PAPI library initiation is a synchronizing
operation on IBM BlueGene/L and there are five new PAPI predefined events
as shown in table 2.

3 Results

Results presented in this article are based on PAPI 2.3.4.3.bgl [5] on a IBM
BlueGene/L system running the V1R3 system software release.

3.1 PAPI Timings

Timings of PAPI operations on various event sets are reported in table 3. Mea-
surements were made using the cost.c program of the PAPI verification suite
and are based on the elapsed time of 50, 000 repeats of the operation. Due to
the single thread architecture of IBM BlueGene/L variance within the individual
repeated operations is minimal, but was not measured. Event sets were selected
to utilize various number of PAPI events (both predefined and native) that each
utilizes one or more hardware events.

The listed results were matched against a simple cost model

T = T0 + NUPC · TUPC + NFPU · TFPU (1)

using linear regression to establish an approximate cost break-down in PAPI
internal costs and the cost of operating on UPC and FPU counters respectively.
An ANOVA analysis was performed to establish the confidence in the obtained
parameters. The resulting estimates are tabulated in table 4. Although based on
a small number of event set configurations it is clearly seen that the time to read
an UPC counter through the memory mapped access method is significantly
lower than the time to read an FPU counter. A model including the number
of actual PAPI events in addition to the terms in (1) to try to differentiate
with PAPI event handling cost and BGLperfctr cost was rejected due to a high
p-value (0.195) for this added parameter.
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Table 3. Cycle counts for operations on various event set configurations. The num-
ber of PAPI events in the event set as well as the number of underlying hard-
ware events (UPC and FPU) are listed with the corresponding average time for a
PAPI start()/PAPI stop() sequence and a PAPI read() respectively.

Events cyc/call
PAPI UPC FPU start/stop read

1 1 0 9845.34 2100.01
2 2 0 14644.49 2558.01
1 6 0 31755.34 3458.01
2 12 0 62963.75 6202.01
2 1 1 17975.87 4187.56
2 6 1 40847.13 5613.78
2 0 2 19386.43 5678.92
4 0 4 33746.24 9563.47

Table 4. Approximate cost break-down for PAPI operations according to the model
Eqn. (1) on the measured data in Table 3. Cost Tx is measured in the unit of core CPU
cycles and listed with the associated ANOVA confidence value p.

start/stop p read p
[1/cyc] [1/cyc]

T0 4939 7.8 · 10−4 1727 1.2 · 10−4

TUPC 4771 9.2 · 10−8 352 3.1 · 10−5

TFPU 7258 2.6 · 10−6 1960 1.4 · 10−6

3.2 Compute Partition Wide Synchronization

On a large scale parallel system, asynchronous activity may be detrimental to
high performance [4]. On the IBM BlueGene/L system care has been taken to
eliminate disturbances by having the compute nodes run a light-weight kernel
with one single thread per CPU core. To prevent overflow of the performance
counters each running counter is sampled into a 64 bit wide virtual counter.
To minimize disturbance in the system this sampling is made synchronously on
all compute nodes using a timer interrupt based on a local timer. The timer
is started after a global synchronization point. In Figure 1 the global and local
spread of this operation is shown. The experiment was run on a 32 node compute
partition. The figure shows the spread in the TSC among the nodes at arrival
in the interrupt handler (global spread). Spread is defined as

Si
global =

Np−1
max
p=0

(T i
p) −

Np−1
min
p=0

(T i
p) (2)

Si
local =

Np−1
max
p=0

(T i
p − T 0

p ) −
Np−1
min
p=0

(T i
p − T 0

p ), (3)
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where T i
p denotes the value of the TSC in node p at arrival in the interrupt

handler in iteration i. The TSC is started at 0 after a global barrier during the
compute node boot. i = 0 refers to an explicit call made to the interrupt handler
just after setting up the timed interrupt.

Also, to illustrate the influence of the synchronization itself, a local spread is
shown. The local spread is defined in the same way as the global spread, but
using the difference of the TSC in the interrupt handler and the value of the
TSC after setting the interrupt timer.

The experiment shows that the spread is very small, in global as well as local
context. In particular the spread is much smaller than the time it takes to read
values from the hardware counters and update the virtual counters. In Figure 2
the processor ID of the processors contributing to the spread definition (2-3)
is plotted for each interrupt. This figure emphasizes the accuracy of the timer
interrupt as it shows a variation in local spread whereas the global spread shows
a systematic offset.

4 Conclusion

We implemented a low-level kernel-specific API that exposed the UPC and FPU
counters as well as the TS counter to the user. Using this BGLperfctr API we
successfully implemented a PAPI substrate for IBM BlueGene/L that is able to
take full advantage of the rich set of counters of many different types on IBM
BlueGene/L. The open design and flexibility of the native event interface in PAPI
did not restrict the use of platform-specific counters, such as network utilization
counters. Further, the IBM BlueGene/L implementation of PAPI allows the user
to use the full set of BGLperfctr predefined names for such events in the creation
of PAPI event groups.
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Abstract. A Finite-difference method for simulation of sonic waves
propagating in a vicinity of a borehole filled with fluid and surrounded
by a 3D heterogeneous elastic medium is developed. The method uti-
lizes an explicit second order of approximation FD scheme on staggered
grids that approximates the elastodynamic system of equations in cylin-
drical coordinates. A computational domain is surrounded by a special
Perfectly Matched Layer for cylindrical coordinate system designed to
attenuate waves reflected from outer boundaries. Parallelization is based
on a domain decomposition approach and implemented with the help of
MPI library. Results of numerical experiments are presented.

1 Introduction

Full wave acoustic logs are very important for borehole measurements, provid-
ing information about physical properties of surrounding rocks. Historically these
methods were based on the use of axially symmetric, or monopole, wave phe-
nomena in a fluid-filled borehole ([2], [4], [12]). However, real media themselves
are 3D heterogeneous; so, axial symmetry is somehow a restricting assumption.
Recently, logging tools based on excitation and reception of non-axially sym-
metric wave phenomena have been developed and used in order to explore near
borehole media ([10]). This implies the actuality of developing specific software
destinated to numerical experimentation for a variety of 3D models.

Previous 3D FD studies that were made for Cartesian coordinates (see, for
example, [5] and [11]) are not very useful for the problem under consideration.
Indeed, if saw-like approximation of the interface between the fluid-filled bore-
hole and the enclosing rocks was used, the interface in its turn would provoke
the generation of a rather strong artifact known as ”numerical scattering”. An

� This research was partially supported by Russian Foundation of Basic Research,
grants 05-05-64277, 06-05-64748 and 07-05-00538.
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attempt to reduce the artifact by use of smaller spatial grid steps may conceiv-
ably lead to huge RAM demands and dramatic (or even catastrophic) slowing
down of computations.

We suggest instead the use of a cylindrical coordinate system which is cho-
sen to be co-axial with the borehole. Our approach possesses two key items
advantageously distinguishing it from others that also utilize a cylindrical co-
ordinate system for 3D numerical simulation of acoustic logs (see, for example,
[3], [9]):

– periodical azimuthal refinement of spatial grid cells in order to avoid their
inflation with radius increase;

– the implementation of Perfectly Matched Layer (PML) without azimuth
splitting.

2 Statement of the Problem

The geometry of the problem under consideration is represented by a cylindrical
tube of radius R, which is filled with some liquid and embedded in a heteroge-
neous elastic medium. Most interesting are waves propagating in some vicinity
of the tube. This implies choosing a cylinder as a computational domain and
cylindrical coordinates as an appropriate coordinate system.

Propagation of sonic waves in heterogeneous elastic media is governed by
a t-hyperbolic system of partial differential equations for velocity vector u =
(ur, uφ, uz)T and stress ”vector” σ = (σrr, σφφ, σzz , σrφ, σφz , σrz)T . In a cylin-
drical coordinate system, the system of equations looks as follows:

�
∂u

∂t
= A

∂σ

∂r
+

1
r
B

∂σ

∂φ
+ C

∂σ

∂z
+

1
r
(A − D)σ (1)

M
∂σ

∂t
= AT ∂u

∂r
+

1
r
BT ∂u

∂φ
+ CT ∂u

∂z
+

1
r
DT u + F (r, φ, z; t) (2)

For completeness, respective initial values for these vector functions should
be assigned at t = 0 and appropriate boundary conditions posed on the outer
boundary. The same system of partial differential equations is used also for
modelling acoustic waves in a liquid. This makes the FD scheme and its re-
spective computations simpler though it takes some extra time and memory.
In order to correspond to fluid, Lame parameters and stress tensor compo-
nents should be treated respectively. This is a well known common trick and we
don’t pay more attention to this specificity. Matrices A, B, C, D and M are the
following:

A =

⎛
⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎠ ; B =

⎛
⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎞
⎠ ; C =

⎛
⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0

⎞
⎠ ;
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D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 0 0
0 −1 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

T

M =
1
μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ + μ

3λ + 2μ
− λ

2(3λ + 2μ)
− λ

2(3λ + 2μ)
0 0 0

− λ

2(3λ + 2μ)
λ + μ

3λ + 2μ
− λ

2(3λ + 2μ)
0 0 0

− λ

2(3λ + 2μ)
− λ

2(3λ + 2μ)
λ + μ

3λ + 2μ
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let a sonic source be simulated as the volumetric point source

F (r, φ, z; t) =
(λ + μ)f(t)
μ(3λ + 2μ)

δ(r − r0, φ − φ0, z − z0)
2πr

(1, 1, 1, 0, 0, 0)T

located at some point (r0, φ0, z0) within the liquid or elastic medium, but not
on their interface.

In our further experiments we assume zero initial data:

u

∣∣∣∣
t=0

= 0; σ

∣∣∣∣
t=0

= 0 (3)

though nothing prevents the use of other data. On the interface between fluid
and solid media, i.e. on the tube inner surface, one should claim continuity of
the normal component of the velocity vector u and the vector of normal stresses
σr = (σrr, σrφ, σrz)T :

ur

∣∣∣∣
r=R−0

= ur

∣∣∣∣
r=R+0

; σr

∣∣∣∣
r=R−0

= σr

∣∣∣∣
r=R+0

(4)

In the FD computations, the system of partial differential equations (1) -
(2) is approximated by a centered finite difference scheme on staggered grids.
This leads to a well studied explicit finite-difference scheme ([13]). One of its
advantages is the second order of approximation.

The cylindrical coordinate system has the peculiarity of inflating azimuthal
grid steps with an increasing radius. In order to adjust this inflation, we perform
periodical refinement of azimuth sampling: the step with respect to the azimuth
is halved as soon as the radius is doubled (Fig.1). In Fig.1 one can see the mutual
disposition of coarse (A) and fine (B) grids. To couple these grids, one should
fill up the gaps at points marked as diamonds. At these points, the values of
velocities and stress tensor components can not be computed on the coarse grid,
but they are needed in order to keep computations on the fine grid.

We take into account the 2π-periodicity of wavefields with respect to azimuth
and interpolate the components into the missed points. This interpolation is
implemented by the use of a Discrete Fourier Transform with respect to the
azimuth variable, and consequently keeps the second order of approximation.
Actually, accuracy of such interpolation is much better because of the smoothness
of our functions. Moreover, overhead of DFT can be neglected if FFT algorithms
are used.
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Fig. 1. Coarse (A) and fine (B) grid coupling. In order to move from coarse to fine
grid, the velocity and stress vectors at diamonds are to be interpolated. This is done
by means of DFT based interpolation.

3 Perfectly Matched Layers (PML) for Cylindrical
Coordinates

Waves initiated somewhere in a bounded computational domain while propa-
gating through the domain will reach the outer boundary and produce some
reflected waves. If numerical simulation in the unbounded domain is the goal,
those reflected waves are artifacts and their impact should be diminished. For
these purposes we use the PML technique originally introduced for Maxwell
equations in [1] and later generalized for elasticity ([6], [9]). The technique gets
its name due to usage of a special layer (called Perfectly Matched Layer) which
separates the computational domain from the outer boundary. Within the PML,
some equations are constructed which are specially designed to attenuate waves
propagating along specific axes. These artificial equations are to be coupled with
the governing equations on the interfaces between the physical domain and the
PML, so that no reflection arises on the interface.

Let us note, however, that strictly speaking the equations within the PML
do not correspond to any physical medium and their usage is justified by its
ability to attenuate waves propagating within the PML. The price for this is
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overhead due to the augmentation of the computational domain with PMLs,
where the numbers of unknown functions and equations increase. Depending on
the geometry, the overhead can reach 50% or more. In some configurations the
use of PMLs may lead to instability. That means that the method should be
applied with care.

Recall that we are interested in processes in some vicinity of the tube. In other
words, we assume the cylindrical computational domain to be rather thin. In such
a case the directions of outgoing waves on the interface between the physical
domain and the PML will be mostly orthogonal to the azimuthal direction. This
is the justification of our choice of the PML developed for the case with axial
symmetry. Our PMLs are described in more detail below.

The attenuation with respect to z is introduced in exactly the same way as
for cartesian coordinates. So, let us focus on the attenuation with respect to r.
In the PML we introduce ([7]) the new unknown vector functions u⊥, u‖, σ⊥, σ‖

which should satisfy the following system of equations:

�
∂u‖

∂t
= C

∂σ

∂z
; (5)

(
∂

∂t
+ α(r)

)
�u⊥ = A

∂σ

∂r
+

1
r
B

∂σ̃

∂φ
+ (A − D)

σ̃

r
; (6)

M
∂σ‖

∂t
= CT ∂u

∂z
; (7)

(
∂

∂t
+ α(r)

)
Mσ⊥ = AT ∂u

∂r
+

1
r
BT ∂ũ

∂φ
+ DT ũ

r
. (8)

Here we used denotations

u = u⊥ + u‖; σ = σ⊥ + σ‖.

Vector functions with tildes ũ and σ̃ satisfy to ordinary (indeed, there are no
differentiations with respect to spatial directions) differential equations with re-
spect to t at each point of the PML:

∂ũ

∂t
+

β(r)
r

ũ =
∂u

∂t
+ α(r)u;

∂σ̃

∂t
+

β(r)
r

σ̃ =
∂σ

∂t
+ α(r)σ. (9)

Here β(r) =
r∫

R0

α(ξ)dξ with α(r) > 0 for r > R0 being a so called ”damping”

function that provides an exponential decay of waves within the PML.
For completeness the following gluing conditions on the interface r = R0

u

∣∣∣∣
r=R0−0

=
(
u⊥ + u‖

) ∣∣∣∣
r=R0+0

; σ

∣∣∣∣
r=R0−0

=
(
σ⊥ + σ‖

) ∣∣∣∣
r=R0+0

(10)

and some correct boundary conditions on the outer boundary r = R1 should be
posed. We use

u⊥
∣∣∣∣
r=R1

= 0; σ⊥
∣∣∣∣
r=R1

= 0. (11)
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In order to figure out an effect of the waves attenuation with respect to the
r provided by (5) - (11) we apply a Fourier transform with respect to time
and sum up the equations for perpendicular and parallel components of velocity
and stress vectors. The result is presented as the following system of partial
differential equations

− iω�û = A
∂σ̂

∂r̃
+

1
r̃
B

∂σ̂

∂φ
+ C

∂σ̂

∂z
+

1
r̃
(A − D)σ (12)

−iωM σ̂ = AT ∂û

∂r̃
+

1
r̃
BT ∂û

∂φ
+ CT ∂û

∂z
+

1
r̃
DT û (13)

with complex-valued radius r̃ = r+
i

ω

r∫

r0

α(ξ)dξ. This variable is complex valued

and this is the only difference with respect to the regular elastic wave equation
in homogeneous media. It is well known that any wave in homogeneous elastic
media in a cylindrical coordinate system can be represented as a series of Hankel’s
functions H

(1)
j (kr). Such outgoing waves will generate the same series (i.e. the

series with the same coefficients) in the PML zone except for the functions
H

(1)
j (kr̃). No reflection arises on the interface between the elastic medium and

the PML, or, in other words, the PML ”perfectly matches” the elastic medium.
The functions H

(1)
j (kr̃) exponentially decay as r increases due to the positiveness

of the imaginary part of the variable r̃. The rate of their decrease depends on
the choice of damping function α(r). However, it should be noted that though
for continuous equations, the faster α(r) grows the better ”quality” of the PML,
it is no longer true for FD approximation. This is a known peculiarity in the
theory of the PMLs that is confirmed also in our case. When the wave initiated
within the elastic medium and passed through interface between the medium and
PML reaches the outer boundary it generates a reflected wave which propagates
inwards the computational domain. This reflected wave is expressed as a series
of functions H

(2)
j (kr̃) with respective reflection coefficients and going through

the PML will reach the target elastic zone as artifacts. Though we have no
general proof justifying the smallness of artifacts, the numerical examples below
demonstrate their good quality.

4 Parallel Implementation

For the implementation of parallel computations we use an approach based on
domain decomposition of the target area. The total 3D model is sliced into a
number of disc-like subdomains Ωi. Each of these subdomains is assigned to a
separate Processor Units (PU). A finite difference scheme assumes communica-
tion between neighboring processors (Fig.2), requiring them to exchange function
values on the interfaces between slices. This communication is arranged with the
help of a Message Passing Interface library. The same approach, but for simula-
tion of 2D elastic waves propagation, was presented in [8]. The very important
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K

K+1

K-1

To and from PU k+1

To and from PU k-1

Fig. 2. Domain decomposition and exchange between neighboring PUs

Fig. 3. Diagram of productive (horizontal line) and idle (vertical bar) times for a cluster
made of ten processor units. The arrows point out the directions of data exchange
between the PUs.

peculiarity of the problem under consideration, besides its essential 3D nature,
is the comparatively small amount of data for the processors to exchange.

In order to visualize the balance of productive and idle times for each pro-
cessor unit we use Jumpshot-4 (http://www-unix.mcs.anl.gov/perfvis/software/
viewers/index.htm). For the example described in the next section, the result
is represented in Fig.3. In this diagram each horizontal line corresponds to the
state of a single PU at each instant of time. Its waiting time is indicated by the
vertical grey bar, all other time is productive. Arrows indicate the directions of
data exchange between the PUs.
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One can estimate from this diagram that overall efficiency is around 90%,
which is a very good result.

5 Numerical Experiments

The series of numerical experiments were performed for a range of source frequen-
cies, source positions and models of surrounding elastic media. For illustration
let us consider the model that represents realistic structure of a casing well:

– Background - homogeneous elastic medium with wave propagation velocities
Vp = 3500 m/s, Vs = 2000 m/s and density � = 2300 kg/m3;

– Vertical borehole of diameter 0.2 m is filled with a mud with parameters
Vf = 1500 m/s and �f = 1000 kg/m3;

– There is a steel tube encircling borehole; its wall thickness is equal to 0.015
m, wave propagation velocities Vp = 5600 m/s, Vs = 3270 m/s and density
� = 7830 kg/m3;

– There is a casing around the steel tube; its thickness is equal to 0.055 m,
its elastic parameters are the following: Vp = 4200 m/s, Vs = 2425 m/s and
density � = 2400 kg/m3

All simulations were done with the source function f(t) being the Ricker impulse

f(t) =
[
1 − 2ν2

0π2

(
1 − 1

ν2
0

)]
exp

{
−ν2

0π2(t − 1
ν2
0

)
}

with dominant frequency ν0 = 10000 Hz.
The target area is a cylinder with radius R = 0.75 meters and length L = 3

meters. Spatial approximation of the problem was performed on the grid with
steps around 0.0025 meters. Simple calculations gives the total number of grid
points within the target area to about 2.8 ∗ 108, that means that the RAM
demand for the target area is about 15 Gb (one should store 12 values at each
grid point - three elastic parameters, three components of the velocity vector and
six components of the stress vector). The total RAM demand is higher because
of presence of PML area and comes to 20 Gb. The time step needs to obey
Courant’s condition and happens to be around 4.5 ∗ 10−7 sec. So, in order to
perform simulation up to 0.003 sec one has to do 6000 steps.

Computations were done on a 20 nodes 2 way Itanium2 based cluster with
Infiniband network. Each simulation took about 10 - 12 hours. In Fig.4, we
present a series of snapshots for the vertical velocity uz for 3 different source
positions: axial source position (a), eccentric source, but still within borehole
(b) and, finally, eccentric source placed outside of the borehole (c). One can
observe great differences in the wavefields presented in the snapshots and also the
wonderful quality of PMLs. The snapshots include the grid points belonging to
the PML and, so, respective overhead due to use of these zones can be estimated.
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Fig. 4. Synthetic sonic logging: vertical velocity for three source positions. From top to
bottom: axial, eccentric within borehole, eccentric within casing. Vertical lines present
borehole/steel and steel/casing interfaces.

6 Conclusion

To conclude, we would like to emphasize that only a combination of all ap-
proaches described above provides success in the numerical simulation of the
problem:
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– The geometry of the problem allows slicing, which leads to straightforward
and efficient parallelization on clusters;

– Our version of PML effectively attenuates waves reflected from the outer
artificial boundaries;

– Periodical halving azimuth grid steps reduced the problem size to acceptable
values.

Modern powerful computational systems like clusters sufficiently extend the set
of solvable application problems. We should notice, however, that further com-
plicating the problem, which seems to be of current importance for modern
industry, may require additional approaches to be developed.
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Abstract. We present an interval global optimization algorithm using
a modified monotonicity test. The improvement applies to constrained
problems and can result in significant speedup, when constraints are
sparse, i.e. they “bind” a few of the variables, not all of them. A theorem
that ensures the correctness of the new tool, is given and proved. The
improved method is applied to an economic problem of setting optimal
prices on a couple of products.

1 Introduction

Many issues related to the practical problems require the solution of the following
very general optimization problem:

min
x∈X

f(x) , (1)

where the function f(x) can be nonconvex and X is defined by the set of (possibly
nonconvex) constraints: gj(x) ≤ 0, j = 1, . . . , m and bounds on each component
of x. The problem of designing algorithms to compute global solutions is very
difficult. In general there are no local criteria in deciding whether the local
solution is the global one. Many of methods apply heuristics able to find an
approximate solution only, see [2], [8].

Interval methods aim to find the global solution(s). Unfortunately, they are
usually slow and memory demanding so, the acceleration is worthwhile. The gen-
eral framework of the optimization algorithm is the branch–and–bound schema.
Many different tools are used to reject or at least narrow subboxes that do not
contain the global optimum, e.g. [3], [4], [9], [2]. The objective of this paper
is to identify some of the advantages and disadvantages of existing algorithms
and provide suitable modifications to increase their efficiency. We propose a
modified monotonicity test for constrained optimization problems. It allows to
remove from further considerations far more boxes than its traditional relative.
The presented algorithm was applied to a practical marketing problem.

B. Kragström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1055–1064, 2007.
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2 Interval Branch–and–Bound Method

The general scheme of interval global optimization methods is branch–and–
bound (see e.g. [1], [3], [4]). It can be expressed by the following pseudocode:

IBB (x(0); f, ∇f, ∇2f; g1, ∇g1, ∇2g1, . . . , gm, ∇gm, ∇2gm, . . .)
// x(0) is the initial box
// f(·) is the interval extension of the objective function f(·)
// ∇f(·) and ∇2f(·) are interval extensions of gradient and Hessian of f(·)
// gi(·) are interval extensions of the constraints, etc.
// Lsol is the list of solutions
[y(0), y(0)] = f(x(0)) ;
compute fmin = the upper bound on the global minimum (e.g. objective value
in a feasible point)
L = {(x(0), y(0))} ; // the list of boxes
Lsol = ∅ ;
while (L �= ∅) do

x = the element of L with the lowest function value underestimation ;
compute the values of interval extensions of the constraint functions ;
if (x is infeasible) then discard x ;
update fmin if possible ;
perform other rejection/reduction tests on x ;
if (x is verified to contain a unique critical point or

x is small and not infeasible) then
add x to Lsol ;

else

bisect x to subboxes x(1) and x(2) ;
compute lower bounds y(1) and y(2) on the function value in
the obtained boxes ;
delete x from L ;
for i = 1, 2 do

put (x(i), y(i)) on the list L preserving the increasing order of
the lower bounds ;

end for

delete from L boxes with y(i) > fmin ;
end if

end while

delete from Lsol the boxes with y(i) > fmin ;
return Lsol ;
end IBB

The above pseudocode mentions some “rejection/reduction tests” that may be
used in conjunction with the IBB algorithm. There are several such tests. Most
important of them are: several kinds of Newton operators, constraint propagation
steps and, probably oldest of them all, monotonicity tests. We do not describe
them all, as they are widely available in literature, e.g. [1], [4], etc.

Most of the current research concentrate on several types of interval Newton
operators and tools related to them e.g. [6]. It is reasonable – interval Newton
methods are one of the most powerful interval techniques, indeed. They can not
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only reject or narrow subboxes during the branch–and–bound process, but they
can also verify that a subbox contains a root (or a feasible point) certainly;
sometimes, they can even verify the uniqueness of this root.

Nevertheless, in this paper, we shall concentrate on monotonicity tests. This
tool is less investigated recently, but – as we shall see – it can also be improved,
resulting in a significant speedup of the overall algorithm.

3 The Classical Monotonicity Test

Monotonicity test ([2]) allows to discover boxes where the objective function is
strictly monotone – such boxes cannot contain a global minimum. In the case
of a general constrained optimization problem, monotonicity test can be applied
only to boxes where all constraints are satisfied, otherwise it does not guarantee
the non-existence of an optimum. By x ⊆ X we denote the box on X and the
inclusion functions of f , ∇f and g, respectively – by f(x), ∇f(x) and g(x).

The classical monotonicity test (CMT) can be formulated by the following
pseudocode:

for i = 1, . . . , n do
compute [y, y] = ∇fi(x) ;
if (y < 0) then

// the function is decreasing
compute [g

j
, gj ] = gj(x) for all j = 1, . . . , m ;

if (gj < 0 ∀j = 1, . . . , m) then discard x ;
else if (gj ≤ 0 ∀j = 1, . . . , m) then update xi to xi = xi ;
end if

end if
if (y > 0) then

// the function is increasing
. . .

end if
end for

The simplest way to remove infeasible solutions is the flag system, proposed by
Ratschek and Rokne [2]. The idea is as follows. We associate with each box x the
binary vector r = (r1, . . . , rm), where m is the number of constraints. So, rj = 1
indicates that the j-th constraint is satisfied in the box x, otherwise rj = 0.
It is obvious that if a considered constraint is satisfied in a box x, it would
also be satisfied in all subboxes, resulting from its bisections. The algorithm,
determining the flags for a new box xk, obtained from the bisection of x, may
be expressed as follows:

for j = 1, . . . , m do
if (rj == 1) then rk

j = 1 ;
else

compute [g, g] = gj(xk) ;
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if (g ≤ 0) then rk
j = 1 ;

else if (g > 0) then discard xk ;
else rk

j = 0 ;
end if

end for

In the case of problems in which the constraints bind only a group of variables
the efficiency of the monotonicity test can be increased. Next section proposes
a suitable modification.

4 Main Results

The proposed modified version of the monotonicity test allows to discard a box
x in the case when the constraint g(x) ≤ 0, x ∈ x is not satisfied but does not
“bind” the variable, with respect to which the objective is monotonous. We say
that gj(x1, . . . , xn) does not “bind” the variable xi when the variable xi is not
present in gj(x) formulation. The modified algorithm (MMT) is as follows:

for i = 1, . . . , n do
compute [y, y] = ∇fi(x) ;
if (y < 0) then

// the function is decreasing
compute [g

j
, gj ] = gj(x) for all j such that ∂gj (x)

∂xi
�= [0, 0] and j = 1, . . . , m ;

if (all computed gj ’s satisfy gj < 0) then discard x ;
else if (all computed gj ’s satisfy gj ≤ 0) then update xi to xi = xi ;
end if

end if
if (y > 0) then

// the function is increasing
. . .

end if
end for

It can be proved that the modified test preserves all the solutions (see Theorem
1, below). A minor improvement, associated with the modified monotonicity test
is a new variant of the flag vector. We can distinguish four possibilities: a) the
j-th constraint is satisfied and inactive in the box x (gj < 0), b) the constraint
is satisfied, but may be active (gj ≤ 0), c) the constraint may be violated for
some points of the box (0 ∈ [g

j
, gj ]), d) the constraint is violated in the whole

box (g
j

> 0) and the box should be discarded from further processing. Well
then, to be consistent with the monotonicity test it is better to use “flags” of
three possible values, instead of binary ones:

for j = 1, . . . , m do
if (rj == 2) then rk

j = 2 ;
else

compute [g, g] = gj(xk) ;
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if (g < 0) then rk
j = 2 ;

else if (g ≤ 0) then rk
j = 1 ;

else if (g > 0) then discard xk ;
else rk

j = 0 ;
end if

end for

And now let us present the main theorem:

Theorem 1. Consider the optimization problem (1). Consider a box x = (x1,
. . . , xn)T , contained in the interior of the feasible set X. Assume for some i ∈
{1, . . . , n} the following two conditions are both fulfilled:

– ∀x ∈ x either ∂f(x)
∂xi

< 0 or ∂f(x)
∂xi

> 0,

– ∀j = 1, . . . , m either we have ∀x ∈ x gj(x) < 0 or ∂gj(x)
∂xi

≡ 0.

Then there is no optimum in the box x.

Proof
Assume a point x0 ∈ x is the (at least local) optimum of the problem (1). The
suppositions of Theorem 1 say that ∀x ∈ x either ∂f(x)

∂xi
< 0 or ∂f(x)

∂xi
> 0, i.e.

the objective f(·) is monotone on the box x.
If f(·) is monotone at x0 that the only case when x0 can be the optimum

of the problem (1) is when some constraints are active at this point and all
improvement directions are infeasible. Nevertheless, we can simply show that at
least one improvement direction is feasible at x0. Let us consider the direction
pointed by the vector d = (d1, . . . , dn)T , where:

dk =
{

0, for k �= i
1, for k = i

if f(·) is decreasing, or

dk =
{

0, for k �= i
−1, for k = i

if f(·) is increasing.

From now on let us assume that f(·) is decreasing, i.e. ∂f(x)
∂xi

< 0. The proof for
the second case would be analogous. Obviously, d is an improvement direction,
because:

∇f(x0)T · d =
∂f(x)
∂xi

< 0 . (2)

Let us show it is feasible. It is enough to prove that:

∃ σ > 0 ∀α 0 < α < σ → (x0 + αd) is feasible. (3)

Indeed, consider a constraint gj(x) < 0, j ∈ {1, . . . , m}. From the Taylor expan-
sion we get:

gj(x0 + αd) = gj(x0) + ∇gj(ξ) · (αd) = gj(x0) = α
∂gj(ξ)
∂xi

, (4)
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where ξ ∈ (x0, x0 + α · d) ⊆ x. But this implies that ∂gj(ξ)
∂xi

= 0 and (4) reduces
to:

gj(x0 + α · d) = gj(x0) . (5)

But x0 is feasible by supposition, so gj(x0 + α · d) = gj(x0) < 0. Consequently,
the direction d is feasible. Thus, there is a feasible improvement direction in any
x0 ∈ x, so no optimum can be in x.

Interpretation. The essence of the assumptions in Theorem 1 is quite simple,
actually. The first supposition says that the objective is monotone with respect
to the variable xi. The second one says that all of the constraints are either
inactive or do not contain the variable xi in their formulae. This simply means
that all of the active constraints are invariant with respect to xi and the feasible
set has the form of some kind of a pipe along xi. An example of such a set is
shown on Figure 1. It should be obvious that in such case the constraints cannot
block the direction along xi, which is an improvement direction.

Fig. 1. When can the modified monotonicity test be applied ?

5 How to Treat Bound Constraints ? Peeling Process

To investigate the usefulness of the developed rejection/reduction test it is rea-
sonable to check how it cooperates with other tools, like Newton methods, etc.
We cannot present all of the results here. Investigated variants of the IBB algo-
rithm use the interval Newton step (precisely: interval Gauss-Seidel step).

Whereas we examine how does the modified monotonicity test cooperate with
the “peeling” process (see e.g. [3], [4]), so we apply four variants of the algorithm:
with classical or modified monotonicity test and with or without peeling.

What is the peeling process ? It is one of the ways to deal with bound con-
straints. Actually there are two main approaches to solve bound–constrained
problems:
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– treat bound constraints as any other inequality constraints (or, roughly
speaking, similarly to them),

– consider the “boundary boxes” and “interior boxes” separately.

In this second variant, we use reduced gradients and Hessians in boundary
boxes (because they have a reduced dimension) and in interior boxes bounds
constraints are ignored (in monotonicity tests or Newton steps; only other con-
straints are used then). The boundary boxes are created at the beginning of the
IBB algorithm, by the peeling process.

Let us formulate the peeling procedure in a pseudocode. We present it in a
slightly simpler form than the one in [3] or [4]:

peeling (x, i)
if (i == n) then

let y = x ;
let yi = [xi, xi] ; enqueue (y) ;
let yi = [xi, xi] ; enqueue (y) ;
let yi = xi ; enqueue (y) ;

else
let y = x ;
let yi = [xi, xi] ; peeling (y, i + 1) ;
let yi = [xi, xi] ; peeling (y, i + 1) ;
let yi = xi ; peeling (y, i + 1) ;

end if
end peeling

According to [3], complexity of the peeling process is of the degree 3k, where k is
the number of bound constraints. This leads to inefficiency of this process if the
number of bound constraints is large. All the same, not all of the bounds may
actually be “bound constraints” – some of them may be known to be redundant
or non–significant. Unfortunately, that is not the case for the problem we are
trying to solve.

6 Numerical Experiments

Numerical experiments were performed for both testing problems and real-life
applications. Results obtained for the selected test problem defined as:

min
x

n∑
i=1

(−1)i · x2
i , (6)

s.t.
∑n

i=1 xi ≤ 1, xi−1 + xi ≤ 0.5, −1 ≤ xi ≤ 2, i = 1, . . . , n.
are given in Fig. 2.

One of the considered case study was concerned with computing of the optimal
prices for products that are sold in a shop. The goal was to maximize the total
profit defined as: PR =

∑n
i=1

(
xi

1+vi
− di

)
· Si, where n denotes the number of
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Fig. 2. Number of function evaluations; CMT – classical and MMT – modified mono-
tonicity tests

products, vi and di given constants, corresponding to the market entities of VAT
and cost per product i, Si are expected sales of products within the considered
period and xi prices, we are trying to set. Two models describing the market
response Si on the price were considered:

Cobb-Douglas model described in [10]. This model implements the cross-effects
with other substitute or complementary own products: Si = αi ·

∏n
j=1 xβij

j , where
βij is the elasticity of sales of the i–th product with respect to the price of the
j–th product, βii is referred to as the direct elasticity and βij , where i �= j –
the cross elasticity. This function is widely used, but it does not capture some
important effects, such as different market sensitivities to small and large price
changes. These features are expressed by the so-called s-shape models.

Hybrid model formulated in [7] that exhibits an s-shape and includes cross-
effects: Si = ai + αi ·

∏n
j=1 xβij

j + c1i · sinh
(
c2i · (xi − xco

i )
)
, where xco

i is the
average competitive price and a, c1 and c2 are model parameters. The model
combines descriptions proposed by Cobb-Douglas and Gutenberg (see [10]). The
following constraints for price, sale and cash of each product were considered:
bounds on prices and sales, bounds on the cash flows; constraints for total sale
and cash: ST min ≤

∑n
i=1 Si ≤ ST max, CT min ≤

∑n
i=1 xi · Si ≤ CT max, linear

constraints for price differences of substitute or complementary products dmin
ij ≤

xi − xj ≤ dmax
ij , (i, j) ∈ D, where D is the set of pairs of correlated products.

The overall optimization problem was as follows:

max
x

(
PR =

n∑
i=1

( xi

1 + vi
− di

)
· Si(x)

)
, (7)

s.t. xmin
i ≤ xi ≤ xmax

i , Smin
i ≤ Si(x) ≤ Smax

i , Cmin
i ≤ xi · Si(x) ≤ Cmax

i , for i =
1, . . . , n and ST min ≤

∑n
i=1 Si(x) ≤ ST max, CT min ≤

∑n
i=1 xi · Si(x) ≤ CT max,

dmin
ij ≤ xi − xj ≤ dmax

ij , (i, j) ∈ D.
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Tables 1 and 2 present the results of application of the flag-based IBB algorithm
with classical (CMT) and modified (MMT) monotonicity tests to price man-
agement problem formulated for 8 products. The first one applies to the case
of Cobb-Douglas model and the second one – to Hybrid model. The accuracy
for all eight cases was set to: ε = 0.05 and there were two pairs of correlated
products in the set D.

Meaning of the columns is as follows: the first one describes type of the mono-
tonicity test, the other ones – the number of bisections, objective evaluations, ob-
jective’s gradient and Hessian evaluations, constraints evaluations, respectively,
and the last one – the number of boxes, enclosing the global optimum, resulting
form the IBB algorithm.

Table 1. Price management problem – results for Cobb-Douglas model

IBB without peeling
mon. test exec.time bisec. f.evals. grad.evals. Hess.evals. constr.evals. res.boxes

CMT 25917.8 s 262430 776208 516851 514803 777351 252373
MMT 28.92 s 940 2285 1848 1377 2435 437

IBB with peeling
mon. test exec.time bisec. f.evals. grad.evals. Hess.evals. constr.evals. res.boxes

CMT 41561.7 s 317514 856786 574011 564052 1684852 223292
MMT 273.48 s 2603 9587 8356 3217 271166 263

Table 2. Price management problem – results for Hybrid model

IBB without peeling
mon. test exec.time bisec. f.evals. grad.evals. Hess.evals. constr.evals. res.boxes

CMT 1772.78 s 33810 100203 66848 66578 100554 32768
MMT 11.75 s 435 850 836 447 1040 12

IBB with peeling
mon. test exec.time bisec. f.evals. grad.evals. Hess.evals. constr.evals. res.boxes

CMT 8289.94 s 109380 249401 184489 175911 699398 30205
MMT 395.64 s 4023 11890 8879 4757 286847 7

Results. It can be observed that the modified monotonicity test results – at
least for investigated problems – in dramatical speedup. The improvement is
significant in both cases – when we use peeling process and when we do not.

Actually, for the price management problem, the variant of the IBB algorithm
using peeling was much slower. This was caused by the fact that we had signif-
icant bound constraints on all of the eight decision variables. Peeling is usually
inefficient in such cases. Nevertheless, the monotonicity test gave a large speedup
also for this variant of the algorithm.

Obviously, the improvement was that large, because the examined problem
had several constraints biding only few variables. Otherwise the speedup would
not be achieved.
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7 Conclusions

As a final conclusion we can say that the proposed modifications to the flag-
based IBB algorithm and monotonicity test increase the speed of convergence
with respect to classical ones. It seems to be a powerful accelerating device,
which gives approximately exponential improvement for constraints binding few
variables.
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Abstract. We present a study to optimize multi-layer perceptron (MLP)
classification power with a Rocks Linux cluster [1]. Simulated data from
a future high energy physics experiment at the Large Hadron Collider
(LHC) is used to teach a neural network to separate the Higgs particle
signal from a dominant background [2].

The MLP classifiers have been implemented using the ROOT data
analysis framework [3]. Our aim is to reach a stable physics signal recog-
nition for new physics and a well understood background rejection. We
report on the physics performance of new neural classifiers developed in
this study. We have used the benchmarking capabilities of ROOT and of
the Parallel ROOT facility (PROOF) [4] to compare the performance of
the Linux clusters at our campus.

1 Introduction

B-tagging is an important tool for separating the Higgs events with associated
b-jets from the Drell-Yan background Z, γ∗ → ττ , for which the associated
jets are mostly light quark and gluon jets. The most simple algorithm used for
b-tagging is a track counting algorithm. The track counting algorithm counts
tracks with high enough track impact parameter significance (value divided by
the estimated error), and if enough such tracks, usually 2 or 3, are found, the
jet is b-tagged. The track impact parameter has an upper limit to suppress the
background from long lived K and Λ0 with impact parameters significantly larger
than those from the b-decays. The track counting algorithm has given a 35% b-
tagging efficiency for b-jets associated with the Higgs boson gg → bb̄H with
about 1% mistagging rate for light quark and gluon jets in Drell-Yan events [5].
Probabilistic algorithms[6] using track impact parameter and secondary vertex
information give slightly better b-tagging efficiencies [7].

A neural network (NN) approach has been shown to be applicable to the
problem of Higgs boson detection at the Large Hadron Collider. We study the
use of NNs in the problem of tagging b-jets in pp→, bb̄HSUSY, HSUSY → ττ in the
Compact Muon Solenoid experiment. For teaching the neural network we have
selected b-jets from t̄t events and light quark and gluon jets from the Z, γ∗ → ee
and W+jet events, all backgrounds to HSUSY → ττ → e+ jet+X [8]. The b-jets
associated with the Higgs events are used for testing and verifying the results.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1065–1073, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The events are simulated using PYTHIA [9] with CTEQ5 structure functions
[10]. The CMS detector response is simulated using full GEANT simulation
within the ORCA framework [11]. A low luminosity of 2×1033cm−2s−1 with on
average 3.4 minimum bias events superimposed per crossing was assumed. The
simulated events are required to pass the trigger (single e or e+tau trigger)[12]
and to have a successfully reconstructed primary vertex. The jet reconstruction
is done using an Iterative Cone Algorithm [13], and tracks within a cone of
ΔR =

√
(Δφ)2 + (Δη)2 = 0.7 around the jet axis are reconstructed using a

Combinatorial Trajectory Builder [14]. The generator level Monte-Carlo truth is
used to identify the genuine b,c and light quark and gluon jets.

The simulated samples consist of 46000 b-jets associated with the Higgs bo-
son, 401 000 b-jets from the t̄t events, 313 000 light quark and gluon jets from
the Drell-Yan events and 297 000 light quark and gluon jets from the W+jet
background.

2 Computational Environment

NPACI Rocks Cluster Distribution is a cluster management software for scientific
computation based on Red Hat Linux, supporting cluster installation, configura-
tion, monitoring and maintenance [15]. Several Rocks based clusters have made
it to the Top500 list [16], for a current list of the installed Rocks clusters, see
the Rocks website [17]. Rocks comes preconfigured with the Sun Grid Engine
(SGE) batch queue system, which supports advanced features like back filling,
fair share usage and array jobs.

There are two Rocks production clusters available at our institute. The larger
one is a 64-bit 1.8/2.2 GHz AMD Opteron cluster called ametisti, which has
132 CPUs in 66 computational nodes with 2/4 GB RAM. Ametisti is shown
schematically in Fig. 1. Initially it ran Rocks version 3.2, but it was upgraded to
Rocks 4.1. On ametisti there is one dedicated Gb/s network for communication

Fig. 1. A schematic picture of the 66+2 node dual AMD Opteron Rocks 1U rack cluster
ametisti
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and another dedicated Gb/s network for NFS-traffic to enhance the performance
of the shared NFS disk system. In addition to this there is also a fast Ethernet
network used for remote management.

The smaller one is a 32-bit 2.13 GHz AMD Athlon cluster called mill, running
Rocks version 3.3. It has 64 CPUs in 32 computational nodes with 1 GB RAM
connected to a fast Ethernet network to the Gb/s network interface of the cluster
frontend.

3 Neural Networks in the ROOT Data Analysis
Framework

In typical High Energy Physics (HEP) experiments, various background events
hide weak signal events coming from the physics processes of interest. Efficient
analysis of large data sets produced by HEP experiments requires, indexing, pre-
selection of data using meta data tags and processing very large data samples
of O(TB)–O(PB). The traditional method of separating signal and background
is to make cuts in a multidimensional parameter space. A more recent data
analysis method is to teach neural networks (NN) to distinguish between signal
and background events and then use the taught NNs as classifiers.

The problem of teaching a neural network (NN) that performs well is quite
a subtle issue, especially when only a limited number of training samples are
available. Thus specific techniques are needed to avoid over fitting.

For this study we have selected the data analysis tool ROOT [3] developed at
CERN and widely used in HEP. The benefits of this framework include: opti-
mized treatment of large and complex data sets, support for C++ scripting and
compiled code and PROOF - parallelized ROOT version supporting also Grid us-
age [4]. ROOT provides a flexible object oriented implementation of multi-layer
perceptrons (MLPs). This is the most commonly used and accepted neural net-
work type in HEP Higgs data analysis, because there is no significantly superior
neural network. ROOT MLP provides various learning methods such as Steepest
descent algorithm, Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) and
variants of conjugate gradients. Visualization of the network architecture and
learning process is supported. The networks can be exported as a standalone
C++ code. Input and output data is organized using the TTree class, which
is the key ROOT data structure. The TChain class, which is a collection of
files containing TTree objects, can be used for performing parallel processing of
MLP related data. In our neural network approach to the b-tagging problem,
we feed the networks with information on the number of tracks in the jet cone,
leading track impact parameters (for a detailed description see [18]) and impact
parameter significances. A SUSY event in the CMS detector and a closeup of
secondary vertexes from another event are shown in Fig. 2. Finding an optimal
set of variables for teaching an optimal MLP configuration is a multidimensional,
computationally demanding optimization task suitable for solving with a Linux
cluster.
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Fig. 2. Left: Geant4 based simulation of a SUSY event in the CMS detector with
missing transverse energy, jets and several leptons in the barrel detector. (Picture:
IguanaCMS.). Right: Successfully reconstructed jets can be identified as b-jets using a
lifetime based tagging algorithm, which relies on displaced secondary vertices’s.

Benchmarking tools are included in the ROOT Stress test suite. A standard
mixture of CPU and I/O tasks is performed by running stress -b. The perfor-
mance number ROOTMARK has been normalized to 800 on a 2,8 GHz Pentium
4 CPU running Linux and gcc version 3.2.3. On the 32-bit mill cluster we get
609 ROOTMARKS on average from three runs of stress -b. The 64-bit ametisti
cluster achieves 988 ROOTMARKS on the 1,8 GHz nodes.

4 PROOF

PROOF [4] is an extension to ROOT which allows the parallel analysis of large
ROOT trees. The large data sets produced by present and future high energy
physics and other experiments makes it a very interesting and useful data anal-
ysis tool. PROOF can be used on a set of inhomogeneous workstations or in
a homogeneous cluster environment. It uses a master slave architecture with
possible layers of sub masters and load balancing through pull mode task dis-
tribution. It has been designed to be used on systems ranging from single or
multi core workstations to large clusters with O(100) CPUs or even collections
of clusters connected with grid middleware. The best performance is obtained
when the data set to be analyzed is distributed over the local disks of the cluster
nodes. Good scaling has been reported for over 70 CPUs [19].

PROOF is distributed with all standard ROOT releases. The configuration
instructions are found in the file README.PROOF in the local ROOT instal-
lation area and on the TWiki WebHome-page [20]. To PROOF enable a cluster
two daemons need to be started and configured with xinetd, for version 5.10 of
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ROOT used in this work. On more recent ROOT releases PROOF can be setup
so that only one daemon, xrootd [21], is needed on the computational nodes.

ProofBench is a benchmarking tool distributed together with PROOF for
performance studies [22] in the test directory. ProofBench can also be used as a
PROOF example to test the setup. The more recent 64-bit 1,8 GHz ametisti
Opteron cluster nodes processes eight million events with four nodes (eight
slaves) with one file per slave (14 GB of data in total) 1,8 times faster than
the 32-bit 2,133 MHz mill Athlon nodes according to ProofBench. We have used
mainly ametisti for the computations in this work, since it is faster than mill.
The integration of PROOF with SGE to simplify our calculations remains the
topic of further work.

5 MLP Results

We have used extensively a TMLPAnalyzer utility class, which contains a set
of useful tests developing optimal neural network layouts. This class allows the
user to check for unneeded variables, and to control the network structure.

With the DrawDInputs method we can study what kind of impact a small
variation of input variables has on the network output. This kind of sensitivity
analysis has been useful when selecting an optimal set of NN input parameters,
as shown in Fig. 4. Already in our previous simulation impact parameter sig-
nificances were found to have more classification power [2] when compared to
impact parameters themselves. The ROOT MLP provides also a DrawTruthDe-
viation method, which is mainly useful for doing regression analysis. For training
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Fig. 3. Typical behaviour of training and validation error for 1000 epochs
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Fig. 4. Left: Visualization of ROOT MLP tool [3] shows that the track impact param-
eter significances have the best classification power. This technique was used to select
suitable input variables. (More detailed description of variable selection can be found
from [2]). Right: Exerpt from job 64111 log showing epoch data and significance of
various input parameters for MLP 7-12-5-1 configuration.

Fig. 5. A typical example of the classification power achieved with an optimized 10-
15-5-1 network

and testing a typical sample size was 10 000 events. In order to estimate the
statistical significance of the classification power for the most promising MLP
configuration, repeated experiments were made using additional 20 000 datasets.
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We sampled a large number of NN architectures while examining the param-
eter space iteratively and running nearly 1000 jobs on the ametisti cluster and
using approximately 500 CPU hours.

Typically the training lasted 1000-5000 epochs. The behavior of training and
validation error for 1000 epochs is shown in Fig.3. The optimal generalisation
value was found to be 1000-3000 epochs for the data used in [2] and for the new
data sets. The larger data sets of CMS Monte Carlo data made possible improved
testing (always independent event samples were used) and optimization on NN
configurations. Networks were trained with the BFGS training algorithm which
was found to be the most effective among the available methods.

Sensitivity analysis of promising neural classifiers were done by running anal-
ysis repeatedly with fresh random number seeds and by changing the input
parameters minimally.

In our previous study [2] we found an optimal classifier configuration 7-10-5-1,
(7 input nodes, 10 and 5 nodes in hidden layers and one output node) performing

Fig. 6. Example of cluster job 64111 output: ROOT MLP generated standalone C++
code defining an optimized event-classifier
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b-tagging with 42 % efficiency and 1 % mistagging probability. Starting from this
configuration, using newly generated Monte Carlo data sets and careful teaching
with better statistics, we were able to find a more optimal setup 7-12-5-1, with
slightly better performance 44 ± 1 %. Also we found a new promising configura-
tion 10-15-5-1, where three additional variables were introduced describing the
particle momentum. Reference [2] gives a detailed description of the variables.
Figure 5 shows an example of the classification power of this network.

We also found that a simple configuration with only one hidden layer (7-15-
1) performed quite well, with b-tagging efficiency of 39 ± 1 % . The practical
outcome of this study include ROOT generated C++ code defining optimized
event-classifiers, shown in Fig. 6.

These results can be compared to an independent NN study to improve Higgs
physics b-tagging reported in [23].

Our results indicate, that semi-automatic optimization for neural networks us-
ing the ROOT MLP implementation is feasible even in interpreted CINT mode.
The usage of a cluster environment has enabled us to tune neural classifiers
with high accuracy. First tests on a hybrid approach combining traditional cuts
method, MLP and AdaBoost show promise of improved classification power
compared to standard results.

6 Conclusions

ROOT and its parallel version PROOF provide very interesting possibilities for
data analysis in many fields of science. The relative performance of two clusters
have been measured with the benchmark tools provided. Using ROOT on the
Rocks cluster ametisti has enabled us to study the physics performance of the
optimized neural network classifiers. A promising NN configuration with previ-
ously unused variables was found and optimized neural classifiers were produced.
The b-tagging efficiency was shown to improve from 42% to 44% with the more
optimal neural network setup.

Comparing the traditional cuts method, with the MLP method and support
vector machines and boosting is planned to be the topic of future work. Vec-
tor machines and boosting, rarely used in high energy physics, could prove to
be promising tools to be used for LHC-era data analysis. The meta-algorithm
AdaBoost, found to be less susceptible to the over fitting problem than most
learning algorithms, is especially interesting to study.
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Abstract. A model for unresolved, small-scale turbulent motions has
been developed and implemented in the PPM gas dynamics code. The
motivation for the model, the use of very large-scale simulation data in
determining the model formulae and parameters, and validation tests of
the model in the PPM code are described.

Keywords: turbulence, computational fluid dynamics.

1 Introduction

Our team at the University of Minnesota’s Laboratory for Computational Sci-
ence & Engineering (LCSE) has been simulating turbulent astrophysical fluid
flows for many years using our PPM family of codes for the Euler equations
of inviscid flow [1-4]. PPM uses interpolated parabolae to represent the subcell
structures of Riemann invariants, an approximate nonlinear Riemann solver to
obtain fluxes of conserved quantities, and directional operator splitting. The nu-
merical dissipation of the scheme stabilizes the computation and, on scales of
just a few grid cells, dissipates kinetic energy into heat in both shocks and in
very small-scale turbulent eddies. The turbulent cascade on well resolved scales
is treated faithfully by PPM, since it is an inviscid phenomenon. In our astro-
physical flows, the details of the dissipation affect only scales that are far below
our ability to represent them on the grid, while the amount of heat that is gen-
erated by the dissipation is controlled by the rate of energy transfer established
by the resolved inviscid cascade together with the strict total energy conser-
vation of the numerical scheme. In all these simulations (see [5] and references
therein), we find that an enhancement of the velocity power spectrum just before
the dissipation range is eventually produced. In comparisons with simulations of
the Navier-Stokes equations, we found in [6] that this enhancement is a phys-
ical effect that is produced by a Navier-Stokes dissipation in much the way it
is produced by our PPM scheme’s numerical dissipation, although the Navier-
Stokes terms cause enhancement of the power spectrum across a broader range
of wavenumbers. This conclusion was later reinforced by the more finely resolved
Navier-Stokes simulations of Yokokawa et al. [7] on the Earth Simulator. In the
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present work, we have designed an SGS model for turbulent motions that, when
added to our PPM Euler scheme, or, we believe, to any similar Euler scheme,
eliminates this enhancement of the near dissipation range spectrum.

2 Rate of Energy Transfer to Turbulence

Our initial focus in this work was on the rate, F , of energy transfer from large-
scale to small-scale turbulent motions. As in the standard approach to large
eddy simulation, we will distinguish these two scales by using a filter. We will
apply this filter to results of PPM simulations of turbulent flows carried out on
extremely fine grids, so that convergence studies indicate that the filtered results
give an accurate representation of the large-scale flow, at least in appropriate
statistical measures that apply in turbulent flows. We will use the detailed sim-
ulation results to evaluate the statistical averages below the scale of the filter
that enter the fluid equations for the filtered quantities. Our convergence studies
(see, for example, [6] or [8]) indicate that filter widths of 32 grid cell widths
produce very accurate filtered flows and also quite accurate estimates of the
sub-filter-scale statistical averages. We have found it important to choose a filter
that does not tend to produce false signals, such as significant positive measures
for the turbulent kinetic energy when a visual inspection of the flow clearly indi-
cates that these measurements are inappropriate. The standard Gaussian filters
fail on this criterion. We have chosen instead to construct within a filter box
of 323 grid cells the first 10 lower-order spatial moments of the function to be
filtered and to use these to construct a 10-coefficient polynomial representation
of the function within the filter box which is then identified with the filtered
result. Differences within the filter box between the actual function values and
those of this quadratic polynomial fit are then identified with the fluctuating
part of the function. This filtering process corresponds closely to the action of a
standard numerical scheme. Like such a scheme, it produces an excellent result
when the function within the filter box can be well represented by a strongly
convergent Taylor series approximation. In a turbulent region in the limit of in-
finite Reynolds number that our turbulence model will seek to describe, such a
Taylor series will not provide an adequate description of the function’s behavior,
and this is why we will need to supplement our numerical scheme with an SGS
turbulence model.

We used data from an sPPM simulation of the Richtmyer-Meshkov instability
of a shock-accelerated interface between denser and lighter gas to develop our
initial model for F [9,10]. (sPPM is a simplified version of our PPM code.) We
use DE turb/Dt to denote the rate of change of the turbulent kinetic energy
below the filter scale in the frame of reference moving with the filtered velocity.
The standard filtering of the fluid equations gives the following equation for this
quantity:

∂Eturb

∂t + ∂j(ũjEturb) = DEturb

Dt + Eturb ∂j(ũj)
=

(
p ∂iui − p̄ ∂iũi

)
− τij ∂j ũi −

∂j(ujp − ũj p̄ − ũiτij + 1
2ρ u2

i uj − 1
2ρ u2

i ũj)
(1)
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Here an overbar represents a volume-weighted and a tilde represents a mass-
weighted average. The sub-filter-scale stress tensor, τij , is defined by τij =
ρuiuj − ρ̄ũiũj = ρ̄ (ũiuj − ũiũj), and the turbulent kinetic energy of sub-
filter-scale motion, Eturb, is defined by 2Eturb = ρuiui − ρ̄ũiũi = τii. We
identify the second term on the right above, −τij ∂j ũi, as the rate of forward
transfer of energy, F , from motions above the scale of the filter to those be-
low it. Our analysis of the Richtmyer-Meshkov flow simulation data on its
8 billion cell grid led us to the following model for this term: FModel =
AL2

f ρ̄ det (SD) + C Eturb ∇ · ũ, where A = − 0.75 and C = − 0.67.
Here Lf is the scale of the filter and det(SD) is the determinant of the devia-

toric rate of strain tensor, defined by (SD)ij = 1
2

(
∂ũi

∂xj
+ ∂ũj

∂xi
− 2

3δij ∇ · ũ
)
. We

can combine the term C Eturb ∇· ũ in this expression for FModel with the similar
term Eturb ∂j(ũj) on the left in our equation for DE turb/Dt . If we define an
effective sub-filter-scale turbulent pressure, q, by q = (2/3) Eturb , then, using
the equation of continuity, we see (cf. [17]) that our two terms in the divergence
of the filtered velocity combine to describe a variation under compression of this
turbulent pressure with the 5/3 power of the density: q ∼ (ρ̄) 5/3. As we pointed
out in [9], the first term in FModel proportional to det(SD) relates the transfer of
energy to small-scale turbulence to the topology of the local solenoidal flow field.
This determinant is a rotational invariant, and since SD is traceless and symmet-
ric, in a frame in which it is diagonalized this determinant equals the product of
its 3 eigenvalues, which are each positive or negative according to whether the
flow is expanding or compressing in that dimension. If the flow is compressing in
one dimension and expanding in the other two (remember that the trace must
vanish), our model for F says that energy will be transferred from the larger
scales of motion to small-scale turbulence, and Eturb will be increasing. This is
the type of flow that occurs when you clap your hands. In a nearly inviscid gas,
it tends to produce thin shear layers which quickly become unstable and produce
turbulence. If the flow is compressing in two dimensions and expanding only in
one, then our model for F predicts that energy in small-scale turbulent motions
will be transferred to larger scales. This is the type of flow that results when you
squeeze a tube of toothpaste. It is also like the flow in a tornado funnel. In such
a flow, small vortices are stretched and tend to become aligned, and hence they
tend to merge, forming larger structures and transferring their energy to larger
scales. We have presented evidence, particularly in [12] and [13], that indeed this
model for F correctly identifies the locations and strengths of regions of energy
transfer to turbulence and in the reverse direction to the larger scales of the flow.

The first term on the right in our equation (1) for DEturb/Dt above, the pdV
work term

(
p ∂iui − p̄ ∂iũi

)
, we find from analysis of data from our PPM

simulation of decaying Mach 1 turbulence [11] can be neglected relative to the
second and third terms on the right, namely F and the final divergence term.
Analysis of this same decaying turbulence simulation data shows that the final
divergence term, − ∂j(ujp− ũjp̄− ũiτij + 1

2ρ u2
i uj − 1

2ρ u2
i ũj), can be modeled

by a simple diffusion of Eturb as in: − Cdiffuse Lf

√
2Eturb/ρ̄ ∇2Eturb, with

Cdiffuse = 0.07 (see correlation plots in [17]). There is no term in our equation
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for DEturb/Dt above that describes dissipation of the turbulent kinetic energy
into heat, because we derived this equation from the inviscid Euler equations.
However, such a term must exist, and it must have the same magnitude inde-
pendent of the size of the physical (as opposed to numerical) viscosity, which
we assume is extremely small. The long-time behavior of our simulation of de-
caying Mach 1 turbulence provides us with a measurement of this turbulence
dissipation term. We carried such a PPM simulation on a 10003 grid out to a
very long time. Fitting the long-time behavior to a model in which Eturb decays
at a rate proportional to the eddy turn-over time of the principal energy con-
taining modes, and realizing that this scale size is changing as the turbulence
decays, we find that we may model the viscous dissipation of our sub-filter-scale
turbulence by adding a term on the right in our equation for DEturb/Dt that is
− Cdecay(Eturb/Lf)

√
2Eturb/ρ̄, with Cdecay = 0.51 .

Modeling all these terms in equation (1) as described above gives us a turbu-
lence model that we can add into our PPM gas dynamics code. Upon doing this,
we find that the production of turbulent kinetic energy, Eturb, which we treat
as a new fluid state variable described by an additional partial differential equa-
tion, occurs in about the right places and in about the right amounts. However,
we also find that the enhancement of the near dissipation range velocity power
spectrum is not eliminated. Therefore this model gets us part of the way to our
goal, but not all the way. Our equation (1) involves a contraction, −τij ∂j ũi, of
the sub-filter-scale stress tensor with the velocity gradient tensor to produce F ,
the energy transfer rate that we have modeled. From the deficiency, just stated,
of the model that results, we conclude that it is not enough to model this tensor
contraction and that we must model the “shape” of the tensor τ ij , that is, the
ratios of its 6 independent components, as well. In our simple model, we used
an eddy viscosity proportional to det(SD), which has the effect of assigning the
shape of the tensor Sij to the tensor τ ij . The analysis of Leonard [14] produces a
model for τ ij whose leading terms produce a contribution to the energy transfer
rate F = −τij ∂j ũi that includes a term in det(SD). We therefore chose this as
our starting point for modeling the shape of the tensor τ ij .

3 A More Complete Model of Subgrid-Scale Turbulence

The motivation for Leonard’s model for τ ij can be seen from a Taylor series anal-
ysis of the local flow. First we define a filter that gives us the simple average of a
quantity within the filter volume. Then, to estimate the
behavior of a velocity inside the filter volume, we expand each filtered veloc-
ity component in a Taylor series about its local average value over the filter
scale and keep only the first-order terms. We can then derive the expression
τij/ρ̄ = ũiuj − ũiũj ≈ 1

12 (∂ũi/∂x̃k) (∂ũj/∂x̃k) ≡ 1
12 Tij , where we

have introduced scaled coordinates x̃k centered on the filter box and in which
the filter box width is unity. Note that only the terms involving the square of
one of these scaled and centered coordinates contribute to the average. We have
denoted Leonard’s velocity gradient product tensor (∂ũi/∂x̃k) (∂ũj/∂x̃k) by the
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symbol Tij . It is important to realize that the first-order terms in the Taylor
series that give rise to Leonard’s expression are of course captured in our 10-
coefficient polynomial representation of the filtered velocity field. In our view,
they are not sub-filter-scale terms and thus should not appear in τ ij . In fact, we
would expect any numerical scheme worth discussing to incorporate these terms,
which arise already in the complete absence of turbulence. All these terms and
many higher-order ones as well are incorporated in our version of ũiũj , and
therefore they cancel these terms in ũiuj. However, using the data from our
PPM simulation of decaying Mach 1 turbulence on the 20483 grid, we find that
indeed τij/ρ̄ is well correlated with Tij in turbulent regions, as has been noted by
others working with much coarser simulation data [19], although the coefficient
of proportionality changes very significantly over time in a developing turbulent
flow (see [17]). We therefore conclude that Tij gives a good representation of the
shape of the tensor τ ij but not of its magnitude. In our analysis of the decaying
turbulence data, we found that the model for the shape of τ ij can be improved
a bit by adding in a component proportional to Sij (see [17]). However, we need
not include this component in our turbulence model, because it has a purely
dissipative effect, and our PPM scheme, like any other modern Euler method,
already has a carefully tuned amount of dissipation for numerical stability both
in smooth flow and in the presence of shocks.

We will use the shape of Tij to model that of τ ij for only the deviatoric
(traceless) parts of both these tensors, which we denote by a subscript D. We
will treat the compressional part of τ ij through the turbulent pressure, q. The
overall magnitude of (τD)ij should be proportional to τ ii = 2Eturb, and we find
that this expectation is verified by our data from the decaying turbulence run.
If we can solve a partial differential equation for Eturb, then we would be able
to get the magnitude of (τD)ij from that solution and its shape from Tij . This
realization led us to the model:

(τD)ij = α Eturb

(TD)ij

tr(Tij)
; Tij = L2

f

∂ũi

∂xk

∂ũj

∂xk
(2)

where Lf =4Δx and α = 4.5. The factors of Lf from Tij cancel out, of course,
in (τD)ij , but we have inserted them here to emphasize the dependence upon
the assumed filter box width, which will enter the partial differential equation
for Eturb non-trivially. The constant α is chosen so that the enhancement of the
velocity power spectrum in the near dissipation range is just eliminated for coarse
grid runs of the decaying Mach 1 turbulence problem using this SGS turbulence
model. For a different numerical scheme than PPM, or for a different choice of
the filter scale, Lf , we would expect α to assume a different value. However,
for our model to be successful, this same value and choice of filter scale should
work well for PPM in many turbulent flow applications, at all times during the
development of those flows, and on all choices of grid resolution.

We discussed earlier how we might build a model partial differential equation,
starting from equation (1), to solve for the time development of the turbulent
kinetic energy, Eturb. We will re-express this here in terms of the equivalent
turbulent pressure q:
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∂q
∂t + ui

∂q
∂xi

= − 5
3 q ∂ui

∂xi
− 3

2 (τD)ij
∂ui

∂xj
−

√
3q
ρ

(
Cdiffuse Lf ∇2q + Cdecay

q
Lf

) (3)

(τD)ij =
3
2
α q

(TD)ij

Tkk
+ βL2

fρ det (SD)
(SD)ij

(SD)lm (SD)lm

(4)

Cdiffuse = 0.51 ; Cdecay = 0.07 ; α = 4.5 ; β = 0.01, and β = 0 in smooth flow.
We relate the width of the filter box, Lf , to the grid cell width, Δx, by Lf =

4 Δx. Note that we have added a second term, with coefficient β, in our model
for (τD)ij . This is a turbulent kinetic energy generation term. We have set it
proportional to det(SD), because our earlier model analysis indicates that this
will cause turbulent kinetic energy to be generated in roughly the right places in
the flow. The amounts that will be generated will be controlled by the large-scale
flow, as long as we choose the constant β small enough. The idea is that this
term in det(SD) will seed the flow with small amounts of turbulent kinetic energy.
Once these “seeds” are “planted,” the first term on the right in equation (4) will
tend to produce exponential growth of turbulent kinetic energy until that growth
becomes limited by the availability of the energy that is feeding this growth. That
energy is the kinetic energy arriving continuously through the turbulent cascade
in motions on scales just above the filter width. The presumption is that this
cascade and hence this amount of energy is being accurately computed by the
numerical scheme. Once Eturb grows substantially from its seed value, it should
evolve independently from the way in which we seeded it. To prevent seeding
this growth in smooth regions of the flow, we set β to zero where a standard
PPM test (see [4]) indicates that the velocity field is smooth. In this model, we
thus need only to set β so small that the size of the seed term in equation (4) is
always small compared to the first term there, proportional to the constant α,
once the local growth of Eturb (hence of q) saturates. We find that the choice β
= 0.01 works well and that β = 0.001 also works, but produces a short delay in
the generation of the turbulent energy. We find that β = 0.1 is too large, because
it makes the second term on the right in equation (4) begin to compete with
the first term and thus to produce too much dissipation in the near dissipation
range of the velocity power spectrum.

To perform a fluid flow simulation with this model, we must add to equations
(3) and (4) the fluid equations:

∂ρ

∂t
= −∂ρui

∂xi
;

∂ρui

∂t
= − ∂

∂xj

(
(p + q) δij + ρuiuj + (τD)ij

)
(5)

∂E

∂t
= − ∂

∂xj

(
uj (E + p + q) + ui (τD)ij

)
; E =

p

(γ − 1)
+

3
2
q +

1
2
ρujuj (6)

Our PPM gas dynamics code uses directional operator splitting. We decompose
each 1-D pass of the numerical algorithm into two steps. In the first step, we solve
equations (5) and (6) above in the usual way, except for the complication of the
turbulent pressure, q. In this first step, we set (τD)ij to zero, since we will handle
its contribution in the second step. We treat the gas, with its effective pressure of
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p+q as a fluid with an effective gamma-law equation of state, where γeff = (γ p
+ 5q/3) / (p+q). The effective Eulerian sound speed is then given by c2

eff= (γ p
+ 5q/3) / ρ . We follow the standard PPM procedure described in [4] to arrive at
estimates of the time-averaged values of ρ and (p+q) at the cell interfaces during
the time step. From the density change along the averaged streamline crossing
the cell interface, we find that we get a reasonable estimate for the change or
jump in q by using the shock formula with γeff . From the jump in q, knowing the
jump in (p+q), we can then get the jump in p. This is not an obvious procedure.
We have devised it with reference to a very detailed study of the propagation
of a Mach 5 shock through a periodic brick of fully developed turbulence. This
brick of turbulence was produced in our PPM simulation of decaying Mach 1
turbulence on the 20483 grid. We plan to refine our present treatment of shocks
in our code through further shock-turbulence interaction studies. Nevertheless,
the present technique appears to work rather well. It accounts in an approximate
way for the large and sudden loss of turbulent kinetic energy to heat immediately
following the viscous shock as the turbulence reestablishes local isotropy. At the
end of the first step of this 1-D PPM pass, we need to update the individual
pressures p and q. We have the updated total energy from solving equation
(6), with (τD)ij set to zero, as well as the updated kinetic energy from solving
equation (5), but this is not sufficient information. To complete the system, we
add equation (3) in which we set (τD)ij to zero and also set both Cdiffuse and
Cdecay to zero, since we will handle these terms in the second step of this 1-D
pass.

In the second step of our 1-D pass of the numerical algorithm, we do not allow
the fluid to move. At the outset in this second step, we evaluate a standard PPM
test (see [4]) for the smoothness of the velocity field, producing a measure of the
lack of smoothness at each grid cell that ranges from 0 to 1. We also generate
a smoother velocity field by taking for each velocity component half the present
value plus a quarter of each neighbor value, doing this in the 3 grid directions
in succession. Where the flow is not smooth, but not in shocks (which we detect
as a standard part of the PPM scheme), we modify q by applying the term
involving (τD)ij in equation (3), using equation (4), and we also modify the
velocity components by applying the terms involving (τD)ij in equation (5).
After this is done, the terms in Cdiffuse and Cdecay in equation (3) are applied.
The smoothed velocity components are used to evaluate the tensors Tij and
(SD)ij in these formulae. It is a very important feature of our method that we
limit the amount of energy that is transferred from the kinetic energy of small-
scale turbulent motions, Eturb = 3q/2, to the large-scale flow in order that no
more energy can be transferred than is available in this source. This constraint
is applied locally at each cell interface. By solving our evolution equation for
q, we know how much energy is available locally. Our scheme therefore cannot
go into a runaway behavior in which extraction of turbulent energy results in
conditions that cause estimates of the local amount of this energy to increase.
This benefit alone, the prevention of unphysical runaway behavior, is well worth
the cost of integrating the evolution equation for q. Other investigators working
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with the velocity gradient product tensor to model the SGS stress tensor τ ij

have inserted additional dissipative terms or introduced limiters that completely
eliminate backscatter in order to address this problem [18,19].

4 Initial Results

We have of course used our PPM simulation of decaying Mach 1 turbulence on
20483 and 10003 grids ([11,15,16], the latter has a more complete data set) to test
our modeling ideas and to set values for the constants α, Cdiffuse, and Cdecay.
Nevertheless, it is still significant that a single value for α causes the enhancement
of the velocity power spectrum in the near dissipation range to disappear for
multiple grid resolutions, as shown in Figure 1. The agreement of the velocity
power spectra in Figure 1 gives no information about the phases of these various
modes. Although the turbulence is well developed and quite chaotic by time 1.86
in this problem, phase agreement can nevertheless be observed in renderings of
the vorticity structures in a slice of the volume, as shown in Figure 2. There
is quite a good correspondence between the results of PPM running with the
turbulence model on a grid of 2563 cells and a blending of the results of the run
on the 20483 grid over boxes of 243 of its cells, or of 33 cells of the 2563 grid.
We have also tested the model successfully in a strongly anisotropic shear flow
in which small-scale turbulence develops within large-scale breaking waves, and
this will be reported in detail in a future article.

This work has been supported by grant DE-FG02-03ER25569 from the MICS
program of the DoE Office of Science, through NSF CISE RR (CNS-0224424)
and MRI (CNS-0421423) grants, through a donation of an ES-7000 computer
from Unisys Corp., and by local support to the Laboratory for Computational

Fig. 1. Velocity power spectra of decaying Mach 1 turbulence are shown at late times,
when the turbulence is fully developed. Spectra from the PPM run without a turbulence
model on a grid of 20483 cells are compared with spectra from PPM runs with the
turbulence model on 2563 and 1283 grids. A spectrum from a PPM run on a 2563

grid without the model shows that the model eliminates the false enhancement of the
spectrum in the near dissipation range of wavenumbers.



1082 P.R. Woodward and D.H. Porter

Fig. 2. Distributions of the magnitude of the vorticity in a slice of the volume in the
decaying Mach 1 turbulence problem at time 1.86. All renderings are performed in
the same way to enable direct comparisons. At the top are the PPM runs without a
turbulence model on grids of 20483 (left) and 2563 (right) cells. At the bottom left the
data from the 20483 run has been blended over volumes of 33 cells of a 256 3 grid for
comparison with the results, at bottom right, of a PPM run on a 2563 grid using the
turbulence model.

Science & Engineering (LCSE) from the University of Minnesota’s Digital Tech-
nology Center and Minnesota Supercomputer Institute. We also acknowledge
grants of time on the NSF TeraGrid cluster at NCSA and at the Pittsburgh
Supercomputing Center.
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Abstract. During recent years a large number of parallel routines and
libraries have been developed. These routines have been conceived for ho-
mogeneous systems. Thanks to the evolution of technology, now it is quite
usual to have heterogeneous systems. These routines and libraries need to
be adapted to the new environment. There are at least two options. The
routines could be rewritten, but this would be excessively costly in terms
of time and money. Alternatively, the processes of a homogeneous routine
can be mapped into the processors in the heterogeneous system. To do
this, the development of efficient mapping techniques is necessary. Our
approach to satisfactory mappings consists of modelling the execution
time of the parallel routine, and obtaining the mapping that gives the
minimum modelled execution time. Exact solutions to this problem are
very time consumming. As an alternative, we are researching the appli-
cation of heuristic techniques to solve this problem. This paper analyzes
how Scatter Search can be applied to parallel iterative schemes.

1 Introduction

In the field of parallel computing, mapping problems must be solved to assign
processes to processors in order to obtain a mapping with which a reduced
execution time is obtained. The problem considered here is the one in which
homogeneous processes are assigned to a parallel system, which may be homo-
geneous or heterogenous. In the case of a heterogeneous system, the type of
algorithms used is often called HeHo [1] (Heterogeneous assignment of processes
which have homogeneous distribution of data). The general mapping problem
is widely known to be NP-complete [2,3]. Thus, efficient and optimal solutions
have been found only for some particular mapping problems [4,5,6]. For other
problems, approximate solutions are obtained with heuristic methods [2,7,8,9].

In previous works, the assignment of processes of a homogeneous program
to a heterogeneous system was studied for a parallel dynamic programming
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scheme [10] and for dense linear algebra factorizations [11]. The problem has
been solved by searching through a tree which includes all the possible processes
to processors mappings. In this paper we propose to search through the tree with
Scatter Search [12,13].

The paper is organized as follows. In Section 2 the tree used for the search is
explained. Section 3 analyzes the scheme of a Scatter Search and different ways of
applying the technique to the mapping problem. In Section 4 some experimental
results are shown. Finally, Section 5 summarizes the conclusions and indicates
future research directions.

2 The Mapping Tree

In figure 1, level number i represents the possible assignments of process number i
to the corresponding processors in [1, . . . , P ], where P is the number of processors
in the system. The height of the tree depends on the number of processes used
in the solution.

Fig. 1. Mapping processes (1, . . . , n) to processors (1, . . . , P )

To obtain the mapping, an exact model of the execution time of the routine
must be developed, and a search is performed in a tree representing the map-
pings. Each node in the tree represents one of the possible assignments, and it
has the corresponding modelled execution time associated [10]. As an example,
the figure has two nodes at level 2 labeled by their mapping array. The first has
the value (2,0,...,0) because processes numbers 1 and 2 have been assigned to
processor number 1 and no processes are assigned to the other processors. The
second has the array (1,0,...,1) because process number 1 has been assigned to
processor number 1, and process number 2 to processor number P .

The search through the tree is made with backtracking or branch and bound
techniques, which consume a large amount of time, even when strategies to prune
nodes in the tree are applied. Thus, the method does not scale well and it is only
valid for small systems. For large systems, approximation methods (greedy) can
be used to obtain the mapping in a reduced time, but the result is far from the
optimum in some cases. This can be seen in table 1, where the times to decide
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the mapping (mapping time) using an exact (backtracking with pruning) and
a greedy method are compared. The table also shows the execution time (exec.
time) obtained with these mappings, in a system with 20 processors, and in
a simulated configuration with 40 processors. In the paper, because the greedy
method gives in some cases solutions far from the optimum, the proposed Scatter
Search strategy is compared with a backtracking with pruning.

Table 1. Comparison of the execution time and the mapping time (in seconds) of
greedy and backtracking methods when mapping in two heterogeneous systems (real
and simulated)

method System, 20 proc. Simulation, 40 proc.
mapping time exec. time mapping time exec. time

backtracking 0.122 2.96 111.369 5.07
greedy 0.001 5.09 0.009 5.72

The theoretical model requires a precise knowledge of the system parameters
like basic arithmetic operations time, or sending and start-up times of a com-
munication. Frequently it is very difficult to find an equation to represent the
problem.

We consider parallel iterative schemes, which can be used in the solution of
a large variety of problems [14,15]: dynamic programming, graph algorithms,
genetic algorithms, iterative methods for the solution of linear systems, Fox and
Cannon methods for matrix multiplication, Jacobi’s relaxation, ... Additionally,
the method can be applied to other problems and schemes, for example, linear
algebra factorizations [11].

The case is considered in which the data to work with are assigned to the dif-
ferent processes in blocks of equal size. Each iteration consists of a computational
part, and a communication step appears between two consecutive iterations. The
total execution time is the addition of the execution times of the different itera-
tions. Thus, it suffices to estimate the execution time of only one iteration that
has a theoretical execution time of the form:

t(s, D) = tctcomp(s, D) + tcomm(s, D) (1)

where s represents the problem size, D the number of processes used to solve
the problem, tc the cost of a basic arithmetic operation, tcomp the number of
basic arithmetic operations, and tcomm the communication cost (it includes a
term with ts, start-up time, and another with tw, word-sending time).

When estimating the computation and the communication part the type of
system must be considered. The computation part is estimated by perform-
ing several sequential executions with different problem sizes, and using a least
square adjustment. In a homogenous system, the cost of a basic arithmetic op-
eration, tc, is the same in the different processors, but in a heterogenous system
the cost in each processor is different (the cost in processor i is tci), and must
be calculated for each one of the processors in the system.
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Similarly, to estimate the cost of the communications, in a homogenous system
ts and tw can be calculated between two processors, for example by running a
ping-pong. In a heterogeneous system the cost between two processors depends
on the two particular processors which perform the communications. To simplify
the estimation there are several options. Adjustment by least square considering
the system as homogeneous can be used [16]. Or the values of ts and tw between
each pair of processors (using ping-pong) can be obtained, and the highest values
would be included in the formula. The results have been obtained by least square
adjustment considering the system as homogenous.

3 A Scatter Search Scheme

The previous techniques are either not fast enough or not efficient enough to get
a satisfactory mapping. As an alternative, heuristic techniques which have been
sucessfully applied to solve other hard optimization problems [13,17,18] can be
applied. We have studied the application of the Scatter Search method.

Scatter Search is a very aggressive search method that attempts to find high
quality solutions fast. It operates on a set of solutions by combining these so-
lutions to create new ones [12,13]. From an initial reference set of solutions,
new solutions are obtained by combining other solutions. Unlike a “population”
in genetic algorithms, the reference set of solutions tends to be small, leading
to a reduced execution time, which is essential for the goal we pursue. In ge-
netic algorithms, two solutions are randomly chosen from the population and
a “crossover” is used to generate a new solution. A typical population size in
a genetic algorithm could consist of 100 elements, which are randomly sampled
to create combinations. In contrast, typically the reference set in Scatter Search
has 20 solutions or fewer, which are combined in a systematic way to create
new solutions. The combination process could consider all pairs of solutions in
the reference set, and it is necessary to keep the cardinality of the set small.
Randomness is an important factor in this technique.

To apply the technique to our problem we consider that each element of the
reference set of solutions represents a possible solution of the problem, that is, a
possible mapping of processes to processors in the system (a node in the tree).

The elements with the lowest modelled execution time are included in the
reference set, and those with the greatest distance function to the best elements
are also included (e.g. the addition of the Euclidean distances could be used).
The reason is that if only the best elements of the reference set are selected, the
method could quickly converge to a local optimum, obtaining a solution which
is far from the global optimum. The inclusion of elements which are far from
the best elements will contribute to exploring the complete search space and to
convergence to the global optimum.

The structure to represent the reference set is an array D = (d1, d2, . . . , dP ),
with P being the number of processors in the system and di the number of
processes assigned to processor i (figure 1). Fixing the number of processes to
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be used leads to the problem being solved more easily. However, the number of
possible assignments is limited.

One scheme of the Scatter Search technique is shown in figure 2. Seven actions
have been underlined. There are different possibilities for each of these actions.
Experiments with some of these possibilities have been carried out, and the most
important results are summarized.

generate initial reference set
improve initial reference set
while convergence not reached

select elements to be combined
combine selected elements
improve combined elements
include the most promising elements in the reference set
include in the reference set the most scattered elements with respect

to the most promising ones
endwhile

Fig. 2. A Scatter Search scheme

Previous underlined actions have been tuned to our mapping problem.
This is the basic Scatter Search scheme, but there is a large number of variants

of Scatter Search. Different possibilities for each part of the scheme are discussed
below:

Generate:
It is necessary to generate an initial reference set where each element rep-
resents a possible mapping, that is, a possible solution of the problem. But
there are various possibilities. It is possible to randomly assign processes to
processors, or to assign an equal number of processes to each processor.

Improve:
A greedy method is applied to each element in the initial reference set and
in the sets obtained by combination of elements. For each element, all the
mappings obtained by asigning one additional process to a processor are
considered. The execution time of all the mappings are computed and the
method advances to the mapping with lowest time. The iteration finishes
when the execution times of all the new mappings are greater than that of
the previous one.

Convergence:
The algorithm stops when the convergence of the problem is reached, that
is, when a solution is found, but here again there are various posibilities. We
can consider the convergence is reached when the best of the new solutions
is not better than the best of the previous ones, or when the average of the
new solutions is not better than that of the previous ones.
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Select:
The algorithm selects certain elements of the present reference set for com-
bination, but which and why? It is possible to select all the elements for
combination, or to select the best elements to be combined with the worst
ones (the best and the worst will be governed by the execution time func-
tion).

Combine:
Because Scatter Search is based on random decisions, each pair of selected
elements is combined component to component, and the number of processes
increases with more probability in processors with more computational ca-
pacity, and decreases in the slower ones.

Include:
As is seen in the algorithm, a new reference set is generated from the present
reference set in every iteration. It includes the most promising elements and
those most scattered with respect to the most promising ones. The most
scattered elements are those furthest (using Euclidean distance) or those
which are most “different” (number of different coordinates) from the most
promising ones.

4 Experimental Results

For each of the previous hightlined actions there are many possibilities. The
combine and improve actions are always the same. In the experiments only two
options have been considered for generate and convergence actions. Thus, four
different variants of the Scatter Search have been analyzed. To analyze the influ-
ence of the different possibilities a large number of tests have been carried out,
both in simulations and in real systems.

In the simulations, the parameters of the system have been chosen as follows:
the number of processors varies between 20 and 100, the maximum number of
processes is obtained in the range [15, . . . , 15+proc] where proc is the number of
processors of the system, and the values of the computational parameters (tci)
have been randomly varied in the range

[
10−10, . . . , 10−10 + 10−10 ∗ randmax

]

where randmax is a specific number of each system. To estimate the values of
the communication parameters (ts and tw) an adjustment by least square has
been made considering a homogeneous system.

In table 2, the two possibilities considered of the generate and convergence
actions are compared. The table shows the percentage of experiments in which
the Scatter Search with the indicated possibility provides a total execution time
lower than that obtained when the other option is considered. The results confirm
what was expected: it is better to generate the initial reference set considering
the number of processors of the system and it is also better that the algorithm
finishes when the average of the new reference set is not better than the average
of the previous reference set.

Thus, once the generate and convergence actions have been fixed, it is neces-
sary to choose the best options for select and include actions.
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Table 2. Comparison of two possibilites of generation of the initial reference set and
of convergence criterion

Generate initial reference set Best results Convergence reached Best results
Considering processors 80% Average 80%

Randomly 20% Best element 20%

Table 3. Comparison of two select and include criteria with respect to backtracking
with pruning

Select elements
Include elements All elements Best vs worst elements
Longest distance AE-LD: 90% BW-LD: 85%
More different AE-MD: 91% BW-MD: 86%

Table 4. Modelled Times and Number of Iterations for different criteria

Simulation Iterations Initial Modelled Time Final Modelled Time Decision Time
AE-LD 96 5365.25 1796.04 5.89
AE-MD 69 5633.23 1797.83 5.33
BW-LD 11 5874.36 2237.24 0.18
BW-MD 2 5636.36 2411.21 0.47

Table 3 represents the comparisons between the four previous combinations
with respect to an exact method (backtracking with pruning), with simulations
named AE-LD, AE-MD, BW-LD and BW-MD. The parameters have been varied
as previously explained. The numbers in the table represent the percentage of
simulations in which the Scatter Search provides lower execution times (the
mapping time plus the modeled time) with respect to the backtracking.

The best results are obtained when all elements are selected to be combined,
and when the number of differences is used as a measure to determine the “most
scattered” elements with respect to the most promising.

Table 4 shows the results obtained for the 4 previous combinations in a partic-
ular simulation. Different runnings would give different results, but the behaviour
is similar. Simulations BW-LD and BW-MD have lower decision time (0.18 and
0.47 seconds, and 5.89 and 3.33 simulations AE-LD and AE-MD), but the total
time is lower in AE-LD and AE-MD. AE-MD, which has the best figures in table
3, has a number of iterations smaller than AE-LD, but the modeled time are
very similar, which implies that AE-MD is the best.

Hundreds of simulations have been made and the results are different: table 5
compares backtracking with pruning and Scatter Search techniques. The com-
plexity is a parameter reflecting the complexity of computations in comparison
with communications. Tests have been carried out with values 10, 50, 100, 200,
300, 400. It does not influence communications, only computation. The size of the
problem has an influence on the computacional and the communication parts.
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Values 10000, 50000, 100000, 500000, 750000 and 1000000 have been used in the
experiments. In that way, tests have been carried out for small and large prob-
lems, and for problems with low and high computation/communication rate. In
the experiments the parameters have been varied as previously explained. Each
percentage represents the number of simulations where the corresponding tech-
nique is the best, that is, the total execution time (the mapping time together
with the modelled time) is the lowest with respect to the other techniques.

For small problem sizes, exact techniques are better than Scatter Search,
independently of the problem complexity, but, when the size grows, the Scatter
Search technique outperforms the others. It can be said that in general the results
are good, especially when the problem is big and complex.

Table 5. Comparison backtracking with pruning and Scatter Search techniques

Size Complexity backtracking Scatter Search
Small [1, . . . , 100000] Small [1, . . . , 100] 92% 8%
Small [1, . . . , 100000] Big [100, . . . , 400] 73% 27%

Medium [100000, . . . , 500000] Small [1, . . . , 100] 42% 58%
Medium [100000, . . . , 500000] Big [100, . . . , 400] 40% 60%

Big [500000, . . . , 1000000] Small [1, . . . , 100] 22% 78%
Big [500000, . . . , 1000000] Big [100, . . . , 400] 5% 95%

Table 6 shows the grouped results for simulations with growing size and com-
plexity. For each combination (SIMi) of size, complexity, number of processors
(proc) and number of processes, a large number of tests were made as previ-
ously explained. Each percentage represents the number of simulations where
the Scatter Search technique is better than backtracking with pruning.

Table 6. Comparison of backtracking with pruning and Scatter Search techniques with
increasing sizes and complexities

Simulation Size Complexity System1 System2 System3 System4 System5
20 proc 40 proc 60 proc 80 proc 100 proc

SIM1 100000 100 100% 100% 60% 43% 33%
SIM2 100000 400 100% 100% 96% 96% 70%
SIM3 750000 100 100% 100% 96% 94% 77%
SIM4 750000 400 100% 98% 100% 98% 97%

Results for a real system are also included. The system has 4 nodes, mono
and bi-processors, with different processor speeds, and communicated by a fast
ethernet network. The results are shown in table 7. When the size of the problem
is small, exact techniques are better than Scatter Search, independently of the
problem complexity, but when the size grows the Scatter Search performs equally
well. The results are worse in this cluster than in the simulations because the
explored tree is very small.



1092 J.-P. Mart́ınez-Gallar, F. Almeida, and D. Giménez

Table 7. Comparison of backtracking with pruning and Scatter Search techniques in
a real system

Size Complexity backtracking Scatter Search
Small [1, . . . , 100000] Small [1, . . . , 100] 82% 18%
Small [1, . . . , 100000] Big [100, . . . , 400] 80% 20%

Medium [100000, . . . , 500000] Small [1, . . . , 100] 63% 37%
Medium [100000, . . . , 500000] Big [100, . . . , 400] 59% 41%

Big [500000, . . . , 1000000] Small [1, . . . , 100] 52% 48%
Big [500000, . . . , 1000000] Big [100, . . . , 400] 47% 53%

5 Conclusions and Future Work

The application of heuristic techniques to processes to processors mapping has
been studied. The technique is based on the exploration of a mapping tree where
each node has an associated theoretical execution time. Heuristic techniques al-
low us to obtain a satisfactory mapping in a reasonable time, but some param-
eters of the basic heuristic search need to be tuned.

According to the results, the Scatter Search is a promising technique for map-
ping in heterogeneous systems, specially when they are large distributed systems.
In the future we plan to apply to the same problem other heuristic techniques
(tabu search, simulated annealing, genetic algorithms, ... [13,17,19]) which have
been succesfully applied to other optimization problems, and to study the ap-
plication of the method to other parallel algorithmic schemes [20,21].
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18. Pérez, M., Almeida, F., Moreno-Vega, J.M.: On the Use of Path Relinking for the
p-Hub Median Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS,
vol. 3004, pp. 155–164. Springer, Heidelberg (2004)

19. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)

20. Wilkinson, B., Allen, M.: Parallel Programming. Prentice Hall, Englewood Cliffs
(1999)

21. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Addison-Wesley, Reading (2003)



The parXXL Environment: Scalable Fine Grained
Development for Large Coarse Grained

Platforms

Jens Gustedt1, Stéphane Vialle2, and Amelia De Vivo3,�

1 INRIA Lorraine & LORIA, France
Jens.Gustedt@loria.fr

2 SUPELEC, 2 Rue Edouard Belin, FR-57070 Metz, France
Stephane.Vialle@supelec.fr
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Abstract. We present a new integrated environment for cellular com-
puting and other fine grained applications. It is based upon previous
developments concerning cellular computing environments (the ParCeL
family) and coarse grained algorithms (the SSCRAP toolbox). It is aimed
to be portable and efficient, and at the same time to offer a comfortable
abstraction for the developer of fine grained programs. A first campaign
of benchmarks shows promising results on clusters.

1 Motivations and Objectives

Nowadays, many research areas consider multi-scale simulations based on ab ini-
tio computations: they aim to simulate complex macroscopic systems at micro-
scopic level, using fundamental physical laws. Obviously, huge amounts of CPU
are mandatory to run these simulations. Modern supercomputers and Grids, with
large and scalable number of powerful processors, are interesting architectures
to support these simulations.

However designers and developers of algorithms and code for large scale ap-
plications are often confronted with a paradoxical situation: their modeling and
thinking is fine-grained, speaking e.g. of atoms, cells, items, protein bases and
alike, whereas modern computing architectures are coarse-grained providing few
processors (up to several thousands ≈ 103) to potentially huge amount of data
(thousands of billions of bytes ≈ 1012) and linking a substantial amount of
resources (memory in particular) to each processor. Only few tools (for both,
modeling and implementation) are provided to close this gap in expectation,
competence and education.

This article introduces the parXXL development environment, specially de-
signed to close this gap between fine-grained modeling and coarse-grained com-
puting architectures. It stems from two previous research projects that have

� In memoriam to our colleague Amelia De Vivo who passed away during the PARA-
2006 conference on June 21st, 2006, in Ume̊a, Sweden.
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investigated optimization of computing resources (CPU, memory, communica-
tions, synchronization . . . ) and cellular oriented programming (to implement
fine-grained models). Some collaborations with researchers in optic components
and hot plasma (from LMOPS and LPMIA laboratories) guide parXXL design
to an ease-to-use tool, and allow to identify collateral challenges. For example,
some hot plasma simulation codes of our partners have been specially designed
for global shared memory parallel computers. Intensive computation steps are
split by optimized data rearrangement operations inside the global shared mem-
ory. But on large distributed architectures this kind of operations would be pro-
hibitive. Some codes need to be re-designed and based on local computations,
in order to support efficient runs on large distributed memory architectures and
straightforward fine-grained implementations with parXXL. We are convinced
that this algorithmic and programming methodology is required to achieve large
multi-scale simulations.

2 Related Work

On the modeling side, Valiant’s seminal paper on the BSP, see [1], has triggered
a lot of work on different sides (modeling, algorithms, implementations and ex-
periments) that showed very interesting results on narrowing the gap between,
on one hand, fine grained data structures and algorithms and, on the other,
coarse grained architectures. But when coming to real life, code developers are
usually left alone with the classical interfaces, even when they implement with
a BSP-like model in mind.

Development environment with explicit coarse grained parallelism, like MPI
and OpenMP, usually lead to efficient executions but are not adapted to fine
grained programming, and require experimented parallel developers. At the op-
posite, high level computation tools like Mathematica or Mathlab are comfort-
able tools to implement a simulation model from mathematical equations. But
these high level tools have poor performances and use C++ code generators and
classical distributed C++ libraries to create more efficient codes (an interface
between parXXL and a Mathematica EDP solver based on cellular automata is
under development). Some distributed OS managing a virtual shared memory
like Kerrighed [2] allow to easily implement parallel algorithms, but they are
limited to small clusters and require coarse-grained algorithms and optimized
memory management to achieve performances.

Many generic cellular languages and distributed object libraries have been
designed for parallel and distributed architectures, like Cape [3] or Carpet [4].
But they focus on cellular automata with cell connection limited to a prede-
fined neighboring and with synchronous cell communications (similar to the
buffered parXXL mode). Moreover, these researches seems to have slowed down
since 2000. Finally, some Java based distributed environments exist, based on
message passing and remote method invocations like ProActive [5] or on virtual
shared memory like JavaSpaces [6]. Our personal experiments have exhibited
good speedup and good scalability, and Java Virtual Machine performances are
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improving. But Java has not been yet adopted by the scientific community to
implement intensive computations, and remains slower than C++.

So, implementing dynamic data structures (such as cellular networks) effi-
ciently on a large scale often remains an insurmountable hurdle for real life
applications. parXXL as proposed in this paper was created to lower that hur-
dle, in that it implements a general purpose development environment for fine
grained computation on large parallel and distributed systems.

3 Software Architecture

The parXXL development environment is split into several, well-identified layers
which historically come from two different project sources, SSCRAP and Par-
CeL6. Its software architecture is introduced on Fig. 1, and demonstrates the
split of these two main parts into the different layers. The (former) SSCRAP
part introduces all the necessary parts to allow for an efficient programming in
coarse grained environments; interfaces for the C++ programming language, the
POSIX system calls, tools for benchmarking, a memory abstraction layer and
the runtime communication and control. The (former) ParCeL6 part introduces
a cellular development environment and a set of predefined and optimized cell
networks. These programming models of SSCRAP and ParCeL6 are detailed in the
next sections.

par::cellnet Cellular networking
�
⏐
⏐
�

ParCeL6
par::cell Cellular programming environment

par::step Organizing BSP-like supersteps �
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
�

SSCRAP

par::cntrl Runtime communication and control
par::mem Memory abstraction and mapping
par::bench Benchmarking tools
par::sys System interfaces (POSIX)
par::cpp C++ wrappers and utilities

Fig. 1. parXXL software architecture

4 SSCRAP Programming Model

SSCRAP is a programming environment that is based on an extension of the
BSP programming model [1], called PRO [7]. It proved to be quite efficient for a
variety of algorithms and platforms, see [8]. Its main features what concern this
paper are:

Supersteps with relaxed synchronization: Originally, BSP was designed
with strong synchronization between the supersteps. PRO (and thus SS-
CRAP) allows a process to resume computation as soon as it receives all
necessary data for the next superstep. The par::cntrl layer (see Fig. 1)
implements these features in parXXL.
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A well identified range of applicability: SSCRAP is clearly designed and
optimized for coarse grained architectures. These are architectures for which
each processor has access to a private memory that allows it to keep track
of one communication to every other processor. If the platform has p proces-
sors, as a minimal condition this private memory must thus hold p machine
words, a fact to which we refer as the architecture having “substantially more
memory than there are processors”. All modern high performance computing
architectures (mainframes and clusters) easily fulfill this criterion.

Comfortable encapsulation of data: The work horse of SSCRAP is a data
type (chunk in the par::mem layer) that encapsulates data situated on different
supports such as memory and files which then can be mapped efficiently into
the address space of the processes. Thereby SSCRAP can efficiently handle
huge data (e.g larger than the address space) without imposing complex
maintenance operations to the programmer.

Portability: SSCRAP is uniquely based on normalized system interfaces
(par::sys), most important are POSIX file systems, POSIX threads and
MPI for communication in distributed environments. Therefore it should
run without modification on all systems that implement the corresponding
POSIX system calls and/or provide a decent MPI implementation.

Performance: This portability is not obtained by trading for efficiency. In the
contrary, we provide two run-times, one for shared memory architectures
(threads) and one for distributed computing (MPI). These are designed to
get the best out of their respective context: avoiding unnecessary copies on
shared memory and latency problems when distributed. All this is achieved
by only linking against the respective library, no recompilation is necessary.

5 ParCeL6 Programming Model

The par::cell level of parXXL architecture (see Fig. 1) implements the ParCeL6
extended cellular programming model [9]. It is based on cells that are distributed
on different processors, and on a sequential master program: ParCeL6 developers
design and implement some cell behavior functions, and a sequential program
to install and to control a parallel cellular net. This mixed programming model
is easy to use and facilitates the design of cellular servers : a classical client can
connect to the sequential program, that runs cellular computations on demand.
Main features of ParCeL6 cellular model are:

A dynamic cellular network: Starting from an empty network of cells, the
sequential program creates cells on all available processors. Each cell has
an individual set of parameters, and the first action of these cells is usually
to connect each other to create a cellular network (a cell output can be
connected to an unlimited number of cell inputs). This network is dynamic
and may evolve at any point of the execution (cells and connections can be
created or removed).

Six cell components: A cell is composed of (1) a unique cell registration, some
(2) parameters and (3) private variables, (4) some cell behavior functions,
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(5) a unique multi valued output channel, and (6) several multi valued input
channels. The first is imposed by ParCeL6 mechanisms, the others are defined
by the developer.

A cyclic/BSP execution of the cell net: A ParCeL6 cycle consists of three
steps: computation, net evolution and communication. Each cell is activated
once during the computation step, where it sequentially reads its inputs,
updates its output, and issues some cell net evolution requests. These requests
define, kill, connect or disconnect some cells, and are executed during the
net evolution step.

Three modes of cellular communications: During the communication
step, buffered outputs are copied to their connected cell inputs. Their prop-
agation is fast and is adapted to synchronous fine grained computation (cell
inputs do not change during the computation steps). The propagation of a
direct output to a connected cell input is triggered each time a refresh com-
mand is executed for it. This mechanism has a large overhead but is required
by some asynchronous fine grained computations [9]. Hybrid outputs are an
attempt to get both fast and asynchronous cellular computations: they prop-
agate their value one time per computation step and per processor (cells on
different processors can read different values during one computation step).

Moreover, some collector mechanisms allow the cells to save data during their
computation steps and the master program to gather, sort and store these data
at the end of a computation step. Symmetrically, some global cell net communi-
cation mechanisms allow the sequential program to send input data to the cells
(like camera images).

Finally, a classic ParCeL6 application code includes three main parts: the se-
quential master routine controlling the cell net installation and running cellu-
lar computation steps, the cell creation and connection operations to establish
the cell net (can be easily implemented using the cell net library, see next sec-
tion), and the cell computation functions that implement a fine grained comput-
ing model (like Maxwell equations, neural network computations. . . ). So, a fine
grained algorithm can be straightforwardly implemented on ParCeL6, especially
when an adapted cell net template exists in the library, without dealing with
parallel processing difficulties.

6 parXXL Main Functionalities

Optimized Cell Network Library. The par::cellnet library (see Fig. 1) is
a collection of cell network installers: application code can easily deploy a cell
network just using an installer object. Each installer has to be set with the
application cell behavior functions, the cell parameter and cell variable types,
and the cell network size. Then, it installs the cells and their parameters, and
connects the cells according to a predefined communication scheme. Deployments
are optimized: (1) the number of cells is balanced among the processors, (2)
with preference neighboring cells are installed on the same processor, and (3)
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cell net installation is split into small steps to limit the memory required by the
deployment operations.

The par::cellnet library currently includes network installers that place the
cells on a 2- or 3-dimensional grid, and that will connect a given cell to all its
neighbors that are ‘close’ with respect to a certain ‘norm’: e.g an installer of
type

par::cellnet::mesh< 3, L2, 2, applicationType >

will position the cells on a 3-dimensional grid, and connect all cells that are
at distance 2 in the Euclidean (L2) norm. The remaining information of the
particular application network (such as the individual cell functions etc) is spec-
ified via the type parameter applicationType that is defined by the application.
Currently available norms are L0, L1 and L2.

We are currently working on an extension of this setting to general dimensions.
More generally, other types of regular networks (honeycomb, regular crystals)
and other types of norms (e.g ellipses) may be implemented easily if needed.

Process Specification. Generally a parXXL program executes several parXXL-
processes in an MIMD fashion. The kind of execution (POSIX threads or MPI
processes) and the number of processes is not fixed in the code but only decided
at link or launch time, respectively.

According to ParCeL6 programming model (see Section 5), the par::cell layer
restricts the MIMD execution model so that a par::cell program is composed
of a sequential master program and a set of worker processes hosting and run-
ning cells. The master process installs and controls the cell net deployed on the
workers using some high level cell management functions described above.

This master-worker architecture is adapted to many scientific computing ap-
plications, but industrial applications use client-server architectures. To support
both scientific and industrial applications, the parXXL master process may also
implement a server interface (installing a cell net, accepting client connections
and running cell net computations on demand) and run on a specific server
machine. The user can point out this machine at runtime among the pool used
to distribute the parXXL program, using the -s option (Server name). For ex-
ample, on a cluster using the MPI parXXL runtime: ”mpirun -np 100 MyAppli

-s PE20 ...” runs the application ”MyAppli” on 100 workers and installs the
master-server process on the ”PE20” machine.

To avoid the master-server being overloaded by cell computations, the opti-
mized cell net library par::cellnet allows to install or not to install cells on
the master-server process, using the -E option (Exclude) at runtime. By default,
the master process is the the parXXL-process 0 and hosts cells.

Cellular Network Management. The main parXXL functions to easily man-
age a cellular network from the sequential program of the master process are
shown in Listings 1 and 2. They are all members of the par::cell::context_t

class.
Function define_cell allows to define a new cell, specifying its number of

output values, its connection mode (buffered, or hybrid, see Section 5). parXXL
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int define_cell (descriptor_t const& Descr , register_t & Reg );

int kill_cell (register_t const& Reg );

template < class TPARAM >

int define_cell_param (TPARAM const& param ,

register_t const& Reg );

Listing 1. par::cell::context_t, main cell management functions

int conductCellUpgrade (void );

int conductParamInstall (void );

int conductComputation (ActivKind_t kind , size_t PermutIndex );

int conductLinkUpgrade (void );

int conductOutPropagate (void );

int conductCollect (size_t CollectorId );

int conductHalt (void );

Listing 2. par::cell::context_t, main cellular network management functions

defines its registration and its host processor. However it is possible to specify the
host processor to optimize the cell net mapping; this is done by the par::cellnet

library to create optimized cell networks. Usually the cells are defined by the se-
quential program of the master process, but they can be defined on any processor
in parallel. This strategy will be exploited in the next version of the par::cellnet

library to create larger networks faster. When some cells have been defined on
one or several processors, function conductCellUpgrade executed on the mas-
ter processor runs some processor communications and creates cells on different
processors. Similarly, functions define_cell_param and conductParamInstall al-
low to define and associate some datastructures to cells (the cell parameters)
and to send and install these parameters in the corresponding cell bodies on
their host processors.

The next group of functions is usually called in a computation loop exploiting
the cellular network. Function conductComputation activates all cells on each
processor for one compute cycle: each cell runs its current behavior function
once. On a particular parXXL-processor the order of the cell activation may be
specified: the order of their storage (default), its reverse, or in the specific order
of a permutation table. In most cases, this order has no impact on the program
result and has not to be considered in the design of the program. But some rare
and asynchronous cellular programs are sensitive to the cell activation order
(when using the hybrid communication mode). So, parXXL allows to quickly
change this order to check the sensitivity of the program to this parameter using
the parameters of function conductComputation.
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Function conductLinkUpgrade allows to establish the cell links that were de-
fined during the previous cell computation step. It generates some processor
communications and datastructure update, that are mandatory to send cell
output into connected cell input buffers on remote processors. Then function
conductOutPropagate can route each buffered cell output to its connected input
cell buffers, and the hybrid cell outputs can be routed automatically during the
cell computation steps. Functions conductCellUpgrade and conductLinkUpgrade

have only to be called when a the cellular network is established or changes
during a cycle; in the common case that a cellular network is created and linked
during the first cycles and fixed thereafter, they may be avoided once the network
structure remains stable.

Function conductCollect is called to gather data that cells stored in a collector
during the previous computation steps on the master process. Thus, collectors
are distributed datastructures allowing to collect some results on the master
process.

The last function, conductHalt, allows to halt all the processes excepted the
master process running the sequential program. No parXXL function can be called
after this function has been executed.

Memory Allocation. As already mentioned above, efficient handling of large
data sets is crucial for a good performance of data intensive computations. The
template class par::mem::chunk provides comfortable tools that achieve that goal.
Its main characteristic is that it clearly separates the allocation of memory from
the effective access to the data.

Allocation can be done on the heap (encapsulating malloc), at a fixed address
(e.g for hardware buffers) or by mapping a file or POSIX memory segment
into the address space (encapsulating open, shm_open and mmap). By default the
decision between these different choices is left for the time of execution and can
thus easily be adapted according the needs of a specific architecture.

Access to the data is obtained by an operation called mapping. Mapping
associates an address for the data in the address space of the parXXL process
and returns a pointer where the programmer may access it. When the mem-
ory is not used anymore, it will in general be unmapped. The template class
par::mem::apointer provides a comfortable user interface that, as the name in-
dicates, may basically be used as if it was an ordinary C pointer.

Mapping and unmapping can happen several times without the data being
lost. In general it is much healthier for the application to free resources during
the time they are not needed. In particular the system may chose to relocate the
data at different addresses for different mapping periods, and will be thereby be
able to react to increase or decrease of the size of individual chunk s.

Mapping can also just request parts of the total memory (called window in
parXXL). In such a way a program may e.g handle a large file quite efficiently: it
may just map (and unmap) medium sized chunks one after another and handle
them separately. Thereby a program may handle files that do not fit entirely
into RAM or do not even fit in the address space of the architecture (4GiB for
32bit architectures).
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An important property of chunks is that they may grow while they are not
mapped. par::mem::stack uses this property for a simple stack data structure.
This is intensively used by the par::cell layer to collect (and withhold) data
during a computation phase on each processor before this data then can be
communicated in its entirety in a communication phase. Thereby parXXL is able
to avoid the fragmentation of cell communications into large numbers of small
and unefficient messages (distributed architecture) or memory writes (shared
memory).

7 Application and Performance Examples

Application Introduction. To start to validate the scalability of parXXL we
have designed and experimented a 3D Jacobi relaxation on a cube of cells, with
up to hundred millions of cells. This application has been implemented like a
classical parXXL program. The sequential master process installs a cellular net-
work on a pool of workers, and conducts a computational loop executed by each
worker. There is no client-server mechanism implemented in this application,
but it could easily be turned into a parallel Jacobi relaxation server with parXXL
functionalities (see Section 6).

During the cell net installation steps, the cells are created with one out-
put value, and are connected to their neighbor cells: up to six neighbors for
a cell inside the cube. To easily deploy large cubes of cells, we have used the
par::cellnet library, that installs optimized cellular networks (see Section 6).
Then, the parXXL program enters a long loop of cell computations and cell out-
put propagation (to the connected cells). The cells inside the cube update their
output value with the average of their neighbor output values, while cells on the
cube border maintain their output value unchanged. All the cell outputs of this
application are routed to the connected cell inputs after each computation steps
(buffered communication mode). At the end of the relaxation, some slices of the
cell cube results are collected on the master process to be stored or displayed
(see collector introduction in Section 5).

Experimental Performances. Fig. 2(a) shows for different problem sizes how
execution time of a relaxation cycle decreases as a function of the number of
processors. The benchmark platform is the Grid-eXplorer1 cluster composed of
bi-processor machines (a large PC cluster), running parXXL and its MPI-based
runtime. These experiments exhibit regular decreases.

parXXL scales: On large enough problems, for the same problem size the time
decreases linearly when increasing the number of processors.

However, the execution time of a complete relaxation cycle depends on the prob-
lem size (the number of cells): it has complexity O(N), where N is the number of
cells in the particular parXXL execution. To easily compare the execution times

1 https://www.grid5000.fr/mediawiki/index.php/Orsay:Home

https://www.grid5000.fr/mediawiki/index.php/Orsay:Home
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Fig. 2. Benchmarks on Grid-eXplorer: up to 400 million cells using up to 310 processors

for increasing problem sizes, in Fig. 2(b) we show the average time to run a cell
once: the execution time per cycle and per cell.

parXXL is robust: This time remains constant for a fixed number of processors,
independently of the problem size or still decreases when running more cells
on more processors (see the curves for 128, 192 and 310 processors).

By that, parXXL succeeded to scale up to 400 millions of cells and 310 processors
on a PC cluster.

8 Conclusion and Perspectives

Main parts of the parXXL architecture are implemented and operational, and
first experiments show that the parXXL architecture scales up to some hundred
processors for a large, fine grained application. Further development will consist
in the following: (1) improve the global communication mechanisms to send data
from the sequential program to the cells, such as camera images, (2) design and
implement an efficient hybrid cell communication mode, (3) full generalization
of the par::cellnet regular networks and a parallel deployment of these nets.

Future experiment will be run on a larger number of processors of the Grid-
eXplorer machine, and on a Grid of clusters using Grid5000 (the French nation-
wide experimental Grid). Our short-term goal by the end of this year (2006) is
to deploy more than a billion of cells for simulations of laser-crystal interaction,
a collaboration with researchers from the LMOPS laboratory.

To ease the implementation of this type of application from physics, a parXXL
interface with a Mathematica PDE solver is under development (together with
LMOPS). Our goal is to automatize the translation of a Mathematica code for
PDE solving into a distributed large scale cellular computation. It will allow to
speedup many research steps, avoiding long and tedious code translations.
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Abstract. Game-tree search plays an important role in the field of ar-
tificial intelligence. In this paper we analyze scalability performance of
two parallel game-tree search applications in chess on two shared-memory
multiprocessor systems. One is a recently-proposed Parallel Randomized
Best-First Minimax search algorithm (PRBFM) in a chess-playing pro-
gram, and the other is Crafty, a state-of-the-art alpha-beta-based chess-
playing program. The analysis shows that the hash-table and dynamic
tree splitting operations used in Crafty result in large scalability penal-
ties while PRBFM prevents those penalties by using a fundamentally dif-
ferent search strategy. Our micro-architectural analysis also shows that
PRBFM is memory-friendly while Crafty is latency-sensitive and both
of them are not bandwidth bound. Although PRBFM is slower than
Crafty in sequential performance, it will be much faster than Crafty on
middle-scale multiprocessor systems due to its much better scalability.
This makes the PRBFM a promising parallel game-tree search algorithm
on future large-scale chip multiprocessor systems.

1 Introduction

Tree search is one of the fundamental problems to artificial intelligence (AI). In
the past half a century, a number of application-independent search algorithms
(branch and bound [1,2], the Minimax algorithm, alpha-beta pruning [3,4], etc.)
have been proposed to improve the search efficiency in many real life applications.
One important experimental hotbed of various search algorithms has been in
the field of game playing, in which game-tree search is widely used to find the
best moves for two-player games. Computer programs based on advanced search
algorithms and general purpose processors have achieved great success in popular
games such as checkers, Othello and chess.

Alpha-beta pruning has been the algorithm of choice for game-tree search for
over forty years [3,4]. Its success is largely attributable to a variety of enhance-
ments to the basic algorithm that can dramatically improve the search efficiency
[4,5]. It is well-known that the standard method of alpha-beta pruning conflicts
with parallelism. In other words, alpha-beta pruning can be parallelized, but not

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1105–1114, 2007.
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easily, and speedups are typically limited to a factor of six or so regardless of
how many processors you have used [6,7]. The reason mainly comes from the
occurrence of sequential bottlenecks in the control structure of the program.

In the past thirty years, a large amount of innovative parallel game-tree search
algorithms have been proposed in literature as more and more multiprocessor
systems become available. Although there are a large amount of parallel game-
tree search algorithms, we can divide them into two categories: alpha-beta-based
algorithms and algorithms based on other search paradigms [6]. Previous work
is mostly focused on researching various search strategies and their specific im-
plementations using a variety of languages on different systems.

In this work, we focus on performance analysis and comparison of two par-
allel game-tree search applications in chess on two Intel Xeon Shared-memory
MultiProcessor (SMP) systems. One is a recently-proposed Parallel Randomized
Best-First Minimax search algorithm (PRBFM) [8] in a chess-playing program
which is also denoted as PRBFM for convenience. The other is Crafty [10], a
state-of-the-art alpha-beta-based chess-playing program. A detailed performance
characterization of these two programs is also conducted with some Intel per-
formance analysis tools such as MPI Trace Collector/Analyzer, Thread Profiler
and Vtune Analyzer.

The rest of this paper is organized as follows. Sect. 2 gives a brief overview
of PRBFM and Crafty. Sect. 3 introduces our experimental environment and
compares their serial performance. Sect. 4 shows their scalability performance
on our two platforms and presents our analysis results. Sect. 5 performs a detailed
micro-architectural analysis and comparison of these two applications. Finally,
we conclude in Sect. 6.

2 Overview of PRBFM and Crafty

The PRBFM algorithm is a randomized version of Korf and Chickering’s best-
first search [9], which is not alpha-beta-based. This algorithm was implemented
in a chess program using Message Passing Interface (MPI) in a master-slave
model as shown in Fig.1. One processor keeps the game tree in its local mem-
ory, and in charge of selecting leaves and backing up the scores. Whenever it
selects a leaf, it sends a message to an idle slave processor. By calling Crafty’s
board evaluation code, the slave processor computes the possible moves from
the leaves and their heuristic evaluations. Then it sends this information back to
the master, which updates the tree. While the master waits for the reply of the
slave, it assigns work to other idle slaves. In this model, leaf selections and score
updates are completely serialized, but tree updates involve no communication.
The serialization does not hurt performance in practice, as long as leaf expansion
is significantly more expensive than selecting leaves and backing up scores. The
maximum number of processors that this implementation can use depends on
the cost of leaf evaluation relative to the cost of tree updates and leaf selections.

Crafty [10] is probably the strongest non-commercial chess program and
Crafty19.1 running on a SMP system even got the second place in the 12th
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world computer speed chess championship. It uses an alpha-beta-based parallel
game-tree search framework (as shown in Fig.2), and more specifically, a similar
Dynamic Tree Splitting (DTS) algorithm [11] implemented with Pthreads. This
algorithm can be viewed as a peer-to-peer approach rather than a master-slave
approach. Its basic idea is to “split” the “move list nodes” (siblings) into several
blocks, and whenever detect that one or more threads are in their idle loop, in-
voke this thread to begin a new alpha-beta search from the current node through
copying the search state space for each thread working at this node, then sending
everyone off to “SearchSMP” function to search this node’s block siblings.

Fig. 1. The framework of PRBFM Fig. 2. The framework of Crafty

As a powerful chess-playing program, Crafty uses many enhancements, in-
cluding transposition tables, killer-moves, null-move heuristics etc. to the search
algorithm [4,5]. Among these enhancements, the transposition table (actually a
large hash table) undoubtedly plays a very important role. The primary purpose
of the table is to enable recognition of move transpositions that have lead to
position (sub-tree) that has already been completely examined. In such a case
there is no need to search again. This technique has indeed great enhancement
to single thread chess program, however, for multithreaded program to maintain
this table requires great synchronization costs.

3 Experimental Environment and Serial Performance

Our analysis work is based on two Intel Xeon based shared-memory multipro-
cessor platforms. The first is a 4-way SMP system referred to as QP(Quad-
Processors)-machine (Xeon MP 2.8GHz, L3 2MB, FSB 400MHz), and the second
is a Unisys-es7000 system which consists of 16 processors (Xeon MP 3.0GHz, L3
4MB, FSB speed 400MHz, L4 32MB shared by each 4 processors, 4x4 Crossbar
interconnection). The key characteristics of these two systems show the 16-way
system has larger memory access latency because the memory transactions need
to go through L4 cache before visiting the memory. For software configuration,
on both platforms, we use Intel C/C++ Compiler Version 8.1 to compile the two
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Fig. 3. The sequential runtime of Crafty and PRBFM on the two systems

programs under Linux Kernel 2.4.20smp with full compiler optimization (-tpp7
-O3 -g).

The original PRBFM is based on Crafty17.9, and it is about 7 times slower
than Crafty17.9 in serial [8]. We modified the program based on Crafty19.9 [10],
and obtained a new version of PRBFM. For Crafty, we set the hashtable and
hashpawntable both with maximize size 768MB. Besides, for both programs,
we turned off the opening book and endgame database search, since our test
positions are not included in those databases.

In this study, six positions chosen from the Louguet Chess Test II, version
1.211 are used as test datasets (their winning moves are known). Fig.3 shows the
sequential runtime of Crafty (Version 19.9) and PRBFM for these positions on
both systems. The runtime for each position is an average of 20 runs. We can
see that for these positions PRBFM runs on average 2.4 to 3 times slower than
Crafty although it had achieved more than 3X speedup compared to the original
version. The main reason is that the node evaluation module of PRBFM contains
some redundant work in order to get more accurate node evaluation values by
calling Crafty code to do a shallow search [8]. Although Crafty performs better
in sequential mode, PRBFM is more scalable and has better time-to-solution on
more processors as shown in the following section.

4 Scalability Performance Analysis

Fig.4 shows the speedup curves of PRBFM and Crafty on the two SMPs re-
spectively. From this figure, we can see that PRBFM achieves on average 2.8X
speedup while Crafty achieves 2.1X speedup on the 4-way system with 4 proces-
sors. Fig.4(c) indidates that PRBFM reaches an average of 14X speedup on the
16-way system with 16 processors. For some datasets like Cmb7 and Cmb9, it
even achieves super-linear speedup on 12 or 16 processors. This is because some-
times the parallel search finds the solution that enables the program to stop
before completing all the work of the serial computation. In other words, for
those positions PRBFM searched much less nodes in parallel to find the solution
than the serial version did. In contrast, Crafty gets an overall decreasing speedup
1 http://www.icdchess.com/wccr/teting/LCTII/lct2faq.html
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(a) PRBFM on the 4-way system (b) Crafty on the 4-way system

(c) PRBFM on the 16-way system (d) Crafty on the 16-way system

Fig. 4. Scalability of PRBFM and Crafty on the two systems

on the 16-way system. It only gets an average 0.9X speedup on 4 processors as
shown in Fig.4(d). In particular, Fin6 gets the highest speedup of 1.7X on 2
processors and also gets the lowest speedup of only 0.6X on 4 processors.

In order to find out the reason of the poor scalability of Crafty, we profiled it
with the Intel Vtune Analyzer. Fig.5 shows the serial region and parallel region
of Crafty obtained by the Thread Profiler on the 4-way system. From this figure,
we can see that the serial region of Crafty even costs more than 30% of execution
time in most cases on the 4-way system.

Fig.6 shows the execution time breakdown of Crafty on the two hardware
platforms. From this figure, we can see that the search control operations in
Crafty constantly account for 4% to 6% of the total execution time regardless
of the number of processors and the hardware platform we use. Similarly, the
evaluation execution time does not vary dramatically with the number of pro-
cessors, and it takes usually 20% to 30% of the total execution time. The move
generation is mostly bitboard operations with integer operations like AND, OR
and SHIFT. With the increasing number of processors, its cost decreases from
about 40% for one processor to about 25% for 4 processors on the 4-way system,
and from about 30% for one processor to about 15% for 4 processors on the
16-way system.
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Fig. 5. Parallel and serial regions of Crafty on the 4-way system

Fig. 6. Execution time breakdown of Crafty on the 4-way system (left) and the 16-way
system (right)

It is surprising to see that hash operations take so much execution time,
which is about 20% on QP-machine and about 30% on the 16-way system with
4 processors, respectively. This cost on the 16-way system is much higher than
that on QP-machine. This is because hash operations are mostly memory access
operations, and the hash table size is much bigger than the total cache size. So
the 16-way system with an added L4 cache has much more penalties for such
operations. Furthermore, we can see that the dynamic tree splitting makes a lot
of multithreading overheads. With up to 4 processors, it even reaches about 20%
to 30% on QP-machine and about 25% to 50% on the 16-way system.

From above analysis, we can see that the larger serial region and multithread-
ing overhead prevent Crafty from scaling well on both systems. Furthermore,
the longer memory access latency on the 16-way system further increases those
penalties suffered by Crafty, which leads to its much poorer scalability on that
system.

By comparison, we also got the MPI trace data from the Intel MPI Trace Col-
lector/Analyzer for PRBFM. The data shows that the MPI overhead of PRBFM
is only about 20% of whole runtime on both systems even with 16 processors
on the Unisys machine (see Fig.7(a)). This overhead mainly comes from the
communication at the beginning and end stages as shown in Fig.7(b). Note that
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Fig. 7. MPI traces of PRBFM on the 16-way SMP system

PRBFM uses speculation to achieve parallelism like all parallel game-search al-
gorithms, and from the summary timeline figure, we can see that it performs
fine-grained and high-quality speculations which results in a high level of par-
allelism with little additional work, especially, in the middle stage. It is the
fundamentally different search strategy that makes the program significantly
reduce those penalties encountered by Crafty.

5 Micro-architectural Analysis

5.1 Instruction Type Distribution

Fig.8 shows the average instructions executed (in billions) and breakdown for
PRBFM and Crafty for all data sets. We split the instructions into integer,
loads and stores. There are no floating-point instructions in both programs. We
can see that both programs are memory access dominant programs, in most
cases the loads and stores instructions together consist of about 50% of the total
instructions and the number of stores is about half of the number of loads. These
similarities are understandable, because PRBFM frequently calls Crafty’s move
generation and evaluation code to generate its own game tree.

As shown in Fig.3 and Fig.8(a), Crafty is more sensitive to memory hierarchy
than to processor speed. When running on the 16-way system with a single
processor, the average runtime is 25% slower and the instructions executed are
1.5 times more than that on QP-machine. When the processor number increases,
the performance gap between two platforms becomes larger: with 4 processors,
the average runtime is 1.9 times slower and the instructions executed are 2 times
more than that on QP-machine. This is because Crafty requires more dynamic
instructions for running the spin loops to solve the test positions while suffering
more cache-misses or more synchronization. Further analysis confirms that the
one hotspot spin-loop spends 28% of the Unisys dynamic instructions compared
to 12% on QP-machine.

Unlike Crafty, as shown in Fig.8(b), when the number of processors increases,
the total instructions executed by PRBFM are not always increasing either.
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Fig. 8. Instructions executed and breakdown of Crafty and PRBFM on the two SMPs
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Fig. 9. Cache miss rate of Crafty (left) and PRBFM (right) on the 16-way SMP system

It is interesting that the number of total executed instructions varies little or
even decreases with the increasing number of processors. This means when using
more processors, the PRBFM could solve the same problem with equal or less
instructions than by using fewer processors, which shows the good scalability
potential of PRBFM.

5.2 Cache Miss Behavior

Fig.9 shows the data miss rates per memory reference for the 3 levels of caches
on the Unisys machine for Crafty and PRBFM respectively. For all the datasets,
L1 cache miss rates of Crafty are around 10%, the L2 cache miss rates are
around 5%, and L3 cache miss rates increase from around 25% to more than
50% with the increasing number of processors. Comparatively, L1 cache miss
rates of PRBFM are around 10%, the L2 cache miss rates are around 3%, and
L3 cache miss rates are around 3%. Through a simple calculation, we can find
that PRBFM has about 25 times fewer global cache misses than Crafty. The
functional breakdown data shows the higher cache miss rate of Crafty mainly
comes from the hash operations.
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Fig. 10. The average coherence ratios of Crafty and PRBFM on the two systems
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Fig. 11. The FSB bandwidth requirement of Crafty and PRBFM on the two systems

The coherence ratios, percentage of the coherence misses in the whole cache
misses, are also listed in Fig.10. As expected PRBFM has 4 to 5 times lower co-
herence ratios than Crafty. The lower coherence ratios mainly arise from the ran-
domization nature of the algorithm and thus are relatively independent with the
detailed implementation. The less coherence ratios make PRBFM more scalable.

5.3 FSB Bandwidth Requirement

Fig.11 shows the memory bandwidth usage of Crafty and PRBFM on our two
platforms. As expected, the FSB utilization rates of both applications increase
with the number of processors and the FSB bandwidth requirement of Crafty
is much larger than PRBFM. However, the bus remains under-utilized on both
platforms. The largest bandwidth usage of Crafty is about 800MB/s on the QP-
machine with 4 processors and this value is still much less than the peak FSB
bandwidth (2.1GB/s). For PRBFM, only less than 9% of the peak bandwidth
(3.2GB/s) is used on the Unisys machine with 16 processors. This observation
shows that both applications are not bandwidth-limited.

6 Conclusions

This paper characterizes and compares two parallel chess game-tree search appli-
cations, PRBFM and Crafty, on two Intel Xeon shared-memory multiprocessor
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systems. Our data shows that the hash-table and dynamic tree splitting oper-
ations used in Crafty lead to large scalability penalties. They totally consume
35% to 50% and 40% to 75% of the runtime on our two systems with 4 proces-
sors respectively. By comparison, similar functions of PRBFM only cost about
20% of the runtime, and it is the fundamentally different search strategy that
prevents those scalability penalties.

Our micro-architectural analysis also shows that PRBFM is memory-friendly
while Crafty is latency-sensitive and both of them are not bandwidth bound.
Although PRBFM is on average 2.4 to 3 times slower than Crafty in sequen-
tial performance, it is much faster than Crafty on middle-scale multiprocessor
systems due to its much better scalability. This makes the PRBFM a promis-
ing parallel game-tree search algorithm on future large-scale chip multiprocessor
systems.

Acknowledgement. The authors would like to thank Shoham Y. and Toledo
S. for providing the source code of the original PRBFM. Thanks to Hyatt R. for
making Crafty publicly available and for allowing us to use it in this research.

References
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Abstract. A new derivative-free global optimization algorithm is pro-
posed for solving nonlinear global optimization problems. It is based on
the Branch and Bound (BnB) algorithm. BnB is a general algorithm to
solve optimization problems. Its implementation is done by using the de-
veloped template library of BnB algorithms. The robustness of the new
algorithm is demonstrated by solving a selection of test problems. We
present a short description of our template implementation of the BnB
algorithm. A paradigm of domain decomposition (data parallelization) is
used to construct a parallel BnB algorithm. MPI is used for underlying
communications. To obtain a better load balancing, the BnB template
has a load balancing module that allows the redistribution of a search
space among the processors at a run time. A parallel version of the user’s
algorithm is obtained automatically from a sequential algorithm.

1 Problem Formulation

Many problems in engineering, physics, economic and other fields may be formu-
lated as optimization problems, where the minimum/maximum value of an ob-
jective function should be found. Branch and bound (BnB) is a general technique
to solve optimization problems. It can be used in many optimization algorithms,
for example to solve combinatorial optimization or covering global optimization
problems. Its general structure can be implemented as an algorithm template
that will simplify implementation of specific BnB algorithms to solve a particu-
lar problem. Similar template ideas applied for a parallel algorithm relieve users
from doing the actual parallel programming.

Consider a minimization problem, formulated as

f∗ = min
X∈D

f(X), (1)

where f(X) is an objective function, X are decision variables, and D ⊂ Rn is a
search space. Besides of the minimum f∗, one or all minimizers X∗ : f(X∗) = f∗

should be found.
The main idea of the BnB algorithm is to detect the subspaces not containing

the global minimizers and discard them from the further search. The initial
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search space D is subsequently divided into smaller subspaces Di. Then each
subspace is evaluated trying to find out if it can contain the optimal solution.
For this purpose a lower bound of the objective function LB(Di) is calculated
over the subspace and compared with the upper bound UB(D) for the minimum
value. If LB(Di) ≥ UB(D), then the subspace Di cannot contain the global
minimizer and therefore it is rejected from the further search. Otherwise it is
inserted into the list of unexplored subspaces. The algorithm terminates when
there are no subspaces in the list.

Unlike the data parallel applications (e.g., algorithms for a solution of
partial differential equations) optimization problems are characterized by an
unpredictably varying unstructured search space [20]. This property produces
additional difficulties for creation of parallel BnB algorithms: a) the change of
space search order with respect to the sequential one, b) a load unbalance of
processors, c) costs of additional communications. We note that any BnB algo-
rithm depends on few rules, and the optimal selection of these rules is strongly
problem dependent.

For many engineering applications only values of the objective function f(X)
can be computed and we do not have information on the derivatives of f . In
this paper, we present a new derivative-free algorithm for a solution of nonlinear
global optimization problems. The objective function is computed by a black-
box algorithm. This BnB algorithm is implemented by using a new template
library of BnB algorithms. The main goal of this tool is to present a flexible
and extendable template library which enables users to make experiments with
different strategies of subspace selection, branch and bound rules and techniques
for computation of lower bounds of the objective function LB(Di). We also
present a short description of the developed template library. A parallel version of
user’s algorithm is obtained automatically from the sequential algorithm. Some
results of numerical experiments illustrate the efficiency of the template library.

The rest of the paper is organized as follows. A generalized BnB algorithm
is described in Section 2. A new black-box global optimization algorithm is
presented and investigated in Section 3. In Section 4 a template based imple-
mentation of the BnB algorithm is considered. Some final conclusions are done
in Section 5.

2 A Generalized BnB Algorithm

The branch and bound technique is used for managing the list of sub-regions
and the process of discarding and partitioning. The general branch and bound
algorithm is shown in Figure 1, where L denotes a candidate set, S is the solution,
UB(Di) and LB(Di) denote upper and lower bounds for the minimum value of
the objective function over sub-space Di.

A selection rule, a lower bound computation rule and a branch rule define
the given BnB algorithm. There are many different strategies for a selection
order of subproblems. The most popular strategies are defined as the best first
search, the last first search and the breadth first search rules. A bound rule is
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BnBAlgorithm ()
begin

(1) Cover solution space D by L = {Lj |D ⊆ ∪m
j=1Lj} using covering rule.

(2) S = ∅, UB(D) = ∞.
(3) while (subspace list is not empty L �= ∅) do
(4) Choose I ∈ L using selection rule, exclude I from L.
(5) if ( LB(I) < UB(D) + ε) then
(6) Branch I into p subspaces Ij using branching rule.
(7) for all (Ij , j = 1, 2, . . . , p) do
(8) Find UB(Ij

�
D) and LB(Ij) using bounding rules.

(9) UB(D) = min(UB(D), UB(Ij

�
D)).

(10) if (LB(Ij) < UB(D) + ε) then
(11) if ( Ij is a possible solution) then S = Ij .
(12) else L = L ∪ {Ij}.
(13) end if
(14) end if
(15) end for
(16) end if
(17) end while

end BnBAlgorithm

Fig. 1. General BnB algorithm

problem dependent, but some general techniques are known for specific classes
of problems, e.g., for Lipschitz functions.

Parallel BnB algorithms

Three main steps are performed during development of any parallel algorithm:
partitioning, mapping, communication [8]. First we need to distribute the ini-
tial search space among the processors. In our BnB template a paradigm of
domain decomposition (data parallelization) is used to construct a parallel al-
gorithm. The initial search space is divided into several large subspaces that are
mapped to processors and each processor performs BBAlgorithm independently
and asynchronously. The user should decide how many subspaces are generated.
The number of subspaces can coincide with or exceed the number of processors
p, the decision depends on a priori knowledge of the computational complexity
of subspaces. A random distribution of larger number of subspaces can improve
the global load balance among processors.

A subspace is eliminated from the further search by comparing the lower
bound LB(Di) for the objective function over the subspace with the upper bound
UB(D). The best currently found value of the objective function is used for the
upper bound. In a simplest version of the parallel algorithm, processors know
only local values of the objective function. This can result in a slower subspace
elimination. In a modified version of the algorithm processors can share UB(D).
When a new value of the upper bound is found, it is broadcasted asynchronously
to the other processors.
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A load balancing module for BnB algorithms

To obtain a better load balancing, BnB template uses the load balancing module
that allows the redistribution of search spaces among the processors at run time.
The objective of the data redistribution strategies is to ensure that there is no
idle processors while others are heavily loaded, i.e to guarantee a useful work for
all processors, but not to obtain the equal workload between processors [20].

The balancing module has few basic methods needed for the load balancing.
A version of the diffusion load balancing algorithm is implemented as a default
method [20]. The balancing process is initialized by a receiver processor. The
measure of work-load is based on the number of subproblems belonging to the
local list. More accurate estimates are obtained if estimates of the complexity
of subproblems are known apriori. This information should be defined by a user
of the BnB template. The full step of load balancing consists of the exchange
of information among neighbour-processors on their work-load, the selection of
partners and the redistribution of subproblems among neighbour-processors. The
termination of the parallel BnB algorithm requires special protocols if the load
balancing process was started. The implemented balancing module can be ex-
tended with other balancing algorithms as well.

3 A Black-Box Global Optimization Algorithm

For many engineering applications only values of the objective function f(X) can
be computed and we do not have information on the derivatives of f or on the
Lipschitz constant of this function. Thus the objective function is computed by
a black-box algorithm or code and the gradient computation is unavailable. The
target applications are simulation-based optimization problems characterized by
a small number of variables (i.e., n < 20) and by expensive objective function
evaluations (e.g., they can require solution of a system of nonlinear PDEs [3]).
Thus estimation of derivatives by finite differences may be prohibitively costly.
A good review on derivative-free methods is given in [5].

Black-box optimization algorithms are derivative-free, only function values are
required for the optimization. Parallel versions of these algorithms can greatly
reduce the total solution time. A well-known library implementing derivative-free
direct search algorithms is APPSPACK [11]. Parallelism is achieved by assigning
the individual function evaluations to different processors. The asynchronism
enables a better load balancing.

We propose a new black-box global optimization algorithm, which is based on
the BnB method. The algorithm is implemented by using the developed template
of BnB algorithms, thus a parallel version of the algorithm is obtained automat-
ically by running BnB code in parallel. Thus parallelism is achieved on a coarse
grain level of the algorithm and a parallel version of the algorithm is obtained
automatically by running the sequential BnB code concurrently. Our algorithm
is only heuristic and the main novelty of it is introduced in the definition of the
bounding rule. The remaining rules are taken from the general template of the
BnB algorithm. Thus we present in detail only the outline of the bounding rule.
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A bounding rule

In each sub-space Di two sets of trial points are generated. The first set of (2n+1)
regular points cover the sub-space in quasioptimal way and the remaining M
points are distributed randomly. We note that Sobol’s sequence and the lattice
rule can be used to distribute random points more uniformly.

Then a local search is done from all trial points by using the Simplex local
optimization algorithm (it is a gradient-descent type method, but its realization
is derivative-free). The following three cases are considered:

1. If no local minimum points are obtained in Di then this sub-space is elimi-
nated from the search list L.

2. If exactly one local minimum point is obtained, the information on UB(D)
is updated. The sub-space is eliminated from the search list.

3. If two or more local minimum points exist in the sub-space, then a new
LB(Di) estimate is computed

LB(Di) = min
i

LMi − C(max
i

LMi − min
i

LMi).

In order to increase the robustness of the algorithm up to K local minimizers in
each sub-space Di are saved for a future usage. All of them are included into the
new list of local minimizers. We note that this list is updated at each iteration.

Many black-box optimization algorithms suffer from a serious drawback, that
after rapid initial improvement of an initial approximation, the following compu-
tations give no further improvement of the solution and the algorithm is stalling.
This property depends mainly on the rule defining when a sub-region can be ex-
cluded from the list of promising sub-spaces. In most real-world applications it
is sufficient to find a good approximation of the global minimizer (using only
modest resources of the CPU time). Thus we add to the algorithm two additional
rules which define cases when a sub-space is eliminated from the search list L.

1. The number of sub-divisions of each initial sub-space is restricted to NS.
2. If after L subsequent divisions the value of a best known local minimum

UB(Di) is not updated, then this sub-space is excluded from the search list.

Such rules guarantee that expansive computations do not concentrate too long
in some particular part of the domain D, and the whole region is tested during
a reasonable time of computations.

Test functions and computational results

To assess the robustness of the new algorithm we have solved a selection of
problems from [14]. The main characteristics of these problems are given in
Table 1.

Up to 16 processors were used to solve each problem. For any number of
processors the BnB algorithm converged to the optimal solution for problems
1-7. In the case of Griewank’s problem the accuracy of the computed solution
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Table 1. The dimensions and the numbers of local and global minimizers of test
functions

Function n No. of local minim. No. of global minim.

1. Rosenbbrock 2 1 1
2. McCormick 2 1 1
3. Box Betts 3 1 1
4. Shekel5 4 5 1
5. Levy4 4 71000 1
6. Paviani 10 1 1
7. Generalized Rosenbrock 15 1 1
8. Griewank 10 1000 1

depended on the specified domain D. If we take D = [−5, 7]× · · · × [−5, 7], then
the optimal global minimizer is obtained. For D = [−50, 70]×· · ·× [−50, 70], we
have computed only approximation of the exact minimizer. In solving this test
problem a similar behaviour is typical for most derivative-free black-box global
optimization algorithms. Since Griewank’s problem is multidimensional and it
has a very large number of local minimizers, the computed LB(Di) bounds were
not very accurate and subproblems were eliminated from the search list L mainly
according to the two additional rules, given above. We note that an improvement
of the accuracy still was obtained by increasing the number of possible divisions
and the number M of randomly distributed initial approximations.

4 A Template of BnB Algorithms

In this section, we give a very brief description of a new template of BnB al-
gorithms. The idea of the template programming is to implement a general
structure of the algorithm that can be later used to solve different problems.
Here we use skeleton-like templates, not data templates (or classes parameter-
ized with data types like in STL). All general features of the BnB algorithm and
its interaction with the particular problem are implemented in the template. The
particular features related to the problem must be defined by the template user.

We mention some popular examples of parallel templates used for implemen-
tation of various algorithms: Master–slaves template [16], combinatorial opti-
mization library of software skeletons Mallba [1], CODE [18]. A template based
programming is very useful in parallel programming. It was proposed by M. Cole
in his PhD thesis [4], see also [6,12,15]. Any template of a parallel algorithm must
fully or partially specify the main features of a parallel algorithm: partitioning,
communication, agglomeration and mapping. From the user’s point of view, all
or nearly all coding should be sequential and almost all the parallel aspects
should be provided by the tool. A parallel template is a re-usable, application-
independent encapsulation of a commonly used parallel computing pattern. It
is implemented as a re-usable code-template for quick and reliable development
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Fig. 2. BnB class scheme

of parallel applications. We mention examples of BnB parallelization tools BOB
[13] , PICO [7], PPBB [19], PUBB [17].

A new BnB algorithm template is implemented by using C++ object oriented
language. Thus it is a portable and easily extendable tool. Our main goal was to
build a parallel template, which has a simple and flexible structure and enables
users to modify the template according their needs. The experience of usage of
BnB algorithms proves that such modifications are frequently required when real
world problems are solved. There is no good recipes for definition of a general
BnB strategy when a black-box type global optimization problem is solved.

Comparing our tool with the other BnB templates, we note that practically
all tools define a similar basic functionality. The difference is mainly in the
implementation technology and in a set of methods, which are implemented for
the main rules of BnB algorithms. We use the technology of template expressions
and define only very few basic branch and bound methods. It is assumed that
in most cases specific combinations of these methods will be needed. Therefore
our aim was to develop a flexible and portable structure of the tool, which can
be easily extended according specific needs of users.

The C++ class scheme of BnB algorithm template is presented in Figure 2.
The template implements all main parts of sequential and parallel BnB algo-
rithms. The algorithm is performed using Task, Solution and SearchOrder
instances. An implementation of the BBAlgorithm is presented in the template,
and users can extend this class with other useful methods and algorithms, such
as simulated annealing, genetic programming, the α–β search algorithm and the
other popular algorithms used to solve game problems.
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SearchOrder defines the strategies how to select a next subspace from the
list of subspaces for subsequent partitioning. The most popular strategies such
as the best first search, last first search and breadth first search are already
implemented as methods and they are ready for application. Class Task de-
fines the problem to be solved. It should have the basic BnB algorithm methods:
Initialize, Branch, Bound. Some often used Branchmethods are already imple-
mented in the template. Standard Bound calculation methods (e.g., for Lipschitz
functions) are included into the template. Class Balancer is used for parallel
applications to balance the processor load. The data communication level is
implemented using MPI and this level of the library is hidden from the user.

It is well-known that efficient algorithms for global optimization problems are
problem dependent. An optimization of specific parameters of these algorithms
is an essential task when real-world problems are solved. This conclusion is even
more important for parallel BnB algorithms. Thus a template of the BnB algo-
rithm is very useful for tuning specific parameters and rules of a general BnB
algorithm.

A domain decomposition method is used to build parallel BnB algorithms
in our template. There is a big difference between classical applications of the
domain decomposition for numerical solution of PDEs and for solution of global
optimization problems. Parallel optimization algorithms have an unpredictably
varying unstructured search space [20]. Due to the domain decomposition the
order of search can differ for parallel and sequential BnB algorithms even when
the same subset selection and branching rules are used. Sub-spaces which were
eliminated in the sequential algorithm can be explored in the parallel one. Thus
it is possible that a total number of the sub-spaces searched in the parallel
algorithm can be larger than in the sequential case.

Let us define the number of nodes in the generated search tree as a unit
to measure the complexity of the BnB algorithm. We propose to estimate the
growth of the number of sub-spaces in the parallel algorithm by using the search
overhead factor

SOF =
Wp

W0
,

where Wp is the number of sub-spaces processed in the parallel algorithm, and
W0 is the number of sub-spaces processed by the sequential algorithm. This pa-
rameter is problem dependent and it can be calculated only a posteriori, but
it helps us to explain the obtained experimental results, when the complexity
of sub-problems is very different and the graph of generated jobs changes non-
deterministically depending on the number of processors [9]. In computational
experiments we minimized the following four Lipschitz functions with given Lip-
schitz constants from the well-known test-suit [10]:

f1 (x1, x2) = 0.5x2
1 − 9x1 + 20 + 0.5x2

2 − 9x2 + 20,

f2 (x1, x2) =
−1

(x1 − 4)2 + (x2 − 4)2 + 0.7
− 1

(x1 − 2.5)2 + (x2 − 3.8)2 + 0.73
,
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f3 (x1, x2) = − sin (2x1 + 1) − 2 sin (3x2 + 2) ,

f4 (x1, x2, x3) = 100
(
x3 − 1

4
(x1 + x2)

2
)2

+ (1 − x1)
2 + (1 − x2)

2
.

Experiments were performed on VGTU cluster http://vilkas.vtu.lt. It is a clus-
ter of Pentium 4 processors which are connected by Gigabit Ethernet network
(two Gigabit Smart Switch communicators). The ratio between computation and
communication speeds is typical for clusters of PCs, thus the results will be even
better for specialized supercomputers, such as IBM SP5.

In Table 2 values of the efficiency coefficient and SOF of the parallel BnB
algorithm are given for different numbers of processors. The initial distribution
of subspaces was done by using the breadth first search, and then the BnB
algorithm with the best first search selection rule is used by all processes. It
follows from the presented results that the decreased efficiency can be explained
by increased value of the SOF coefficient. The unstructured search space varies
unpredictably and it is impossible to guarantee that the efficiency of the parallel
algorithm will be close to one. The load balancing helps to distribute surplus
problems to free processors, but this step also enlarges the search overhead factor.

Table 2. The efficiency and SOF coefficients of the parallel BnB algorithm

Problem p = 1 p = 2 p = 4 p = 6 p = 8 p = 10

Ep 1 1 0.752 0.523 0.176 0.180 0.174
SOFp 1 1 1.008 1.217 1.623 2.245 2.511

Ep 2 1 0.529 0.576 0.615 0.783 0.613
SOFp 2 1 1.081 0.974 1.032 1.045 1.011

Ep 3 1 0.527 0.271 0.218 0.205 0.189
SOFp 3 1 1.106 1.217 1.421 1.485 1.751

Ep 4 1 0.612 0.634 0.583 1.174 1.080
SOFp 4 1 0.876 0.901 0.986 0.905 0.912

5 Conclusions

A new derivative-free algorithm is proposed for solution of nonlinear global op-
timization problems. It is based on the BnB method and its implementation is
done by using the developed BnB algorithm template. The robustness of the
new algorithm is demonstrated by solving a selection of test problems. A selec-
tion of optimal values of parameters C, K, NS of the proposed algorithm is not
investigated here. This analysis will be presented in a separate paper.

The main advantage of using templates of BnB algorithms is due to a possibil-
ity to implement fastly new algorithms and to tune problem specific parameters.
These advantages are even more important for parallel versions of BnB algo-
rithms, since a space of parameters increases in this case. The proposed template
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realization of the BnB algorithm defines popular methods of the algorithm and
gives a possibility for a user to extend the library with problem specific imple-
mentations of the selection and bounding rules. The object oriented implemen-
tation makes this task quite easy and straightforward for users.

A parallel version of the algorithm is obtained automatically from a sequential
algorithm. The load balancing level of the BnB algorithm template implements
a variant of the diffusion method. It can be extended by the other balancing
methods tailored for the given application.
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Paprzycki, M., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics.
LNCS, vol. 3019, pp. 286–291. Springer, Heidelberg (2004)

7. Eckstein, J., Hart, W.E., Phillips, C.A., Pico: An object-oriented framework for
parallel branch and bound. Technical Report 40-2000, Rutgers University, Piscat-
away, NY (2000)

8. Foster, I.: Designing and building parallel programs. Addison-Wesley, Reading
(1995)

9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison-Wesley, Reading (2003)

10. Hansen, P., Jaumard, B.: Lipschitz optimization. In: Handbook of Global Optimiza-
tion. Nonconvex Optimization and Its Applications, vol. 2, pp. 404–493. Kluwer
Academic Publishers, Dordrecht (1995)

11. Kolda, T.G.: Revisiting asynchronous parallel pattern search for nonlinear opti-
mization. SIAM Journal on Optimization 16(2), 563–586 (2005)

12. Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

13. Le Cun, B., Roucairol, C.: Bob: a unified platform for implementing branch-and-
bound like algorithms. Technical Report 95/16 sep., Université de Versailles - Lab-
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16. Šablinskas, R.: Investigation of algorithms for distributed memory parallel com-
puters. PhD thesis, Kaunas, Vytautas Magnus University (1999)

17. Shianno, Y., Fujier, T.: Pubb (parallelization utility for branch-and-bound algo-
rithms). User manual. Technical Report, Version 1.0 (1999)

18. Singh, A., Szafron, D., Schaeffer, J.: Views on template-based parallel program-
ming. In: CASCON 96 CDRom Proceedings,Toronto (October 1996)

19. Tschoke, S., Polzer, T.: Portable parallel branch-and-bound library ppbb-lib. User
manual. Technical Report Version 2.0, Department of Computer Science, Univer-
sity of Paderborn (1996)

20. Xu, C., Lau, F.: Load balancing in parallel computers: theory and practice. Kluwer
Academic Publishers, Dordrecht (1997)



Parallelization Techniques for Tabu Search

Jacek D ↪abrowski

Gdańsk University of Technology,
ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland
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Abstract. Tabu search is a simple, yet powerful meta-heuristic based on
local search. This paper presents current taxonomy of parallel tabu search
algorithms and compares three parallel TS algorithms based on Tabucol,
an algorithm for graph coloring. The experiments were performed on two
different high performance architectures: an Itanium-based cluster and
a shared-memory Sun server. The results are based on graphs available
from the DIMACS benchmark suite.

1 Introduction

A coloring of a graph G = (V, E), where V is the set of n = |V | vertices and E
is the set of edges, is a mapping c : V �→ 1..k, such that for each edge {u, v} ∈ E
we have c(u) �= c(v). Optimization version of GCP is stated as follows: given
a graph G, find a coloring with the minimum number k of colors used. This
number is referred to as χ(G), the chromatic number of graph G. The GCP is a
well-known NP-hard combinatorial optimization problem.

Tabu search(TS) is a metaheuristic based on a local search approach: it is
an iterative procedure that tries to improve current solution by exploring its
neighborhood and the best candidate as the new current solution. The main
concept in tabu search is a tabu list which keeps track of recently visited solutions
to avoid cycling or getting trapped in a local optimum.

Parallel computation aims at solving problems quicker than sequential meth-
ods. In broad terms, this means either ”find a solution of a similar quality faster”
or ”find a solution of a better quality in a comparable time”. Parallel implemen-
tations are often more robust than the sequential ones, providing better solutions
consistently over diverse sets of problem instances.

This paper is organized as follows. Section 2 reviews parallel search models.
Section 3 describes in detail three parallel algorithms used in this work. Section 4
presents experimental results from several coloring runs on standard benchmark
graphs1 as well as random graphs. Section 5 concludes the paper.

2 Taxonomy of Parallel Tabu Search

There are two main approaches to search parallelization. It can be done at a
low level, where the parallel processing is used only to speed up tasks with high
1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

B. Kågström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1126–1135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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computation cost (e.g., neighborhood evaluation). This means that the behavior
of the search is the same as that of a sequential algorithm, the difference is in
wall-clock time. High level parallelism means simultaneous operation of multiple
searches either independent or cooperating.

In [5] Crainic, Toulouse and Gendreau introduced a three-dimensional tax-
onomy for parallel tabu search methods. The first dimension, Search Control
Cardinality, decides whether the search process is controlled by a single mas-
ter processor (1-control, 1C ) or each of p processors controls its own search
(p-control, pC ).

The second dimension, Control and Communication Type, is based on the
communication scheme. There are four stages that define the operation mode
(synchronous / asynchronous) and the type and amount of information shared.
The first stage, Rigid Synchronization (RS ), corresponds to simple synchronous
communication with limited information exchange like simple task delegation.
The second stage, Knowledge Synchronization (KS ), increases the level of com-
munication, allowing knowledge exchange. Within this stage the processors might
exchange good solutions after a specified number of iterations.

Last two stages operate in asynchronous mode. It means that processes com-
municate after events (e.g., finding an improved solution) rather than at a specific
stage of the algorithm or after predetermined number of moves. In the Collegial
(C ) stage each process executes a tabu search. When an improved solution is
found, it is broadcast to other peers. The most advanced model is Knowledge
collegial (KC ). Here, the contents of communications are analyzed to retrieve
additional information concerning global search trajectory and global character-
istics of good solutions.

The third dimension, Search Differentiation Strategy, indicates whether the
searches start from a single point or from different points in solution space and
whether the used search strategies are the same or different. The four cases
are: SPSS: Single (initial)Point Single Strategy, SPDS: Single Point Different
Strategies, MPSS: Multiple Points Single Strategy and MPDS: Multiple Points
Different Strategies.

It should be noted that similar parallelization taxonomies have been devised
for other global optimization algorithms, e.g. branch and bound algorithms[2].

3 Parallel Tabu Search Algorithms for Graph Coloring

This section contains descriptions of three parallelization models used in this
paper. All three are based on a well-studied Tabucol algorithm introduced in
1987 by Hertz and de Werra [10].

Tabucol is the first tabu search algorithm proposed for GCP. In particular it
solves the decision version of the problem. For a given graph G and k the search
space explored is the set of k-colorings of graph G. The goal is to find a coloring
without any conflicting edges.
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It must be noted that tabucol is often used as a local search operator in more
general evolutionary heuristics, e.g. Galiniers and Hao’s hybrid evolutionary al-
gorithm for graph coloring [8].

The evaluation function f measures the number of conflicting edges in the
solution. For a coloring c : V �→ 1..k the value of f(c) is equal to |{u, v} ∈ E :
c(u) = c(v)|. Tabucol uses a simple 1-exchange neighborhood, where a move is a
pair (v, i) denoting assignment of color i to vertex v. After a move is performed
the pair (v, i) becomes a tabu move for �L + λf(c)� succeeding iterations. Most
implementations use λ = 0.6 and choose L randomly in [0..9].

Algorithms presented in this paper solve optimization version of the graph col-
oring problem. The initial coloring is generated using DSATUR greedy heuristic
[3]. At the beginning of each iteration if the current solution x is a valid coloring
(f(x) = 0) the smallest color class is removed, and the vertices are reassigned.
The tabu search is used to reduce the number of conflicting edges in the solution.

3.1 Master-Slave Search

Algorithm 1. Master-slave search
x ← DSATUR(G) � use a greedy heuristic to generate initial solution
while stop-condition do

while f(x) = 0 do � while x is a valid coloring
x ←REDUCE(x) � reduce number of colors

end while
m ←best allowed move in Ni � ties are broken randomly
if processor is slave then

send m to master
M ← receive selected move from master

else
moves[] ← receive moves from slaves
M ← select best move from moves[] � ties are broken randomly
send M to slaves

end if
x ← x + M � perform the chosen move
update tabu list

end while

The first algorithm is a low-level parallelization of Tabucol. The neighborhood
N is divided into p subsets Ni of size �|N |/p� or �|N |/p	. The size of the neigh-
borhood is O(|V | ∗ k), which is usually several orders of magnitude greater than
the number of processors. Therefore even though the processors work on subsets
of different sizes the load imbalance is negligible.

During each iteration every processor evaluates its part of the neighborhood
and sends the best move to the master. The master evaluates the candidate
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moves, selects the best among them and broadcasts it. To speed up the explo-
ration every process keeps its own copy of tabu list.

According to the aforementioned taxonomy this algorithm should be classified
as 1C/RS/SPSS. The behavior of this algorithm is almost the same as that
of a sequential implementation. The difference is that ties are broken at Ni

level, which means in fact that not all best moves have the same probability of
being chosen. For large graphs the speedup is expected to be proportional to the
number of processors.

3.2 Independent Search

A completely different approach to parallelization has been used in the second
algorithm. Here we use p independent searches, each working on its own solution.
Since there is no knowledge sharing between processors, the algorithm can be
classified as pC/RS. As for the third dimension, Search Differentiation Strategy,
two versions of the algorithm were compared - MPSS and MPDS. In the latter
case the difference lies in the tabu tenure: λ parameter is distributed evenly in
the range [0.4, 0.9].

This approach should broaden the search increasing the rate of success. A
small improvement in speed is also expected due to random nature of the search
process.

Algorithm 2. Independent search
x ← DSATUR(G) � use a greedy heuristic to generate initial solution
while stop-condition do

if f(x) = 0 then
while f(x) = 0 do � while x is a valid coloring

x ←REDUCE(x) � reduce number of colors
end while

end if
M ←best allowed move in N � ties are broken randomly
x ← x + M � perform the chosen move
update tabu list

end while
report the solution to master

3.3 Cooperating Search

The last approach can be classified as pC/C/MPSS. It is based on the inde-
pendent search with the following improvement. Whenever a new valid coloring
is found, it is sent to the master. The master reduces the number of colors
and sends the new coloring to all processors. The slaves abandon their current
search and use the received solution to start a new one. The tabu list is not
copied.



1130 J. D ↪abrowski

Algorithm 3. Cooperating search
x ← DSATUR(G) � use a greedy heuristic to generate initial solution
while stop-condition do

if f(x) = 0 then
while f(x) = 0 do � while x is a valid coloring

x ←REDUCE(x) � reduce number of colors
end while
send x to master

end if
if processor is slave then

if a new solution is available from master then
x ← receive solution from master

end if
else

if a better solution is available from any of the slaves then
x ← receive solution from slave
send x to all slaves

end if
end if
M ←best allowed move in N � ties are broken randomly
x ← x + M � perform the chosen move
update tabu list

end while

4 Results

Most of the experiments were performed on holk cluster in TASK Academic
Computer Centre. Holk has 256 1.3 GHz Intel Itanium 2 processors with 3MB
L3 cache memory. The 2-processor nodes are connected with a Gigabit Ethernet
network. For master-slave algorithm it was important to compare its behavior
on a cluster and on a shared-memory machine. This was done using lomond, a
Sun Fire 15K server with 52 900MHz Ultrasparc III processors at Edinburgh
Parallel Computing Centre.

4.1 Results for Master-Slave Search

The behavior of the proposed master-slave algorithm is the same as of the se-
quential algorithm, therefore the speedup can be measured by the sheer number
of tabu search iterations per second. Figure 1 presents the performance for two
distinct machines.

The difference in the behavior of the algorithm can be explained using a simple
theoretical model. Complexity of a single iteration of a sequential tabu search
algorithm can be defined as:

T0 = Tupd + Tbest,
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Fig. 1. Performance of the master-slave algorithm

where Tupd is the time required to update the tabu list, Tbest is the time required
to find the best move in N . For a parallel algorithm the time of finding the best
move is divided among p processors, but there is an additional communication
cost:

Tp = Tupd + Tbest/p + αp.

My tabucol implementation updates the tabu list in a single operation at the
expense of memory usage. This means that the update cost is negligible. Using
the experimental data it can be estimated that for p ≥ 2:

Tholk(p) ≈ 8.95 · 10−3/p + 1.84 · 10−3p,

Tlomond(p) ≈ 1.07 · 10−2/p + 9.87 · 10−6p.

This is a rough estimate as the model used is quite simple, but shows the
major difference between the two machines - for holk the communication cost is
of the same order of magnitude as the neighborhood evaluation cost, whereas for
lomond it is almost 3 orders of magnitude smaller. This explains why for holk
even for small values of p the increase of communication cost caused by using one
more processor exceeds the speedup of neighborhood evaluation. Experimental
data shows that the parallel implementation performs worse than the sequential
one not only in terms of total computation time, but also in terms of wall-clock
time. There were no experiments with more than 8 processors of holk as the
trend was obvious.

On the other hand for lomond an almost linear speedup is observed up to
eight processors. Using sixteen processors lomond outperforms holk even though
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its single processor is more than ten times slower than holks. The maximum
number of processors allocated to a single task was limited to 32, but one can
notice that there is almost no increase in speed between 28 and 32 processors.

4.2 Results for Independent Search

In this experiment the behavior of independent search threads was investigated.
The best solution of all threads is considered to be the best solution of the
parallel algorithm. Therefore the average performance of the parallel search is
better than the performance of a single search. Table 1 shows how long it takes
to find a valid k-coloring for different values of k.

Table 1. Results for independent search

1 processor 10 processors
graph k successful runs time [s] successful runs time [s]
DSJC1000.5 115 10/10 3 3/3 0
|V | = 1000 105 10/10 42 3/3 29
|E| = 249826 100 10/10 142 3/3 104

95 7/10 1381 3/3 887
94 2/10 2503 3/3 2427

DSJC500.5 60 10/10 4 3/3 0
|V | = 500 55 10/10 32 3/3 24
|E| = 6262 54 8/10 66 3/3 44

53 5/10 421 3/3 221

4.3 Independent Search vs. Cooperating Search

More experiments were performed to check if knowledge sharing would improve
the results. Table 2 provides results for several graphs from the DIMACS suite.

For the two large graphs: DSJC1000.5 and flat1000_50_0 the time limit was
set to two hours, for smaller graphs it was one hour. The runs were conducted
using 10 processors.

Knowledge sharing improves the behavior of the algorithm. For easy colorings
that are found within one minute the speedup is not obvious because of the com-
munication overhead created by frequent colorings exchange. The cooperating
search also improves the success rate within the specified time limit. For some
tough cases the average search time for the independent search is lower than for
the cooperating search. The reason for that is the time limit used - for the inde-
pendent search only ’lucky’ runs that end within the limit are averaged, whereas
for the cooperating one most of the runs end successfully, but the average time
is closer to the limit.

4.4 Results for Random Graphs

This section gives the results of experiments on random graphs. A random graph
Gn,p has n vertices and every two vertices are joined by an edge with probability
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Table 2. Results for cooperating search

pC/RS/MPSS pC/KS/MPSS
graph k successful runs time [s] successful runs time [s]
DSJC1000.5 100 10/10 157 10/10 118
|V | = 1000 95 10/10 960 10/10 722
|E| = 249826 94 10/10 2533 10/10 2092

93 0/10 - 2/10 4355
DSJC500.5 55 10/10 25 10/10 23
|V | = 500 54 10/10 42 10/10 38
|E| = 62624 53 10/10 239 10/10 216
flat1000_50_0 110 10/10 7 10/10 7
|V | = 1000 100 10/10 149 10/10 121
|E| = 245000 95 10/10 331 10/10 298
χ = 50 93 10/10 3308 10/10 1640

92 4/10 6465 9/10 6812
flat300_28_0 36 10/10 3 10/10 3
|V | = 300 35 10/10 8 10/10 5
|E| = 21695, χ = 28 34 3/10 72 10/10 66
le450_25c 28 10/10 3 10/10 3
|V | = 450 27 10/10 62 10/10 58
|E| = 17343, χ = 25 26 0/10 - 0/10 -

Table 3. Average number of colors used

time processors
n p χ∗ χ∗ DSAT limit [s] 1 4 16

0.25 10 6 10.3 9.0 9.0 9.0
100 0.50 16 11 17.8 30 16.0 15.6 15.1

0.75 26 19 30.0 25.9 25.2 25.0
0.25 19 14 22.5 19.0 18.5 18.4

300 0.50 35 27 43.2 90 35.7 35.4 35.1
0.75 57 48 72.7 60.6 59.6 58.9
0.25 27 20 33.1 27.5 27.3 27.0

500 0.50 50 41 65.2 150 54.1 53.6 53.1
0.75 86 74 110.6 92.4 91.6 91.0

p. For every pair of n and p five graph instances were generated. In [7] Johri and
Matula have presented means to calculate χ∗, the estimated chromatic number
and χ∗, a probabilistic lower bound for the chromatic number. In our experiments
the probability that χ(Gn,p) ≥ χ∗ was greater than 1 − 10−6.

Tables 3 and 4 compare greedy algorithm DSATUR and sequential tabu search
with cooperating parallel tabu search using 4 and 16 processors. The results were
averaged over five runs for each of the five instances of Gn,p. Computation time
of DSATUR algorithm was less than one second for all graphs.

In the first experiment tabu search was allowed to run for a specified amount of
time. Table 3 shows the average number of colors used in the best coloring found.
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Based on the results from the first experiment tabu search was configured to
look for solutions using at most k colors. Table 4 shows the success rate and the
average time needed to find a solution of a specified quality for p = 0.5. The run
was considered unsuccessful if a solution was not found within the time limit of
sixty seconds for every hundred vertices.

Using 16 processors improved the best coloring found for each instance by one
or two colors. Cooperating search found good solutions faster and with greater
probability.

Table 4. Average times of finding a valid k-coloring

1 processor 4 processors 16 processors
n χ∗ DSAT k succ time(σ) succ time(σ) succ time(σ)

100 16 17.7 16 25 0.1(0.3) 25 0.2(0.6) 25 0.0(0.2)
15 3 2.3(3.3) 11 0.7(1.1) 22 2.4(9.8)

200 26 31.0 26 24 7.7(10.0) 25 2.8(4.0) 25 1.6(1.4)
25 1 35.0(0.0) 3 8.0(4.3) 16 28.9(30.5)

300 35 42.6 36 23 19.7(22.4) 25 6.0(3.0) 25 3.4(1.6)
35 6 38.8(25.5) 19 37.2(33.4) 25 23.2(19.6)

400 43 54.5 45 25 40.9(30.9) 25 22.1(16.9) 25 13.3(5.9)
44 6 64.8(36.3) 16 85.2(45.8) 22 42.8(29.2)

500 50 64.8 54 25 78.4(47.4) 25 46.6(17.0) 25 31.0(8.7)
53 11 122.5(40.3) 19 164.7(69.2) 25 105.9(61.7)

5 Concluding Remarks

For the coarse-grained architecture of holk cluster it was shown that the simple
master-slave algorithm is slower than the sequential algorithm executed on a
single processor. However this is not true for a shared-memory architecture of
lomond. An almost linear speedup is achieved for up to eight processors, and the
performance for sixteen or more processors is better than that of holk.

The multiple path strategy proved to be successful in improving the quality of
best solution found. It also reduced time needed to find k-colorings for low values
of k. Nevertheless on a shared-memory computer the increase of search depth
for a master-slave algorithm has a much greater impact on the performance for
high values of k (worse colorings).

Many of recently proposed graph coloring techniques use tabu search or other
local search algorithms as means to improve solutions. Galinier and Hao [8] in
their genetic-local search hybrid method perform a TS before inserting the result
of a crossover into the population. In variable neighborhood search during every
iteration the algorithm makes a big, variable move (change) to current solution
and tries to improve it with Tabucol. Both techniques could perform significantly
better if they were to make use of parallel computation. This possibility should
be investigated further.
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Abstract. We present an efficient and robust network topology for man-
aging distributed resources in P2P-Grid environments. This topology is
called TreeP and exploits both features of P2P and grid computing mod-
els. It uses P2P properties in looking for available resources, while using
Grid properties to implement communications and computations on a
distributed computing platform. Here, we present how this architecture
is distributively built and maintained, the related properties and our first
experimental results. We show that this topology is very scalable, robust,
load-balanced, and easy to construct and maintain.

1 Introduction

1.1 Motivations

Peer-to-Peer (P2P) and Grid Computing are computation paradigms for which
usability doesn’t need to be proved out to both scientific and non-scientific users.
P2P technology allows ad-hoc communities of low-end clients to advertise and ac-
cess resources (data, video, music, ... ) on the communal computer which is trans-
parent to the users. This model is exemplified by systems such as Gnutella [11]
and Kazaa [8] which allow users to share the storage capacity and the network
bandwidth for files facilities. On other hand, Computing Grids are mostly used
to allow seamless access to supercomputer and data set for computation [9]. The
set of resources participating to such kind of system are generally dedicated and
known in advance. Even though two of them provide different services with differ-
ent functionality implemented in different ways, they could be merged to provide
high computation facilities which is highly scalable. This paper concerns the de-
sign and the implementation of a flexible virtual computing environment, called
TreeP; Which takes advantage of both P2P and grid computing techniques to
build a robust and competitive computing system with infinite resources. The
nodes joining the system are organized in a tree-hierarchy topology following
B+ tree model [4]. The TreeP topology is motivated by two main goals: firstly,
the computing environment is very volatile as the participating peers are not
booked and fixed in advance. Therefore, the performance prediction of such a
system needs a frequent update of the system state. It can be easily achieved
by using tree topology. Secondly, P2P systems have scalability and look-up is-
sues that need to be delt with. The tree topology guarantees a diameter, which

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1136–1146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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increases logarithmically with the number of nodes; While maintain the system
due to nodes migration, introduces small overheads.

1.2 Related Work

Three different type of applications and researches topics are conducted on this
area. All of them build a virtual topology [5] on top of the real existing one.
Knowing that this topology is implemented by allocating new routing table,
the challenge resides in the size of each neighbourhood in order to provide a
robust network. The first type concerns the look-up services. They are appli-
cations and services aimed to provide efficient data location on a P2P based
systems. The leading idea consists in defining an overlapping network topology
with low diameter in order to reduce the cost of looking-up through the network.
We have then some applications for which we give the couple (degree, diameter).
CAN(d, dN1/d)1 [10], Chord(log(N), log(N)) [12], PASTRY(log(N), log(N)) [3];
N being the total number of nodes in the system. The second group applica-
tions [6] is built to provide robust computing environment or to be an ideal basis
middleware for others computing environment. They don’t necessary take into
account the computing performance. They all provide mechanisms and tools for
unstructured network topologies, with very specialised features, such as Grid
FTP. Some provide additional and more sophisticated features: to mask the
Grid heterogeneity and complexity; to interface with other middleware systems;
to check-point and migrate tasks [13]; to provide high-level security compo-
nents [2,6]. The third approach concerns itself with performance criteria which
require that the target system scales well, reacts efficiently to the leaving and
joining of peers, and provides a small diameter for better network performance.
These systems include DGET2[7](which uses TreeP topology) and XtremWeb [2].
TreeP then builds a topology for which the size of the neighbourhood is in O(d)
while the diameter of the system is in logd(N).

In this paper we propose a flexible virtual network topology as a solution to
the network performance issue. In section 2, we present the design of the system
followed by its implementation in section 3. This theory is validated through
experimental results in section 4; And we conclude in section 5.

2 TreeP Design

Let V be the set of all the physical nodes of the system with |V| = N and
d the order of the tree built. We are in the case where a given application
can’t be performed efficiently on a single computing node. Then an initial node
which we call the root launches a handler which hunts resources on the network.
Nodes are then found independently. With the set of available physical nodes,
the problem consists in building a virtual computing Grid with characteristics
1 CAN uses a d-dimensional Cartesian coordinates.
2 DGET is a P2P-based Grid Computing environment on which peers are organized

following TreeP model.
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such as coherency, robustness and as cheaper as possible considering the amount
of messages exchanged between nodes to reach this goal. To achieve this goal,
we organize nodes hierarchically using a tree based topology (B+ tree [4] ). The
strength of B+ tree lies in properties such as: The insertion/deletion executed
in O(log(N)) relatively to the running time and which leave the tree balanced;
The height h of the tree which is logarithmic in the number of nodes (2(� 2d

3 � +
1)h−1−1 ≤ N ≤ (2d+1)h−1); And the longest path between any two nodes is in
O(logd(N)). Even if we follow the B+ tree concept, all the elementary operations
and characteristics we inherited from this model have to be meaningful for our
topology. In this way, several differences exist from treeP :

Nodes are part of the system at the time they are hooked to the hierarchy.
Then, if several nodes are found from the beginning which should belong to the
hierarchy, they should contribute to the system at the same time and not been
inserted one by one like one does in B+ tree construction. A block in a treeP
topology is a set of nodes which know each other. A physical block is at level h−1
while a virtual one is at level lower than h−1. Father/child relation are between
nodes. It represents responsibility relationship between nodes implemented by
the fact that children have to report to their father about their state. We define
a sub-tree which can be rooted at any level as a tessellation.

Being the set of parameters Pi(t) =
(
p1

i (t), p
2
i (t), . . . , p

l
i(t), . . . , p

L
i (t)

)
, for each

vi ∈ V , describing its characteristics such as CPU power, its network capacity,
its network connection bandwidth, its storage free space, its workload, etc. Some
parameter values depend on the overall system behaviour over time and should
therefore be updated dynamically. A TreeP like tree topology (Figure 1) of order
d and of height h is a balanced tree of h levels; on which nodes at a given level
are clustered on full connected sub-networks (called block) which are themselves
connected to their father which is a node at the level just above.

Initially, all these nodes do not know themselves. We suppose that they are all
known by the first node which initiate the demand of resources. These nodes can
communicate only by sending messages. peers of the same level are connected
by reliable connection.

Proposition 1. Given the constraint that each physical node has one and only
one virtual parent, there exists always a hierarchy with respect to B+ tree char-
acteristics.

Proof. In the tree built following treeP characteristics there is only one virtual
node associated to one physical node. This proposition shows that there is enough
virtual nodes to fill the blocks created on the sub-tree rooted at the root of the
tree and where the leaves are at the level h − 1 of the global tree.

In fact there is more nodes at the leaves level on the entire tree than the
number of virtual node in the sub-tree. If we take a regular tree, with θ children
for one master, the sub-tree contains θh−1

θ−1 nodes for a tree of height h; But there
are θh nodes at the leaves of the global tree.
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Fig. 1. Tree topology representing TreeP. The tree is an overlay topology (virtual
topology) built on top of the existing one. In this example, h = 4 and N = 16 and d = 2.
Nodes on the lowest level are the leaves and the real physical ones. Nodes on the level
other than the leaves are virtual one. Node n11 is the virtual representation of the node
v11. The set {v16, v15, v14 } forms a physical block while the set {n14, n11, n8 } forms a
virtual one. TreeP topology consists in allocate new routing table and create dedicated
paths to connect nodes. The system works using the new routing table allocated on
the nodes. A computing node can send or receive messages to/from processors which
are only adjacent to it (ie connected by virtual edge).

3 TreeP Implementation

3.1 Hierarchy Creation

To build this hierarchy, we need a global and unique identifier for each physical
and virtual node. In our case, we assign to each node a couple of parameter
(Id, wi) where Id is the identifier of the node, which is unique and can be gen-
erated by any hash function. Id can be an IP-address, an arrival rank, etc. wi

is the weight of the node. The weight should take into account the processing
power of each node and its time since it joined the system. The weights are
updated as soon as one of the node parameter has changed. For a given node vi,
its associated weight is

Wi(t) =

{∑
l αl

i(0) ∗ l if t=0

e
1

tjoin
∑

l αl
i(t) ∗ l otherwise

where αl
i(t) = pl

i(t)/maxn∈Universep
l; node’s parameters value are normalized

using the highest value of the given parameter among the existing computing
machines(fixed reference). i is a random rank given to the node on the system
(1 ≤ i ≤ N). t is the current time-step, tjoin is the arrival time. So the nodes
with the biggest weight are the most powerful. The algorithm (algorithm 1) used
to build the hierarchy is presented here:

Proposition 2. Nblock ∗ 2d ≥ N . By construction, there is any underflowed
blocks at any level.
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Algorithm 1. TreeP hierarchy pseudo-algorithm
1: Count the number of available nodes (nn = N) and sort them in the increasing

order of their weight;
2: while nn > 1 do
3: Compute the number of block Nblock =

�
� nn

2 �
2d

�
+
�

� nn
2 �

� 2d
3 �

�
;

4: if nn ≤ 2d then
5: all the nodes belong to block0

6: else
7: β ← � nn

Nblock
� + 1 ;

8: α ← N − Nblock� nn
Nblock

�
9: if α = 0 then

10: myblock = �noderank/β�
11: else
12: if noderank < (Nblock − α)β then
13: myblock = block� noderank

β
�

14: else
15: myblock = block� noderank

β−1 � − 1

16: end if
17: end if
18: end if
19: Elect[1] a virtual node for tessellation (nn is the number of promoted nodes);
20: end while
21: Elect the root of the tree;

Proof. We use proof by contradiction.
Suppose that we have � n

Nblock
	 < � 2d

3 �. It means

� n

Nblock
	 ≤ � n

� �n
2 �
2d 	 + � �n

2 �
� 2d

3 �	
	 ≤ 2d

3
< �2d

3
�

it implies
3
2d

<
� �n

2 �
2d 	 + � �n

2 �
� 2d

3 �	
n

≤ 2
� �n

2 �
� 2d

3 �	
n

≤ 2
� �n

2 �
� 2d

3 �	
n

≤
� n
� 2d

3 �	
n

and
3
2d

<
1

� 2d
3 �

which is not possible.

So the number of blocks created at each level of the tree contains enough space
to hold all the processing units that belong to this level. The blocks are filled in
respect with B+ tree limitations.

Proposition 3. If the parameters of the peers do not change during the construc-
tion phase, then building TreeP hierarchy should be done by using O(Nlog(N))
messages. The storage capacity used on each node to allow the execution of the
different steps of the algorithm is O(1).
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Proof. – At each level i from the root to the leaves, we have at most N
kh−i+1

blocks, considering that k = � 2d
3 �. The leader election process at each level

and the replacement process is considered as electing a leader two times in
the same number of blocks. Knowing that the number of blocks in the system
is less than 2N

k , we have the given complexity.
– each node needs only to store its rank, the number of total node which is

replaced at each stage by the number of block, and the number of block.

3.2 Node Insertion

Insert node in the system is a regular operation executed several times. The
node which joins the system should be inserted in a block without disturb the
balance of the tree and without consume the resources of the system. All nodes
join the system from the root of the tree. In fact, an incoming node ask for a
service at the level 0 (root level) of the tree. This service concerns the physical
block it should belong to. Depending of its weight, the node goes down the tree
to reach the right block it should belong to at the level h − 1 (leaves). At each
level above the leaves, a virtual node is chosen by its parent to hold the new
entry. Simple criteria like the one which has less than 2d − 1 brothers can be
used. This procedure is the same which is ran on the B+ tree.

Being the node vk which joins the tree T , the insertion algorithm (algorithm 2)
is shown below:

Algorithm 2. TreeP insertion algorithm: Insertion(T , vk)
level = 0
while level ≤ h − 1 do

find the right place for vk

level ← level + 1
end while
insert vk in the right block (being blockk ) ;
if block overflowed then

block ← blockk

while block is overflowed do
create new block
redistribute nodes with one of my neighbours
elect new leader
promotes leaders to our father block
block ← block′s father

end while
end if

Proposition 4. The insertion algorithm is in O(logd(N)) in the number of mes-
sages sent if there is no balancing. The balancing is done in O(logd(N)).
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Proof. At each level of the tree, the new node makes comparisons with nodes
which form the block of its right tessellation. For each of these blocks, it receives
at most a constant number of message (2d − 1).

3.3 Node Deletion

Node deletion on the hierarchy has the meaning of a node which leaves the
system for any reason. This node can at most belong to two levels (its virtual
representation and its physical one at the leaves).

Being vk the node to be deleted, Bk respectively (B′
k) the physical block (the

virtual block ) to which it belongs; The deletion algorithm (algorithm 3) is shown
below:

Algorithm 3. TreeP deletion algorithm: Deletion(T , vk)
block ← Bk, level ← h − 1
while level > 0 do

if Bk is underflowed then
if Bk has a neighbour then

if this neighbour has more than � 2d
3 � nodes then

borrow one element from him
else

decrease from one level block′sfather
merge these two blocks

end if
else

decrease from one level all nodes in block
decrease from one level block′sfather

end if
else

if block == B′
k then

elect one node in the tessellation which will be promoted to replace k
else

block ← block′s father
level ← level − 1

end if
end if

end while

Proposition 5. Deletion algorithm is of complexity O(logd(N)), in the number
of messages sent to balance the tree.

Proof. In the worst case, the deletion algorithm merges blocks at each level from
the leaves to the root of the tree. merging two blocks is done by sending at most
2d messages to the nodes which belong to the two blocks to be merged.

We propose creation, insertion and deletion algorithms to build an hierarchic
balanced tree with the same properties as the B+ tree. The leader election is
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done independently by each concerned block. This construction algorithm adapts
itself to node reorganization due to changes on the computing node parameters.
It doesn’t depend of the size of the network.

Proposition 6. In a stable system, the describe algorithms build a tree where
there isn’t empty level.

Proof. By construction there is not empty level. If a block becomes unbalanced,
it’s after an insertion or a deletion; Because nodes migrations on the system
leaves the tree balanced. But for insertion and deletion, we provide balancing
strategies.

This proposition shows that all the services provided on TreeP topology are
always assumed by a given node on the hierarchy.

3.4 Look-Up Algorithm

The look-up algorithm 4 is based on the different routing tables allocated on the
computing nodes. Its goal is to find a path between two distinct nodes of TreeP.
Due to the fact that any nodes has a global view of the system, the look-up
algorithm is based on a blind seeking strategy

Algorithm 4. Look-up pseudo-algorithm.
1: if the seeking node is on your routing table then
2: stop looking
3: else
4: send the request to your father;
5: send the request to the nodes you know at your level;
6: send the request to your children if and only if your weight is greater than that

of the seeking node;
7: end if

Proposition 7. Algorithm 4 has a complexity of O(h) number of steps executed
and of O(N) number of nodes visited. In the worst case, the total exchanged
messages is of O(N).

Proof. The look-up message goes from the leaves to the root and returns to the
leaves. In the worst case each node receives the message.

4 Simulation

The TreeP model is implemented on a cluster of Pcs. We use 8 SUN mono
processor running solaris 5.9; connected by fast Gigabyte Ethernet. On this ma-
chine, we use LAM/MPI.7.1.1 as parallel computing environment. The peers are
represented by parallel processes distributed over the computing platform. Each
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We plot the number of messages sent
to build the hierarchy against the or-
der of the tree for different numbers of
nodes. This figure shows that the cost
is decreasing while the order of the tree
increases. We have that tree of higher
order are more cheaper to build. But
in fact the order of the tree influences
directly the size of the routing tables
managed by the father. So a balanced
order should be find to satisfy both of
these criteria.
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Fig. 3. Node deletion onto the system

Here the cost of deletion is shown on
a tree containing 60 nodes while the
order of the tree varies from 4 to 6.
This shows that nodes which are at
the leaves level (the most important
part of nodes) are cheaply deleted. The
deletion is more expensive for nodes
belonging to the higher level of the
tree, due to the fact that the tree is
re-balanced if needed. TreeP promotes
nodes to the higher level of the hierar-
chy depending on their computing per-
formances and their stability; There-
fore nodes at higher levels are supposed
to be deleted rarely.

peers represents a computing node. For this experimentation, we give them dif-
ferent weights which are constant during the experiments. At the beginning, each
peers implements routing tables for the underlying topology. We run different
configurations of the TreeP system in order to simulate different scenarios and
therefore evaluate its performance. We are interested in the cost of its construc-
tion expressed by the number of messages sent. In experience 1 (Figure 2), we
vary the number of nodes on the system from 45 to 150 and the order of the
tree from 3 to 9. We then count the number of messages exchanged by peers in
order to build the full hierarchy. Experience 2 (Figure 3) concerns deletion onto
the system. After building the hierarchy, we measure the cost of deleting each
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For the routing, we put a time-to-live
constraint on the look-up message so
that it is destroyed after it crosses
h − 1 nodes; h being the height of the
tree. We plot the number of messages
against the number of nodes for differ-
ent order of the tree. In particular it is
noted that the number of messages re-
quired decreases with increasing order
of the tree; And also that the system
is not flooded like shown by the worst
case in the routing algorithm.

node from the entire system. In experience 3 (Figure 4), we test the look-up
algorithm defined above. We randomly choose two nodes into the hierarchy and
we count the number of message sent into the system to look for the second node
beginning by the first one.

5 Conclusion

The main contributions of this paper concerns a novel P2P structured topology
based on theoretical study with distributed algorithms to build and maintain
the hierarchy; a system with O(d) routing table per node while the diameter
of the network is O(logd(N)) and an experimental proof of its effectiveness.
Here we supposed that the underlying topology is full connected. So we don’t
care about the charge induced by build an maintain TreeP topology on the
real existing node and the network. Future work will explore this cost, it will be
focus on defining a mathematical model which suit to this topology and therefore
applications deployment on this architecture for distributed data mining.
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Abstract. Recently, Peer-to-Peer (P2P) technology has become impor-
tant in designing (desktop) grids for large-scale distributed computing
over the Internet. We present a middleware for distributed computing
based on Peer-to-Peer systems. When combining public-resource compu-
tation ideas with concepts of P2P networks, new challenges occur due to
the lack of global knowledge as there is no central administration pos-
sible. Our Peer-to-Peer desktop grid (P2P Grid) framework includes an
efficient and fault-tolerant communication scheme for job distribution
combining epidemic algorithms with chord-style multicasts. We show
that this hybrid scheme is more efficient than both epidemic algorithms
and chord-style multicasting alone.

1 Introduction

Desktop grids allow the utilization of available computing power provided by
modern desktop computers. Systems such as BOINC [1] or Fedak [2] are exam-
ples of desktop grids in which a central server coordinates the distribution of
tasks among available worker nodes. The nodes perform the computation and
send the results back to the server. The main drawback of this approach is that
the central server may become a bottleneck and it represents a single point of
failure. This problem has been addressed in [3], where a tree of scheduling nodes
splits the “job” (scheduled computation) into subtasks before assigning subtasks
to processing nodes.

An alternative approach is used in Peer-to-Peer (P2P) overlay networks [4],
where independent nodes (also called peers) are connected by an arbitrary com-
munication technology and no node has a dedicated role (e. g. central server).
Usually nodes are connected using Internet technology and are heterogeneous
regarding both connectivity and hardware. Characteristic for P2P systems is
the creation of overlay networks which allow point-to-point connections between
any two nodes. Therefore, both structured (e. g. Chord [5] and hypercubes [6])
and unstructured [7] networks can be built. P2P overlays may be either strict
having no dedicated nodes or less strict allowing the concept of super-peers [8].
To increase reliability in network structure, techniques such as epidemic algo-
rithms [9] may be utilized. Another aspect of P2P networks is that participating
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nodes may leave the network at any time and other nodes may join. Addition-
ally, participating nodes may disconnect from the P2P network only temporarily.
The following features make P2P network superior to “classical” approaches like
client-server systems: (1) Scalability as there is no central component. Using ap-
propriate algorithms, an operation such as a broadcast can be realized with a
time complexity of O(log n). (2) Robustness as in theory any node can perform
another node’s work. The used job distribution algorithm has to consider this
by introducing e. g. redundancy or state replication. (3) Administrative overhead
is negligible for P2P networks, as nodes build a self-organizing network struc-
ture. New nodes have to know an initial entry point only. Disadvantages of P2P
networks include the absence of global knowledge (no global view possible) and
security considerations as e. g. credentials may have to be distributed and are no
longer controlled by a central instance.

P2P systems are mostly known for file-sharing applications such as Gnutella
[10]. But the general advantages of P2P systems and the interest for desktop
grids motivate the approach to combine both techniques in a single middleware.
Organic Grid [11] is a system which arranges peers in a tree, where high through-
put nodes get located close to the root. Other approaches such as CompuP2P
[12] or P-Grid [13] rely on distributed hash tables (DHTs), but to handle node
failures, additional constructs such as making checkpoints periodically have to
be be introduced. Super-peer structures are used in approaches like P3 [14] ,
but again fault tolerance is not addressed. Using epidemic algorithms, the dis-
tributed resource machine (DRM) [15] is fault tolerant, but requires more time
and messages during the job distribution.

In this paper we present the aspect of job distribution in a middleware for
scientific distributed computing following strictly the P2P paradigm combining
both efficiency and fault tolerance. Our middleware allows any P2P node to initi-
ate distributed computations, distributing both code and parameters efficiently
and reliably among participating nodes, including the gathering of the com-
putation’s results. Jobs comprising communicating tasks such as in distributed
evolutionary algorithms (DEA) [16] are supported, too.

Unlike Condor [17], our middleware focuses on P2P environments while keep-
ing the architecture simple. E. g. we consider checkpoints to be too expensive
in dynamic P2P environments. Furthermore, we allow applications running on
top of the middleware to use the middleware’s overlay network for inter-node
communication making the need for PVM or MPI setups obsolete.

This paper is structured as follows: Section 2 discusses basic concepts of the
used distribution techniques. In Sec. 3, our experimental setup is presented and
experimental results are summarized in Sec. 4. Finally, concluding remarks as
well as an outline of our future work are made in Sec. 5.

2 Middleware Design

Our middleware allows the execution of scientific distributed algorithms includ-
ing code and parameter distribution as well as result gathering in a heteroge-
neous, dynamic and unreliable P2P environment. Existing distributed algorithms
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can easily be integrated by implementing simple Java interface classes. Com-
pared to [18], we use a “flat” organization without hierarchy or node grouping.
Furthermore, our middleware allows inter-node communication enabling to run
cooperating algorithms (e. g. island model based DEAs).

The middleware consists of two logical layers. The bottom layer builds the
P2P network by maintaining a list of neighboring nodes at each node. The top
layer uses this neighbor list to select nodes during the job distribution process.

Internally, the middleware consists of several layers having separate, but syn-
chronized message queues to communicate with their lower and upper layers.

2.1 Epidemic Algorithms

As implemented in our middleware, neighbor lists are exchanged using an epi-
demic algorithm [9], which provides a method for distributing information over
a given network using the gossip dissemination paradigm. Inspired by biologi-
cal epidemics, in epidemic algorithms nodes propagate incoming information to
some of the other nodes they stay in contact with. After the initial outspread
phase, epidemics are very resistant against obliteration compared to tree-based
broadcast algorithms.

In epidemic algorithms, each node maintains an incomplete (and possibly
outdated) list of nodes (including time stamps and idle status) participating in
the same P2P system. Once within a time interval, a node will select another
node at random from its neighbor list and contact it by sending a message
containing the local node list. The contacted node will answer by sending back
its own node list and therefore help propagating changes in network membership.
Receiving nodes may integrate the incoming node list into their own neighbor
lists. A node is member of an epidemic algorithm’s network if it is in the neighbor
list of at least one other node. As a large number of nodes may participate
in the P2P network, each node has to limit the number of nodes it actually
“knows”. Therefore, outdated nodes will be removed from the list based on a
given criterion (e. g. age [19]). An initial neighbor list is provided by the first
node a peer contacts. This first contact node has to be provided by the user the
first time the middleware is started. As nodes exchange lists even in idle mode,
they permanently cause network traffic, but are resistant against obliteration.

Using an epidemic algorithm to broadcast information, a node would forward
an incoming broadcast message to a number of randomly selected nodes from its
neighbor list. The number of recipients determines the spread speed and network
load of a broadcast. Given enough time, there is a high probability that every
node will be informed. Epidemic algorithms have a high level of redundancy,
which comes with additional overhead as messages may be sent several times to
the same node [7].

2.2 Job Splitting and Distribution

Running computations in distributed environments requires that the job to be
executed on top of the middleware can be efficiently “split” among the partici-
pating nodes. The knowledge how to split a job has to be user-supplied and is
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basically a function that for a given job returns an array of new job descriptions.
For our middleware we propose two types of splitting a job into a set of subtasks
depending on the algorithm class:

– The original problem is split into independent, different subtasks that can be
computed independently on different nodes. The results of all subtasks will
be sent back to and recombined by the initiating node using a merge-function
of the initial task.

– A job is split into n identical subtasks, which due to stochastic components
in the distributed algorithm may lead to n different results for the same
problem. Nodes deliver their results back to the job initiator after finishing
their local subtasks. In cases where nodes cooperate during the computation,
the initiator’s local result is used as the final result and no result retrieval
and recombination from other nodes is necessary.

For a possible job distribution initiated by any peering node, subtasks have
to be efficiently distributed among the peer set using a multicast or a broad-
cast. Using an existing spanning tree for a broadcast, job distribution would
require n− 1 messages. As there is no global knowledge of the network topology
available in P2P networks, different broadcast algorithms have to be used. To
distribute a job (set of subtasks), we propose two algorithms plus a hybrid form,
all resembling the following general distribution scheme. At the beginning, the
initiator node inserts a set of subtasks into its subtask queue. Every node regu-
larly checks its queue and, if not empty, takes one subtask for local processing (if
not already doing so) and iteratively forwards half of the remaining subtasks to
neighbor nodes. The initiator’s middleware instance keeps a copy of the original
subtask list. If after some user-defined, application-specific timeout period not
all subtask results have been returned to the initiator, missing subtasks will be
reissued into the P2P network.

Nodes start processing subtasks from their local queue in parallel to distribut-
ing fractions of this list, allowing a node to process all subtasks by its own if it
does not find a suitable neighbor to forward subtasks to.

Within the epidemic job distribution scheme, subtask lists get forwarded to
randomly selected neighbors known to be in an idle state currently. Due to ran-
dom distribution and possibly outdated neighbor lists, a job announcement may
be sent to a node already working on a job, especially if the neighbor list is small
compared to the number of tasks in the network. Nodes may reject incoming sub-
tasks by not sending an acknowledgment, which will reside in the sender’s queue
for resubmission within the next interval. Subtask duplication is possible, if a
node’s acknowledgment is received too late at the sending node, falsely assuming
subtask rejection at the receiver. The advantage of the epidemic distribution is
its robustness against node failure compared to tree-based approaches.

Figure 1 shows an example how subtasks get distributed within a network.
Nodes keep a single subtask for local processing before forwarding subtask list
fractions to available nodes.

Epidemic algorithms cause some overhead as nodes may reject incoming tasks,
so that the sender has to send the list to several nodes until an available node
is found. In order to reduce this overhead, we arrange the nodes in a logical
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Fig. 1. Example how subtasks get propagated using the epidemic job distribution
scheme. Node 4 starts broadcasting a job consisting of 7 subtasks. Arrows represent
job announcement messages, arrow labels describe their chronological ordering (first
number) and the number of subtasks transported with this message (boxed value).
Rejected (ignored) announcement messages are shown as dashed arrows.

chord-like ring [5] as follows: Every node selects an unique id ranging from 0 to
2r − 1 holding n � 2r where n is the number of nodes and r a defined constant
(here, r = 63). Now, a node with id i stores nodes with ids i + 20, i + 21, . . . ,
i + 2r−1 (mod 2r) in a local table. As the ring will be sparse in most cases,
nodes may select their id by random choice, but therefore it is very unlikely
that a node with a requested id exists or is known to node i. In this case the
node with the next higher id will be put into the corresponding table position.
The table gets filled with nodes taken from the epidemic algorithm’s neighbor
list and thus getting along without additional messages. Additional memory is
required to store the lookup table with r rows.

Using this ring a chord-like job distribution scheme [20] can be proposed as
follows: A node that receives a job announcement message will iteratively split
the list of subtasks and send one half to a node from the table until only one
subtask is left which will be processed locally. Node selection depends on the
distribution depth and the local distribution iteration. The initiator will send
the half of the subtasks to the node at position r − 1 during the first iteration,
the second iteration’s receiver is taken from table position r − 2 and so on. The
receiving node from table position p will start its subtask distribution at table
position p − 1. If due to incomplete knowledge table positions are empty, these
positions will be skipped. After reaching table position 0, remaining subtasks
have to be processed locally.

See Fig. 2 for an example job distribution with 3 steps and 7 peers. Here, node
25 starts propagating a new job announcement message with 7 subtasks. Ideally,
it would contact node 57 first, but as this node does not exist, node 25 contacts
node 62 to delegate the propagation of the information for all nodes up to node
24. Next, node 25 contacts node 48 instead of the not existing node 41. Again, a
part of the responsibility is propagated to node 48 to inform all nodes between
node 49 and node 56. This procedure continues until all subtasks are distributed.
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0 25 + 20 = 26 39
1 25 + 21 = 27 39
2 25 + 22 = 29 39
3 25 + 23 = 33 39
4 25 + 24 = 41 48
5 25 + 25 = 57 62

Node table for node 25.

Fig. 2. A chord-like broadcast in a ring with 2r = 64 possible node ids and n = 7 actual
nodes. Node 25 starts broadcasting a job consisting of 7 subtasks. Arrows represent
job announcement messages, arrow labels describe their chronological ordering (first
number) and the number of subtasks transported with this message (boxed value). It
is assumed that every node knows every other node.

The structured approach’s advantage is that it is faster (only log(k) time steps
and k − 1 messages for k subtasks) than the unstructured epidemic algorithm.
Then again it may not be complete, as a node may not know appropriate nodes
to send subtasks to (incomplete knowledge), forcing the node to process all
remaining subtasks locally.

This problem is addressed by the proposed hybrid job distribution scheme.
Whenever the chord-style distribution fails to send its remaining subtasks to
other nodes, the subtasks will be handed over to the epidemic job distribution
scheme avoiding that a single node has to process a larger number of subtasks
if there are any free nodes known to the overloaded node. Since the chord-like
algorithm distributes the subtasks in a structured way, the epidemic algorithm
can start from nodes that are spread well within the network. Thus, the hybrid
approach can distribute the subtasks better than each of the previous approaches
alone, without inducing an additional overhead.

In all distribution schemes node failures are detected at the initiator if subtask
results are missing. The initiator will then reissue the affected subtasks.

Whereas failures of computing nodes can be compensated, a failing initiator
node will result in the loss of the computation. However, as all network commu-
nication is connectionless, minor network breakdowns are transparent from the
middleware’s point of view.

3 Experiments

To evaluate the behavior of the proposed job distribution techniques, we created
an experimental setup injecting a simple dummy job into the network of middle-
ware instances. This dummy job could easily be split into an arbitrary number
of subtasks, where each subtask would sleep for 100 s regardless of the number
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of splits. Analyzing the behavior of a distribution technique included measuring
the following aspects:

– Time until the last subtask arrives at its destination node
– Time until the last subtask has been processed
– Number of messages exchanged between nodes until all subtasks are dis-

tributed
– Number of computing nodes
– Maximum number of subtasks a single node had to process

Our experiments have been performed on a Linux cluster consisting of 16
computers, each equipped with a 3.0 GHz Pentium 4 and 512 MB RAM com-
municating over a switched Gigabit Ethernet. On each computer, 10 middleware
instances were started with different process priority levels to simulate a P2P
network consisting of 160 heterogeneous nodes. Computations were started after
the stabilization of the P2P system (each node has a filled neighbor list). All
experimental setups were repeated 20 times and average values were taken for
further discussion. The initiator’s timeout to reissue subtasks was set to 400 s,
but never triggered in our controlled environment.

For this set of experiments, three parameters have been varied: (1) The num-
ber of subtasks a job was split into was set to either 64, 128, or 256. Having
more subtasks than nodes in the largest setup, the middleware was forced to
schedule more than one subtask to at least one node. (2) The size limit for the
neighbor host list of each middleware instance was set to either 10, 40, or 160.
For the two smaller values, nodes would always have an incomplete knowledge
of nodes available in the P2P network, whereas for the largest value complete
knowledge could be achieved. (3) The used job distribution scheme was either
the epidemic, chord-style, or hybrid approach.

Compared to real-world P2P systems, this setup is synthetic as no real com-
putation or resource consumptions is performed, but it is acceptable as our focus
is on the job distribution performance. In reality, clients in P2P systems have to
cope with shared, limited and unreliable resources such as network connection,
main memory or CPU time.

4 Results

Results from the job distribution experiments are summarized in Tab. 1. The
first three columns determine the experimental setup under consideration. The
following two columns show the time required to distribute (last job announce-
ment has been received) and to finish (all results have been sent back to the
initiator) a job. The next column summarizes the number of nodes that are
involved in the computation of subtasks. The two columns to follow show the
number of job announcements sent using the epidemic or the chord-like distri-
bution scheme, respectively. The last column shows the maximum number of
subtasks computed by a single node within a distributed computation.

Evaluating the durations required to distribute and to finish all jobs, it can
be observed that within each setup with fixed number of subtasks and neighbor
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Table 1. Experimental results for different job distribution setups. The first three
columns describe setup parameters. Results are averaged over 20 runs.

N
um

be
r

of
Su

bt
as

ks

N
ei

gh
bo

r
L
is

t
Si

ze

D
is
tr

ib
ut

io
n

Sc
he

m
e

T
im

e
[s
]
to

di
st

ri
bu

te

T
im

e
[s
]
to

fin
is
h

#
C

om
pu

t-
in

g
N

od
es

E
pi

de
m

ic
Jo

b
A

nn
ou

n.

C
ho

rd
-l
ik

e
Jo

b
A

nn
ou

n.

M
ax

.
#

Su
b-

ta
sk

s/
N

od
e

Chord-like 0.6 395.8 55.30 – 54.30 3.95
10 Epidemic 14.1 121.7 63.90 89.45 – 1.10

Hybrid 6.9 111.3 63.95 19.90 54.95 1.05

Chord-like 0.3 420.7 55.45 – 54.45 4.20
64 40 Epidemic 8.1 108.2 64.00 76.95 – 1.00

Hybrid 4.1 104.6 64.00 12.65 55.30 1.00

Chord-like 0.3 545.8 55.35 – 54.35 5.45
160 Epidemic 7.4 107.5 64.00 74.90 – 1.00

Hybrid 3.8 104.4 64.00 15.80 51.45 1.00

Chord-like 0.7 882.1 88.40 – 87.40 8.80
10 Epidemic 92.0 194.9 123.90 271.00 – 1.80

Hybrid 77.2 186.2 126.15 200.10 81.45 1.60

Chord-like 0.6 1022.4 89.05 – 88.05 10.20
128 40 Epidemic 17.5 117.6 127.95 226.20 – 1.00

Hybrid 14.1 114.2 128.00 100.70 91.80 1.00

Chord-like 0.4 792.0 95.15 – 94.15 7.90
160 Epidemic 11.2 111.3 128.00 183.40 – 1.00

Hybrid 9.1 113.8 127.85 79.25 87.45 1.05

Chord-like 0.7 1663.8 110.15 – 109.15 16.60
10 Epidemic 177.2 280.5 158.15 730.40 – 2.55

Hybrid 143.7 255.6 159.05 826.20 114.20 2.40

Chord-like 0.6 1622.8 124.85 – 123.85 16.20
256 40 Epidemic 115.0 215.1 160.00 1391.10 – 2.00

Hybrid 111.7 211.8 160.00 1344.20 124.85 2.05

Chord-like 0.6 1403.1 122.50 – 121.50 14.00
160 Epidemic 112.5 212.6 160.00 712.65 – 2.00

Hybrid 109.3 209.4 160.00 578.75 120.20 2.00

list size the chord-like distribution scheme requires the least time to distribute
compared to both other schemes. It also holds that the chord-like distribution
scheme requires the most time to finish a computation job (each subtask has
been completed and results got sent back to the job initiator). Both effects can
be explained by the fact that the chord-like distribution stops earlier when no
appropriate nodes for further distribution are known and nodes have to process
all subtasks by their own, which would be otherwise distributed further. On the
other side, the epidemic distribution scheme has the highest distribution times
which can be explained by two facts. First, a node with subtasks to distribute
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randomly selects a supposedly idle neighbor and sends a list of subtasks to
it. As the receiving node may reject this subtask list if it is already working
(detected at the sender only by a timeout), the sender has to select another
neighbor. Especially with small neighbor lists it can take several tries until a
willing neighbor is found. Second, if the number of subtasks is higher than the
number of nodes (in our case always 160), there is simply no node available after
assigning the first 160 subtasks, but nodes with subtasks continue to send out job
announcement messages to find available nodes. Finally, the hybrid distribution
scheme requires the least time to finish a computation.

From all job distribution schemes it can be expected that they assign at most
one subtask to a free node, given that enough nodes are available. However,
both the epidemic and the hybrid approach have more nodes participating in
their computation in most cases, compared to the chord-like approach. This can
be explained by the non-completeness of the chord-like distribution tree, when
not being perfectly uniformly distributed. Both the epidemic and the hybrid
approach utilize a close-to-optimum number of nodes for their computations
which correlates to the low number of subtasks per node.

Regarding the number of job announcement messages exchanged among the
nodes, for the chord-like scheme the number of job announcement message stays
at the same level for a constant number of subtasks, increasing only slowly with
the size of the neighbor list (column “Chord-like Job Announ.”). This small
increase can be explained by a more complete distribution tree due to a larger
number of nodes known to other nodes. For the epidemic job distribution, the
number of messages decreases with an increasing size of the neighbor list. An
exception can be observed for the setup with 256 subtasks and neighbor list
sizes of 10 and 40. Here, the number of epidemic job announcement messages for
neighbor list sizes of 10 is considerably smaller compared to setups with a list
size of 40 (730 and 826, respectively, versus 1391 and 1344). This is due to a side
effect within the epidemic job distribution: Nodes select target nodes to send
subtasks to based on the (possibly outdated) idle information from the epidemic
neighbor list. If no node is marked available, the epidemic job distribution pauses.
For setups with a list size of 10, list entries are mostly current, as outdated
information is removed quickly. For setups with a list size of 40, the list contains
entries with busy nodes still marked as available. The epidemic job distribution
picks a supposedly available node, but the sent subtasks will be rejected.

Both the epidemic and the hybrid distribution scheme show a smooth subtask
propagation as the maximum number of subtasks per node is always close to the
optimum, contrary to the chord-like distribution scheme, where this number
equals to 5–10% of the number of subtasks. Regarding the neighbor list size,
it can be observed that the distribution time for epidemic and hybrid schemes
decreases considerably when switching from list sizes of 10 to 40, but stays at the
same level when switching to lists with 160 positions. It can be concluded that
large neighbor lists or even complete knowledge of all nodes does not speed up
the epidemic job distribution. Larger neighbor lists also tend to contain outdated
information which may lead to undesired side effects.
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Although this paper focuses on job distribution, we performed some basic ex-
periments with simple distributed applications. For a fractal computation where
splitting subtasks meant dividing the fractal image into smaller stripes, we ob-
served that the absolute time to compute the image decreases with increasing
number of subtasks due to better load-balancing. For a setup with a simple trav-
eling salesman problem (TSP) algorithm utilizing middleware-supported inter-
node cooperation by exchanging intermediate solutions, the final tour’s quality
increased with the number of subtasks (keeping the number of TSP algorithm’s
iterations constant for each subtask).

5 Conclusion

A middleware has been presented for distributed computing in desktop grids
based on peer-to-peer overlay networks. The middleware incorporates a hybrid
job distribution scheme combining fault-tolerant epidemic algorithms and effi-
cient DHT information propagation. In experiments we have shown the effective-
ness of this hybrid scheme compared to epidemic or chord-style job distribution
alone.

If message complexity is critical, the chord-like distribution scheme is the
best choice, but having the drawback of distributing subtasks very unbalanced
among available nodes. The epidemic distribution scheme is preferred in cases
with unreliable networks as it is resistant against obliteration. Both approaches
are combined in the hybrid distribution scheme, which has in most cases the
lowest times to finish, the highest number of computing nodes and the smoothest
subtask distribution.

Future work will focus on two areas: First, we are researching on integrating
concepts such as “network coordinates” to build an overlay network which incor-
porates the underlying network’s structure and the differentiation of nodes into
common and privileged peers. Second, using this middleware we are developing
a distributed evolutionary algorithm (DEA) for large TSP instances.
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Abstract. In mobile agents systems, classical techniques for system op-
timization are not applicable due to continuous changes of the execution
contexts. MAWeS (MetaPL/HeSSE Autonomic Web Services) is a frame-
work whose aim is to support the development of self-optimizing auto-
nomic systems for Web service architectures. In this paper we apply the
autonomic approach to the reconfiguration of agent-based applications.
The enrichment of the Aglet Workbench with a Web Services interface is
described, along with the extensions to the MAWeS framework needed to
support the mobile agents programming paradigm. Then a mobile agents
application solving the N-Body problem is presented as a case study.

1 Introduction

The mobile agents programming paradigm is an emerging approach for dis-
tributed programming. Agents-based platforms are considered good solutions in
many fields, such as GRID [1,2,3] or SOA (Service Oriented Architecture) [4,5].
In mobile agents systems, classical techniques for system optimization (such as
ad-hoc tuning, performance engineered software development, ...) are hard to
apply. This is essentially due to continuous changes of the execution contexts,
as an agent is able to suspend its own execution, to transfer itself to another
agent-enabled host and to resume its execution at that destination. So, even if
the mobile agents approach may help to develop performance-oriented applica-
tions, in practice the only solution to guarantee critical requirements seems to
be the use of an architecture able to auto-configure and to auto-tune until the
given requirements are met. Moreover, when an agent moves itself, it impacts
the state of the new system. A prediction of the modified state can help to make
good choices for agents reconfiguration.

Autonomic computing [6,7,8,9], whose name derives from the autonomic ner-
vous system, aims to bring automated self-management capabilities into comput-
ing systems. In previous papers, we have introduced MAWeS (MetaPL/HeSSE
Autonomic Web Services) [10,11], a framework whose aim is to support the de-
velopment of self-optimizing autonomic systems for Web service architectures. It
adopts a simulation-based methodology, which allows to predict system perfor-
mance in different status and load conditions. The predicted results are used for
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a feedforward control of the system, which self-tunes before the new conditions
and the subsequent performance losses are actually observed.

MAWeS is based on two existing technologies: the MetaPL language [12] and
the HeSSE simulation environment [13]. The first is used to describe the software
system and the interactions inside it; the latter, to describe the system behavior
and to predict performance using simulation. Using MAWeS, it is possible to add
self-adaptive features both at service level, i.e., building up services that optimize
themselves in function of their overall usage [11], and at application level, i.e.,
focusing on the application behavior [10]. In the latter case, a standard client
application interface, MAWeSclient, provides the general services that can be
used and extended to develop new applications.

In this paper we propose to apply the proposed approach to the reconfigura-
tion of agent-based applications integrating the Web Service and mobile agent
programming paradigm. We aim at defining the potentiality of this approach
and at proposing an architecture able to build self-optimizing agents. In order
to achieve this result, we had to extend both mobile agent platforms and the
framework architecture. Moreover, we had to build extensions to the description
language and the simulation engine.

The reminder of the paper is organized as follows. The next section presents
previous work and the scientific background. Section 3 describes our proposal,
presenting the extension made to both the mobile agents platform and the
MAWeS framework. Section 4 deals with an example, showing a mobile agents-
based NBody application and its integration within MAWeS. The paper will
end with our conclusions, which summarize the results obtained, and with a
discussion of our future work.

2 Background

Our proposal for mobile agents self-optimization relies on previous research and
on a large amount of existing software tools. In order to present the work done, in
this section we introduce the main concepts about the mobile agent programming
paradigm adopted, describing the chosen platform. Moreover, we describe the
state of the art of the optimization framework adopted, MAWeS.

A mobile agent is a software agent with an added feature: the capability to
migrate across the network, together with its own code and execution state. This
paradigm allows both a pull and a push execution model [14]. In fact, the user
can choose to download an agent, or to move it to another host. Mobility can
provide many advantages for the development of distributed applications. Sys-
tem reconfiguration by agent migration can help to optimize the execution time
by reducing network traffic and interactions with remote systems. Furthermore,
stateful migration allows to redistribute dynamically the agents for load bal-
ancing purposes. Several different criteria can guide agent distribution, such as
moving the execution near to the data, exploiting new idle nodes, or allocating
agents on the nodes in such a way that communications are optimized.
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Due to previous experiences and for the facilities it offers, we chose to adopt
the Aglet Workbench, developed by IBM Japan research group [15]. Af far as
interoperability is concerned, the Aglet Workbench is compliant with the MASIF
specification [16]. It relies on a transport protocol that is an extension of http.

The MAWeS Framework has been developed to support the predictive auto-
nomicity in Web Service-based architectures. It is based on two existing tech-
nologies: the MetaPL language [12] and the HeSSE simulation environment [13].
The first is used to describe the software system and the interactions inside it;
the second, to describe the system behavior and to predict performance using
simulation.

MetaPL is an XML-based meta-language for parallel program description,
which, like other prototype languages, can also be used when applications are
not (completely) available [12]. It is language independent, and can be adopted
to support different programming paradigms. It is structured in layers, with a
core that can be extended through Language Extensions, implemented as XML
DTDS. These extensions introduce new constructs into the language. Starting
from a MetaPL program description, a set of extensible filters makes it possible
to produce different program views.

HeSSE is a simulation tool that allows to simulate the performance behavior
of a wide range of distributed systems for a given application, under different
computing and network load conditions. It makes it possible to describe dis-
tributed heterogeneous systems by interconnecting simple components, which
reproduce the performance behavior of a section of the complete system (for
instance a CPU, a network . . . ). These components have to reproduce both the
functional and temporal behavior of the subsystem they represent.

The MAWeS framework uses MetaPL descriptions and HeSSE configuration
files to run simulations. Through the execution of multiple simulations, differ-
entiated by one or more parameter values, it chooses the parameter set that
optimizes the software execution. MAWeS is structured in three layers. The first
one is the front-end, which contains the software modules used by final users
to access the MAWeS services. The second one is the core, which includes the
components that manage MetaPL files and make optimization decisions. The
last one contains the Web Services used to obtain simulations and predictions
through MetaPL and HeSSE.

MAWeS operates adopting two strategies:

Service Call optimizations (simulation, evaluation of the choices and applica-
tion tuning) take place at application startup (increasing the application
startup latency).

Reactive optimizations (simulation, evaluation of the choices and application
tuning) take place asynchronously with the application and do not affect the
application performance, except when the framework decides to change the
application behavior.

The MetaPL/HeSSE WS interface defines a set of services that make it pos-
sible to automate the application of the methodology. When the MAWeS frame-
work is firstly used, it is necessary to describe the components in MetaPL. This
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can be done before starting the development to obtain a prototype view to an-
alyze (and to optimize), or, in parallel with it, to verify the design choices.

Inside the meta-description, it must be suitably identified the set of parame-
ters that can be modified by the optimization engine. MAWeS will automatically
perform a set of simulations varying the values of these parameters to find the
optimal value set. The user can specify the tunable parameters by means of
the autonomic MetaPL extensions, which define new MetaPL elements for the
Mapping section [10].

3 MAWeS and Agents Integration

As pointed out in the introduction, the mobile agents paradigm is a powerful pro-
gramming technique, which can help to reconfigure an application in a very easy
and clean way, distributing data in a distributed system and possibly achieving
better performance through load balancing. On the other hand, evaluation of
overhead and actual performance of the application may be a hard task: agents
run in an hosted environment (the mobile agent platform) that hides completely
the hardware behavior. So, it is difficult to find out the best configuration for
an application. The most viable solution seems to be the development of self-
adapting applications.

The MAWeS Framework was initially developed in order to help applica-
tion self-configuration, embedding into them a client that evaluates many dif-
ferent hardware/software configurations (i.e., distributions of software onto a
distributed system and application parameters) in a completely different context,
namely Web Services and hence service-oriented applications. In order to adapt
the MAWeS framework to applications based on the mobile agents paradigm, it
is necessary:

– to describe the evolution of a mobile agent application, in order to make it
possible the prediction of its performance behavior on the target environ-
ment. This leads to the requirement for a Mobile Agent Extension for the
MetaPL description language;

– to simulate the execution of the mobile agent based application. This involves
the development of a new HeSSE library modeling the agents and their run-
time support;

– the framework should be able to control and to change the mobile agents-
based application. So it has to communicate with agents and/or their
platform and to be able to move/clone/destroy/. . . the agents and to com-
municate with them through messages. Moreover, an agent should be able to
invoke the framework in order to notify new changes into the environment.

The last point opens a new universe of problems, as it involves the integration
between mobile agents application and the web services programming paradigm,
which is the only form of interaction supported by MAWeS. We focused on two
different ways to integrate a WS interface to mobile agent systems:
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Mobile Agents as WS clients. A mobile agent is able to access to an exter-
nal web services, i.e., it directly performs SOAP requests. This approach lets
an agent to invoke MAWeS services.

Mobile Agent Platform as a WS server. The mobile agents platform has
a Web Services interface. A WS client can access the mobile platform and
send messages to the agents and/or change their state (clone, migrate, ...)

In order to simplify the implementation, here we focus only on the MAWeS
Service Call Optimization strategies. This means that we aim at optimizing the
starting distribution of the mobile agents to the distributed environment. Once
the application is started, its behavior does not change. As a consequence, we
implemented only the second proposed technique for mobile agent and WS inte-
gration, modifying the existing Aglets platform in order to add a Web Services
interface.

Moreover, we assume that the available distributed environment does not
change frequently, and so the data about the available platforms and their per-
formance may be collected off-line, thus being available when the application
starts. This implies that the MAWeS framework does not need to discover dy-
namically the changes in the execution environment (such as the availability of
a new agent platform), as this information is provided to the framework off-line.

3.1 Mobile Agents and Web Services

To support the interaction between a mobile agent system and MAWeS, we en-
riched the Aglet Workbench [15] with a Web Service interface. We developed a
Web Service that implements a SOAP bridge, enabling any requestor to invoke
the agent platform facilities and to interact with the agents hosted locally or
with remote ones. Furthermore, many basic platform facilities such as creation,
cloning, dispatching have been exported as services. The available methods pro-
vide functionalities for agents creation, disposal, cloning, migration and discov-
ery, along with point-to-point and multicast messaging. These methods invoke
the Aglets API to exploit the functionalities of the agent context that has been
created at startup. In order to add a Web Service interface to the agent platform,
we turned it into a web application, to let it be executed in a container of the
chosen application server, Jakarta Tomcat.

It should be noted that communication among agents and among agent servers
exploits the Agent Transfer Protocol. On the other hand, communication be-
tween web service clients and the platform relies on SOAP messages, which are
handled directly by Tomcat. SOAP messages may be service requests, such as
agent creation or migration, or messages to be forwarded to the agents. The
enhanced web agent platform will take care of distinguishing between the two,
forwarding the incoming SOAP messages to the agents or performing the invoked
service.

3.2 The MAWeS Agent Extended Architecture

Mobile agent-based applications launch depends on the platform chosen for their
execution. Usually the graphical interface offers a screen in which the user
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chooses the class to be executed. The agents code is already on the server or
accessible from a remote codebase. Thanks to the newly developed Web Services
interface, we are able to create and to run an agent through a web services client
application, which invokes the target environment. This client application is an
extension of the standard MAWeS client.

The agent-based MAWeS client contains the description of the target mobile
agents, MetaPL documents, and the link to their code (i.e., the link needed by the
platform to create and to start up the agent). When the user starts up the client,
it queries the MAWeS engine, which returns the list of servers to be adopted, the
number of agents to start on each server and, possibly, application-dependent
parameters.

The MAWeS core was extended in order to maintain information about the
available mobile agents platforms. At the state of the art, the core retrieves
the list of the available hosts and their performance parameters using an UDDI
register. This means that parameters are statically stored. Future extensions will
provide a protocol to check that the platforms are active and to measure their
performance. The resulting architecture is shown in Figure 1.

Fig. 1. The MAWeS Extended Framework for Mobile Agents

3.3 MetaPL Extension

The newly developed MetaPL extension defines a set of new MetaPL elements:

Agent this element replaces the standard MetaPL Task element and contains
all the agent code. name and id attributes identify the agent.

Create this element represents an operation of agent creation. It describes the
case in which an agent invokes the platform in order to create a new agent
locally. The attribute agent contains the name of the type of agent created.
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Clone this element represents an operation of cloning by an agent; it describes
the case in which an agent invokes the platform in order to duplicate itself.

Dispose this element represents an operation of disposal by an agent (or an
application). It describes an invocation to the platform in order to destroy
an agent. The attribute agentID contains the identifier of the agent to be
disposed.

Activate/Deactivate these elements represent an operation of activation/de-
activation by an agent, an invocation to the platform in order to pause or
awake an agent. The attribute agentID contains the identifier of the agent
affected by the instruction.

handleMessage this element represents the activation of the message handling
mechanism inside the agent. Message passing adopts the standard message
passing MetaPL extension.

Platform this element, containedin the mapping section, represents an avail-
able platform. It supports the platformID attribute, which identifies the
platform.

AgentInstance this element, contained in the mapping section, represents an
available agent. It supports the agentID attribute, which uniquely identifies
the agent and a StartPlatformID, which describes the platform on which
it is created at startup.

All the elements support an optional PlatformID attribute, which reports
the identifier of the target mobile agent platform. Figure 2 shows an example
of MetaPL description. It contains the description of an agent A which creates
an agent B and migrates on a new platform. Agent B just migrates on a new
platform.

3.4 HeSSE Library

HeSSE is a complex simulation environment, easily extensible due to the adop-
tion of a component-based approach. It is out of the scope of this paper to give

<MetaPL>
<Code>
<Agent name="A">

<Create name="B" /> <Migrate aglet="test" platformID="2" />
</Agent>
<Agent name="B"> <Migrate aglet="test" platformID="2" /> </Agent>

</Code>
<Mapping>
<Platform platformID="1"/> <Platform platformID="2"/>
<AgentInstance name="A" platformID="1"/>
<AgentInstance name="B" platformID="1"/>

</Mapping>
</MetaPL>

Fig. 2. An Example of Mobile Agent MetaPL Description
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a detailed description of the simulation models adopted by the simulator and
of the details of the models developed to simulate the agents. This section will
give an overview of the newly developed components and of their behavior and
usage. In order to simulate the Aglets mobile agents platform, we developed a
library that extends the features of an existing Message Passing library. The
newly developed library offers the following components:

Aglet Daemon. It is the Aglets daemon, and corresponds to the mobile agent
platform. This component offers to the simulation environment the service
to control the agents.

Aglet Data. This component is used only to maintain common information
among multiple platforms.

Aglet. It reproduces the behavior of a single agent. It is fed with a trace file,
whose format is the same of the “original” HeSSE Message Passing trace files,
extended with constructs to take into account the typical agent operations
(create, clone, dispose, migrate, activate, deactivate).

4 An Example of Tool Execution

As case study, we propose a mobile agent application able to solve the problem
of gravitational interaction between n different bodies (NBody problem) [14].
The sequential algorithm that solves the well-known N-body problem computes,
during a fixed time interval, the positions of N bodies moving under their mutual
attraction. The program repeats, in steps of a fixed time interval, the construc-
tion of an octal tree (octree) whose nodes represents groups of nearby bodies,
the computation of the forces acting on each particle through a visit of the oc-
tree, the update of position and speed of the N particles. Figure 3 describes the
behavior of the application. Note that the application involves a set of different
agents. The main agent, master, waits for a message from the available workers,
in order to coordinate them. Each worker, once created, signals the master and
starts computations. The MAWeS Client contains the MetaPL descriptions, and
at application startup, it sends them to the MAWeS Core. In this case we does
not take into account any application specific parameter, so the tool has only
to get the list of available platforms, and decide how many agents to start and
where. The list of available platforms is stored in an UDDI register together
with their performance indexes useful for simulation. The MAWeS core, so, gen-
erates a new set of mapping sections, as shown in Figure 3 (mapping section)
composed of the list of available platforms, the Number of Agents to be created
and the list of Agent Instances. The tool generates a different mapping section
for each different configuration to be tested. By default, it generates a number
of mapping sections that is two times the number of available platforms, with
an increasing number of agents of the worker type. The resulting document is
given to the MAWeS component, which performs performance evaluations (MH-
Client), simulating the configuration and returning the predicted response time.
The MAWeS core returns to the client the mapping section, together with a
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<Code>
<Agent name="master" >

<Loop iteration="Nstep" > <Block>
<Loop iteration="NAgentstep" > <Block>

<Receive kind="ready" />
</Block></Loop>
<Multicast kind="go" /> <Multicast kind="subtree"/>
<Multicast kind="subforces"/> <Multicast kind="posANDvel"/>

</Block></Loop>
</Agent>
<Agent name="Worker">
<CodeBlock region="Initialize" />
<Loop iteration="Nstep" > <Block>

<Send to="master" kind="ready" /> <Receive kind="go" />
<Codeblock region="BuildTree" />
<Multicast kind="subtree" /> <Receive kind="subtree" />
<Codeblock region="Compute" />
<Multicast kind="subforces"/> <Receive kind="multicast" />
<Codeblock region="Update" />
<Multicast kind="posANDvel"/> <Receive kind="posANDvel" />

</Block></Loop>
</Agent>

</Code>
<Mapping>

<Platform platformID="1"/> <Platform platformID="2"/>
<NumberOfAgents value="3" variable="NAgent"/>
<AgentInstance name="master" platformID="1"/>
<AgentInstance name="worker" platformID="1"/>
<AgentInstance name="worker" platformID="2"/>

</Mapping>

Fig. 3. NBODY with mobile Agent MetaPL Description

link to the available platforms. Then the MAWeS client starts the agent on the
chosen platforms.

5 Conclusions and Future Work

In this paper we have proposed an extension to the MAWeS framework for
building self-optimizing mobile agent applications. We have shown its new ar-
chitecture, and the main extension to the description language MetaPL and to
the HeSSE simulator. Moreover, the Aglet mobile agents platform has been ex-
tended to turn it into a web application. We have shown how the framework can
work on a simple example. As this paper presents only the tool architecture and
its main features, a next step for our research will be a detailed performance
analysis of the approach, pointing out the conditions in which the tool can be
useful.
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Abstract. Chip Multi-Processors (CMPs) are becoming mainstream
microprocessors for High Performance Computing and commercial busi-
ness applications as well. Multiple CPU cores on CMPs allow multiple
software threads executing on the same chip at the same time. Thus they
promise to deliver higher capacity of computations performed per chip
in a given time interval. However, resource sharing among the threads
executing on the same chip can cause conflicts and lead to performance
degradation. Thus, in order to obtain high performance and scalability
on CMP servers, it is crucial to first understand the performance impact
that the resource conflicts have on the target applications. In this paper,
we evaluate the performance impact of the resource conflicts on an ex-
ample high-end CMP server, Sun Fire E25K, using a standard OpenMP
benchmark suite, SPEC OMPL.

1 Introduction

Recently, microprocessor designers have been considering many design choices
to efficiently utilize the ever increasing effective chip area with the increase of
transistor density. Instead of employing a complicated processor pipeline on a
chip with an emphasis on improving single thread’s performance, incorporating
multiple processor cores on a single chip (or Chip Multi-Processor) has become a
main stream microprocessor design trend. As a Chip Multi-Processor (CMP), it
can execute multiple software threads on a single chip at the same time. Thus a
CMP provides a larger capacity of computations performed per chip for a given
time interval (or throughput). Examples are Dual-Core Intel Xeon [3], AMD
Opteron [1], UltraSPARC IV, IV+, T1 microprocessors from Sun Microsystems
[12], [14], IBM Power 5 [5], among others. Shared-Memory Multiprocessor (SMP)
servers based on CMPs are already introduced in the market, e.g., Sun Fire E25K
[12] from Sun Microsystems based on dual-core UltraSPARC IV processors. They
are rapidly adopted in High Performance Computing (HPC) applications as well
as in commercial business applications.

Although CMP servers promise to deliver higher chip-level throughput perfor-
mance than the servers based on the traditional single core processors, resources
on the CMPs such as cache(s), cache/memory bus, functional units, etc., are
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shared among the cores on the same processor chip. Software threads running
on the cores of the same processor chip compete for the shared resources, which
can cause conflicts and hurt performance. Thus exploiting the full performance
potential of CMP servers is a challenging task. In this paper, we evaluate the
performance impact of the resource conflicts among the processor cores of CMPs
on a high-end SMP server, Sun Fire E25K.

For our performance evaluation, we use HPC applications parallelized using
OpenMP standard [9] for SMP: SPEC OMPL benchmark suite [11]. Using the
Sun Studio 10 compiler suite [13], we generate fairly high optimized executables
for SPEC OMPL programs and run them on E25K server. In order to evaluate
the performance impact of the resource conflicts on the shared resources, level-2
cache bus and main memory bus, 64-thread (and 32-thread) runs were conducted
using both cores of 32 CMPs (16 CMPs for 32-thread run) and using only one
core of 64 CMPs (32 CMPs for 32-thread run). The experimental results show
17˜18% average (geometric mean for the 9 benchmark programs) slowdowns for
the runs with resource conflicts than without the conflicts. Benchmarks which
intensively utilize the memory bandwidth or allocate large amounts of memory
suffer more due to the resource conflicts.

The rest of the paper is organized as follows: Section 2 describes the architec-
ture of an example CMP server, Sun Fire E25K. Section 3 describes the OpenMP
programming model and our test benchmark suite, SPEC OMPL. It also de-
scribes how to generate optimized executables for SPEC OMPL. Section 4 first
shows the settings for utilizing Solaris 10 Operating System features useful for
achieving high performance for SPEC OMPL. Then it shows the experimental
results on E25K. Section 5 wraps up the paper with conclusions.

2 Chip Multi-processor Server

In this section, we describe the architecture of an example high-end CMP server
which we used for our performance experiments in this paper. The Sun Fire
E25K server is the first generation throughput computing server from Sun Mi-
crosystems which aims to dramatically increase the application throughput by
employing dual-core CMPs. The server is based on the dual-core UltraSPARC IV
processor and can scale up to 72 processors executing 144 threads (two threads
per each UltraSPARC IV processor) simultaneously. The system offers up to
twice the compute power of the UltraSPARC III Cu (predecessor to UltraSPARC
IV processor) based high-end systems.

The UltraSPARC IV contains two enhanced UltraSPARC III Cu cores (or
Thread Execution Engines: TEEs), a memory controller, and the necessary cache
tag for 8 MB of external L2 cache per core (see Fig. 1). The off-chip L2 cache
is 16 MB in size (8 MB per core). The two cores share the Fireplane System
Interconnect, as well as the L2 cache bus. Thus they become the potential source
of performance bottlenecks.

The basic computational component of the Sun Fire E25K server is the Uni-
Board [12]. Each UniBoard consists of up to four UltraSPARC IV processors,
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Fig. 1. UltraSPARC IV processor

their L2 caches, and associated main memory. Sun Fire E25K can contain up
to 18 UniBoards, thus at maximum 72 UltraSPARC IV processors. In order
to maintain cache coherency system wide, the snoopy cache coherency proto-
col is used within the UniBoard and directory-based cache coherency proto-
col is used among different UniBoards. The memory latency, measured using
lat mem rd( ) routine of lmbench, to the memory within the same UniBoard is
240nsec and 455nsec to the memory in different Uniboard (or remote memory).

3 SPEC OMPL Benchmarks

The SPEC OMPL is a standard benchmark suite for evaluating the performance
of OpenMP applications. It consists of application programs written in C and
Fortran, and parallelized using the OpenMP API [11]. The underlying execution
model for OpenMP programs is fork-join (see Fig. 2) [9]. A master thread exe-
cutes sequentially until a parallel region of code is encountered. At that point,
the master thread forks a team of worker threads. All threads participate in
executing the parallel region concurrently. At the end of the parallel region (the
join point), the team of worker threads and the master synchronize. After then
the master thread alone continues sequential execution. OpenMP parallelization
incurs an overhead cost that does not exist in sequential programs: cost of cre-
ating threads, synchronizing threads, accessing shared data, allocating copies of
private data, bookkeeping of information related to threads, and so on.

The SPEC OMPL benchmark suite consists of nine application programs
representative of HPC applications from the areas of chemistry, mechanical engi-
neering, climate modeling, and physics. Each benchmark
requires a memory size up to 6.4 GB when running on a single processor. Thus
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Fig. 2. OpenMP execution model

the benchmarks target large-scale systems with 64-bit address space. Table 1
lists the benchmarks and their application areas.

Table 1. SPEC OMPL Benchmarks

Using Sun Studio 10 compiler suite [13], we’ve generated executables for
the benchmarks in SPEC OMPL suite. By using combinations of compiler op-
tions provided by the Sun Studio 10, fairly high level of compiler optimiza-
tions is applied to the benchmarks. Commonly used compiler flags are -fast
-openmp -xipo=2 -autopar -xprofile -xarch=v9a. Other further optimiza-
tion flags are applied to individual benchmark also. These options provide many
common and also advanced optimizations such as scalar optimizations, loop
transformations, data prefetching, memory hierarchy optimizations, interproce-
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dural optimizations, profile feedback optimizations, among others. (Please see
[13] for more details on the compiler options.)

The -openmp option processes openmp directives and generate parallel code
for execution on multiprocessors. The -autopar option provides automatic paral-
lelization by the compiler beyond user-specified parallelization. This can further
improve the performance.

4 Performance Results

Using the compiler options described in section 3, weve generated highly opti-
mized executables for SPEC OMPL. In this section, we first describe the system
environments on which the optimized executables are executed. We then show
the performance results, impact of resource conflicts, on Sun Fire E25K. We also
show one example compiler technique which can reduce the impact of resource
conflicts along with the experimental results.

4.1 System Environments

The Solaris 10 Operating System provides features which help improve per-
formance of OpenMP applications. They are Memory Placement Optimization
(MPO) and Multiple Page Size Support (MPSS). MPO feature can be useful
in improving performance of programs with intensive data accesses to localized
regions of memory. With the default MPO policy called first-touch, memory
accesses can be kept on the local board most of the time, whereas, without
MPO, those accesses would be distributed all over the boards (both local and
remote) which can become very expensive. MPSS can improve performance of
programs which use a large amount of memory. Using large size pages (sup-
ported by MPSS), the number of TLB entries needed for the program and the
number of TLB misses can be significantly reduced. Thus performance can be
significantly improved [10]. We are enabling both MPO and MPSS for our runs
of SPEC OMPL executables.

OpenMP threads can be bound to processors using the environment variable
SUNW MP PROCBIND which is supported by thread library in Solaris 10. Pro-
cessor binding, when used along with the static scheduling, benefits applications
that exhibit a certain data reuse pattern where data accessed by a thread in a
parallel region will either be in the local cache from a previous invocation of a
parallel region, or in local memory due to the OS’s first-touch memory allocation
policy.

4.2 Impact of Resource Conflicts on CMP

As mentioned in Section 2, two cores on one UltraSPARC IV CMP share the L2
cache bus and the memory bus, which are potential sources of performance bot-
tlenecks. In order to measure the performance impact of these resource conflicts
on SPEC OMPL, we’ve measured the performance of 64-thread (and 32-thread)
runs in two ways:
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1. Using 64 (32) UltraSPARC IV processors, thus using only one core per pro-
cessor.

2. Using 32 (16) UltraSPARC IV processors, thus using both cores of the pro-
cessor. In this case, there are possible resource conflicts between the two
cores.

Table 2. 64-thread cases-64x1 vs. 32x2

Table 2 (and Table 3) shows the run times for both 1 and 2 using 64 threads (32
threads) measured on Sun Fire E25K with 1050Mhz UltraSPARC IV processors.
They also show the speed-ups of 1 over 2. Overall, 1 performs 1.18x (1.17x) better
than 2 in 64-thread run (32-thread run). Benchmarks with greater performance
gains from 1 core show the following characteristics:

– 313.swim l: This is a memory bandwidth-intensive benchmark. For example,
there are 14 common arrays accessed all over the program. All the arrays are

Table 3. 32-thread cases-32x1 vs. 16x2
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of the same size (7702 x 7702) and each array element is 8 bytes long. Thus
the total array size is 6,342 Mbytes. The arrays are seldom reused in the
same loop iteration and the accesses stride through the arrays continuously.
When only one core is used per processor, it can fully utilize the L2 cache
and the main memory bandwidth available on the processor chip, whereas
when two cores are used the bandwidth is effectively halved between the two
cores. This led to 1.39x gain of 1 over 2. Unless some aggressive compiler
optimizations are performed to increase the data reuses, the benchmark will
suffer from the continuous feeding of data to the processor cores which burns
all the available memory bandwidths.

– 315.mgrid l: This benchmark, like 313.swim l, requires high memory band-
width. Although this benchmark shows some data reuses (group reuse) of
the three dimensional arrays which are intensively accessed, the same data
is reused at most three times. Therefore, the accesses stride through the ar-
rays. Using only one core can have much higher memory bandwidth, as in
313.swim l’s case, which leads to 1.20x gain.

– 325.apsi l and 331.art l: These benchmarks allocate large amount of memory
per thread at run-time. For example, 325.apsi l allocates 6,771 Mbytes of an
array at run-time besides many other smaller arrays. The dynamic memory
allocation can be parallelized, however it still requires a large memory space
per processor core. Thus, instead of allowing 8 threads to allocate large
memory on the same UniBoards memory, allowing only 4 threads, by using
only one core per each UltraSPARC IV, can have significant performance
benefit. 331.art l also shows similar characteristics.

– 327.gafort l: In this benchmark, the two hottest subroutines have critical
sections inside the main loops. Also they both suffer from intensive memory
loads and stores generated from the critical section loops. These take up
large portions of the total run time. Placing 2 threads on one UltraSPARC
IV (by using both cores) can reduce the overhead involved in the locks and
unlocks. However, allocating 8 threads on two different UniBoards (by using
only one core in each UltraSPARC IV) reduces the pressure on the memory
bandwidth significantly compared with allocating 8 threads on the same
UniBoard. The benefit from the latter dominates that of the former.

Benchmarks other than the above (311.wupwise l, 317.applu l, 321.equake l,
329.fma3d l) relatively give less pressure on the memory bandwidth and/or con-
sume smaller amount of memory. Thus the performance gap between 1 and 2 is
smaller. These benchmarks are not heavily affected by the resource conflicts and
are more suitable for execution on CMP servers.

In order to show the performance impact due to resource conflicts from a
different perspective, we’ve calculated the speed-ups from 32-thread runs to 64-
thread runs in two ways:

– Calculating scalabilities from 32 x 1 run to 64 x 1 run, i.e. when only core
is used.

– Calculating scalabilities from 32 x 1 run to 32 x 2 run. Thus 64-thread run
is performed with resource conflicts.
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Fig. 3. Scalabilities from 32-thread runs to 64-thread runs

Fig. 3 shows the scalabilities in both cases. For the benchmarks which are
affected more due to the resource conflicts, the two scalability bars show bigger
gaps.

4.3 Algorithmic/Compiler Techniques to Reduce Resource
Conflicts on CMP

For benchmarks which suffer a lot due to resource conflicts, algorithmic and/or
compiler techniques are needed to reduce the penalties. For example, aggressive
procedure inlining and skewed tiling [7] technique can be used for 313.swim l.
The skewed tiling, when applied to 313.swim l, can convert a major portion
of the memory accesses to cache accesses by increasing data reuses. Thus can
significantly cut down the traffic to main memory and make a large performance
gain.

Using the compiler flags -Qoption iropt -Atile:skewp provided in Sun
Studio10 Fortran compiler, we’ve generated a new executable for 313.swim l.
We’ve run both the original and the new executables on a smaller Sun SMP
server (SunFire E2900 employing 12 UltraSPARV IV processors) using both
cores of each UltraSPARC IV. For these runs we’ve reduced the array sizes to
1/4th of the original sizes. (There are fourteen two-dimensional arrays with sizes
7702 x 7702 in 313.swim l. Were reduced them into 3802 x 3802.) We’ve also
reduced the number of loop iterations from 2400 to 1200. Then we’ve conducted
the following two runs:

– Using 8 threads, the original executable runs in 1431 sec and the new one
runs in 624 sec, resulting in 2.29x speed-up.
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– Using 16 threads, the original executable runs in 1067 sec and the new one
runs in 428 sec, resulting in 2.49x speed-up.

Above results show the effectiveness of skewed tiling for 313.swim l. Other
algorithmic/compiler techniques are being sought for benchmarks which are af-
fected more by the resource conflicts.

5 Conclusion

In this paper, we first described the architecture of an example CMP server, Sun
Fire E25K, in detail. Then we introduced the OpenMP execution model along
with the SPEC OMPL benchmark suite used for our performance study. We
also showed how to generate highly optimized executables for SPEC OMPL us-
ing the Sun Studio 10 compiler. We then described the system settings on which
we run the optimized executables of SPEC OMPL. They include features in So-
laris 10 OS (MPO, MPSS) which help improve HPC application performance
and binding of threads to processors. Using these features, we’ve measured the
performance impact of the resource conflicts on CMPs for SPEC OMPL using
either one core or both cores of UltraSPARC IV CMPs in the system. It turned
out that the benchmarks which have high memory bandwidths requirements
and/or use large amounts of memory suffer in the presence of the resource con-
flicts. Algorithmic and compiler techniques are needed to reduce the conflicts on
the limited resources shared among different cores.
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Abstract. In the present paper, an implementation of a parallel
one-dimensional fast Fourier transform (FFT) using Streaming SIMD
Extensions 3 (SSE3) instructions on dual-core processors is proposed.
Combination of vectorization and the block six-step FFT algorithm is
shown to effectively improve performance. The performance results for
one-dimensional FFTs on dual-core Intel Xeon processors are reported.
We successfully achieved performance of approximately 2006 MFLOPS
on a dual-core Intel Xeon PC (2.8 GHz, two CPUs, four cores) and ap-
proximately 3492 MFLOPS on a dual-core Intel Xeon 5150 PC (2.66 GHz,
two CPUs, four cores) for a 220-point FFT.

1 Introduction

The fast Fourier transform (FFT) [1] is an algorithm widely used today in science
and engineering.

Today, a number of processors have short vector SIMD instructions, e.g., In-
tel’s SSE/SSE2/SSE3, AMD’s 3DNow!, and Motorola’s Altivec. These instruc-
tions provide substantial speedup for digital signal processing applications. Ef-
ficient fast Fourier transform (FFT) implementations with short vector SIMD
instructions have been investigated thoroughly [2,3,4,5,6,7].

Many FFT algorithms work well when the data sets fit into the cache. How-
ever, when a problem size exceeds the cache size, the performance of these FFT
algorithms decreases dramatically. The key issue in the design of large FFTs
is minimizing the number of cache misses. Thus, both vectorization and high
cache utilization are particularly important with respect to high performance on
processors that have short vector SIMD instructions.

In the present paper, an implementation of parallel one-dimensional FFT
using Streaming SIMD Extensions 3 (SSE3) instructions on dual-core processors
is proposed.

A block six-step FFT-based parallel one-dimensional FFT has been imple-
mented on dual-core Intel Xeon processors and the resulting performance is
reported herein.

Section 2 describes a vectorization of FFT kernels. Section 3 describes a block
six-step FFT algorithm used for problems that exceed the cache size. Section
4 describes the in-cache FFT algorithm used for problems that fit into a data
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#include <pmmintrin.h>

static __inline __m128d ZMUL(__m128d a, __m128d b)
{

__m128d ar, ai;

ar = _mm_movedup_pd(a); /* ar = [a.r a.r] */
ar = _mm_mul_pd(ar, b); /* ar = [a.r*b.r a.r*b.i] */
ai = _mm_unpackhi_pd(a, a); /* ai = [a.i a.i] */
b = _mm_shuffle_pd(b, b, 1); /* b = [b.i b.r] */
ai = _mm_mul_pd(ai, b); /* ai = [a.i*b.i a.i*b.r] */

return _mm_addsub_pd(ar, ai); /* [a.r*b.r-a.i*b.i a.r*b.i+a.i*b.r] */
}

Fig. 1. An example of complex multiplication using SSE3 intrinsics

cache, and parallelization. Section 5 gives performance results. In section 6, we
provide some concluding remarks.

2 Vectorization of FFT Kernels

The SSE3 instructions were introduced into the IA-32/EM64T architecture in
Intel Pentium 4 and Xeon processors [8]. These extensions are designed to en-
hance the performance of IA-32/EM64T processors.

The most direct way to use the SSE3 instructions is to insert the assembly
language instructions inline into the source code. However, this can be time-
consuming and tedious, and assembly language inline programming is not sup-
ported on all compilers. Instead, Intel provides easy implementation through the
use of API extension sets referred to as intrinsics [9]. The SSE3 intrinsics were
used to access the SIMD hardware. In the SSE3 instructions, new instructions
(addsubps, addsubpd, movsldup, movshdup and movddup) are designed to im-
prove performance with respect to complex arithmetic. An example of complex
multiplication using the SSE3 intrinsics is shown in Fig. 1.

The m128d data type in Fig. 1 is supported by the SSE3 intrinsics. The
m128d data type holds two packed double-precision floating-point values. In

complex multiplication, the m128d data type is used as a double-precision com-
plex data type.

The inline function ZMUL in Fig. 1 can be used to multiply two double-precision
complex values. Addition of two double-precision complex values can be per-
formed using the intrinsic function mm add pd in Fig. 1.

To vectorize FFT kernels, the SSE3 intrinsics and the inline function ZMUL can
be used. An example of vectorized radix-2 FFT kernel using the SSE3 intrinsics
is shown in Fig. 2.
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#include <pmmintrin.h>

__m128d ZMUL(__m128d a, __m128d b);

void fft_vec(double *a, double *b, double *w, int m, int l)
{
int i, i0, i1, i2, i3, j;
__m128d t0, t1, w0;

for (j = 0; j < l; j++) {
w0 = _mm_load_pd(&w[j << 1]);
for (i = 0; i < m; i++) {
i0 = (i << 1) + (j * m << 1); i1 = i0 + (m * l << 1);
i2 = (i << 1) + (j * m << 2); i3 = i2 + (m << 1);
t0 = _mm_load_pd(&a[i0]); t1 = _mm_load_pd(&a[i1]);
_mm_store_pd(&b[i2], _mm_add_pd(t0, t1));
_mm_store_pd(&b[i3], ZMUL(w0, _mm_sub_pd(t0, t1)));

}
}

}

Fig. 2. An example of vectorized radix-2 FFT kernel using SSE3 intrinsics

3 A Block Six-Step FFT Algorithm

The discrete Fourier transform (DFT) is given by

yk =
n−1∑

j=0

xjω
jk
n , 0 ≤ k ≤ n − 1, (1)

where ωn = e−2πi/n and i =
√

−1.
If n has factors n1 and n2 (n = n1 × n2), then the indices j and k can be

expressed as:
j = j1 + j2n1, k = k2 + k1n2. (2)

We can define x and y as two-dimensional arrays (in Fortran notation):

xj = x(j1, j2), 0 ≤ j1 ≤ n1 − 1, 0 ≤ j2 ≤ n2 − 1, (3)
yk = y(k2, k1), 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1. (4)

Substituting the indices j and k in equation (1) with those in equation (2),
and using the relation of n = n1 × n2, we can derive the following equation:

y(k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

x(j1, j2)ωj2k2
n2

ωj1k2
n1n2

ωj1k1
n1

. (5)

We note that the above factorization was appeared in the Cooley-Tukey paper
[1].
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This derivation leads to the following six-step FFT algorithm [10,11]:

Step 1: Transpose
x1(j2, j1) = x(j1, j2).

Step 2: n1 individual n2-point multicolumn FFTs

x2(k2, j1) =
n2−1∑

j2=0

x1(j2, j1)ωj2k2
n2

.

Step 3: Twiddle-factor multiplication
x3(k2, j1) = x2(k2, j1)ωj1k2

n1n2
.

Step 4: Transpose
x4(j1, k2) = x3(k2, j1).

Step 5: n2 individual n1-point multicolumn FFTs

x5(k1, k2) =
n1−1∑

j1=0

x4(j1, k2)ωj1k1
n1

.

Step 6: Transpose
y(k2, k1) = x5(k1, k2).

We combine the multicolumn FFTs and transpositions to reduce the number
of cache misses, and we modify the original six-step FFT algorithm to reuse data
in the cache memory. We assume in the following that n = n1n2 and that nb is
the block size, and assume that each processor has a multi-level cache memory.
A block six-step FFT algorithm [12] can be stated as follows.

1. Consider the data in main memory as an n1 ×n2 complex matrix. Fetch and
transpose the data nb rows at a time into an n2 × nb matrix. The n2 × nb

array fits into the L2 cache.
2. For each of nb columns, perform nb individual n2-point multicolumn FFTs

on the n2 ×nb array in the L2 cache. Each column FFT fits into the L1 data
cache.

3. Multiply the resulting data in each of the n2 × nb complex matrices by the
twiddle factors. Then transpose each of the resulting n2 × nb matrices, and
return the resulting nb rows to the same locations in the main memory from
which they were fetched.

4. Perform n2 individual n1-point multicolumn FFTs on the n1 × n2 array.
Each column FFT fits into the L1 data cache.

5. Transpose and store the resulting data on an n2 × n1 complex matrix.

Fig. 3 gives the Fortran program for this block six-step FFT algorithm. Here
the twiddle factors ωj1k2

n1n2
in equation 5 are stored in array U, and the array WORK

is the work array. The parameters NB and NP are the blocking parameter and
padding parameter, respectively.
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COMPLEX*16 X(N1,N2),Y(N2,N1) DO JJ=1,N2,NB
COMPLEX*16 U(N1,N2),WORK(N2+NP,NB) DO J=JJ,JJ+NB-1
DO II=1,N1,NB CALL IN_CACHE_FFT(X(1,J),N1)
DO JJ=1,N2,NB END DO

DO I=II,II+NB-1 DO I=1,N1
DO J=JJ,JJ+NB-1 DO J=JJ,JJ+NB-1

WORK(J,I-II+1)=X(I,J) Y(J,I)=X(I,J)
END DO END DO

END DO END DO
END DO END DO
DO I=1,NB

CALL IN_CACHE_FFT(WORK(1,I),N2)
END DO
DO J=1,N2

DO I=II,II+NB-1
X(I,J)=WORK(J,I-II+1)*U(I,J)

END DO
END DO

END DO

Fig. 3. A block six-step FFT algorithm

4 In-Cache FFT Algorithm and Parallelization

The Stockham autosort algorithm [13] works well until the problem size exceeds
the cache size. When the problem exceeds cache size, the block six-step FFT
algorithm should be used.

Table 1. Real inner-loop operations for radix-2, 4 and 8 FFT kernels based on the
Stockham autosort algorithm

Radix-2 Radix-4 Radix-8
Loads and stores 8 16 32
Multiplications 4 12 32
Additions 6 22 66
Total floating-point operations (n log2 n) 5.000 4.250 4.083
Floating-point instructions 10 34 98
Floating-point/memory ratio 1.250 2.125 3.063

The radix-2, 4 and 8 Stockham autosort algorithms were used for in-cache
FFT. Table 1 shows the number of operations required for radix-2, 4 and 8
FFT kernels. Higher radices are more efficient in terms of both memory and
floating-point operations. A high ratio of floating-point instructions to memory
operations is particularly important in cache-based processors. In view of the
high ratio of floating-point instructions to memory operations, the radix-8 FFT
is preferable to the radix-4 FFT.
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Table 2. Specification of machines

Platform Intel Xeon PC Intel Xeon 5150 PC
Number of CPUs 2 2
Number of cores 4 4

CPU Type
Intel Xeon

Paxville 2.8 GHz
Intel Xeon 5150

Woodcrest 2.66 GHz

L1 Cache
I-Cache: 12 KB
D-Cache: 16 KB

I-Cache: 32KB
D-Cache: 32KB

L2 Cache 2MB 4 MB

Main Memory
DDR2-SDRAM

2GB
DDR2-SDRAM

4GB
Chipset Intel E7525 Intel 5000X

OS Linux 2.6.9-5.ELsmp Linux 2.6.18-1.2798.fc6

Table 3. Performance of FFTE 4.0 (SSE3) on a dual-core Intel Xeon (Paxville 2.8 GHz)
PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00014 1725.26 0.00014 1725.25 0.00014 1725.98
213 0.00029 1820.93 0.00029 1818.07 0.00029 1817.15
214 0.00062 1835.34 0.00062 1835.01 0.00062 1835.28
215 0.00138 1774.97 0.00139 1773.74 0.00139 1773.99
216 0.00444 1180.03 0.00252 2082.55 0.00161 3259.36
217 0.01053 1057.67 0.00622 1790.11 0.00464 2398.53
218 0.02339 1008.77 0.01537 1534.60 0.01135 2079.42
219 0.04917 1013.06 0.03177 1567.96 0.02387 2086.19
220 0.10258 1022.20 0.06493 1615.04 0.05227 2006.10

Although higher radix FFTs require more floating-point registers in order
to hold intermediate results, the Intel Xeon EM64T processor has 16 XMM
registers.

A power-of-two point FFT (except for 2-point FFT) can be performed by a
combination of radix-8 and radix-4 steps containing at most two radix-4 steps.
That is, the power-of-two FFTs can be performed as a length n = 2p = 4q8r (p ≥
2, 0 ≤ q ≤ 2, r ≥ 0).

We parallelized the block six-step FFT by using OpenMP. The outermost
loop of each FFT algorithm shown in Fig. 3 is distributed across the processors.

5 Performance Results

To evaluate the implemented parallel one-dimensional FFT, referred to as FFTE
(version 4.0), its performance was compared to that of the FFT library of
FFTW (version 3.1.2, using Posix threads) [14]. Since the latest Intel Math
Kernel Library (MKL, version 9.0) [15] does not support threaded parallel one-
dimensional FFT, the MKL was not evaluated.



1184 D. Takahashi

Table 4. Performance of FFTE 4.0 (x87) on a dual-core Intel Xeon (Paxville 2.8 GHz)
PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00019 1268.72 0.00019 1268.66 0.00019 1268.28
213 0.00040 1335.32 0.00040 1335.31 0.00040 1335.11
214 0.00087 1316.86 0.00087 1316.93 0.00087 1316.55
215 0.00192 1277.66 0.00192 1281.89 0.00192 1280.70
216 0.00613 854.67 0.00358 1463.97 0.00256 2045.75
217 0.01465 760.70 0.00877 1270.93 0.00623 1789.44
218 0.03310 712.84 0.02107 1119.66 0.01569 1503.96
219 0.06844 727.79 0.04444 1120.87 0.03244 1535.26
220 0.13874 755.77 0.08833 1187.13 0.06782 1546.16

Table 5. Performance of FFTW 3.1.2 on a dual-core Intel Xeon (Paxville 2.8 GHz)
PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00009 2832.57 0.00009 2844.51 0.00009 2836.96
213 0.00019 2822.81 0.00019 2848.04 0.00019 2825.57
214 0.00041 2826.76 0.00041 2814.07 0.00041 2823.65
215 0.00090 2736.13 0.00090 2728.64 0.00098 2501.34
216 0.00235 2228.51 0.00235 2228.43 0.00232 2259.15
217 0.00633 1760.64 0.00561 1985.35 0.00555 2009.27
218 0.01386 1701.82 0.01201 1964.44 0.00977 2415.21
219 0.03083 1615.66 0.02465 2020.35 0.02088 2385.71
220 0.06792 1543.76 0.05136 2041.79 0.04406 2380.10

The elapsed times obtained from 10 executions of complex forward FFTs were
averaged, where the input and output were in the usual order. The FFTs were
performed on double-precision complex data, and the table for twiddle factors
was prepared in advance.

All routines were written in C and FORTRAN 77. The specifications for the
two platforms used are shown in Table 2.

The compilers used were the Intel C Compiler (icc, version 9.1) and the
Intel Fortran Compiler (ifort, version 9.1). For the FFTE (SSE3), the compiler
options used were specified as “icc -O3 -xP” and “ifort -O3 -xP -openmp”.
For the FFTE (x87), the compiler options used were specified as “ifort -O3
-march=pentiumpro -openmp”. For the FFTW, the compiler options used were
specified as “icc -O3 -xP” and “ifort -O3 -xP”. All programs were run in
64-bit mode.

The FFTE routines are single-threaded for small problem sizes and multi-
threaded for large problem sizes.
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Table 6. Performance of FFTE 4.0 (SSE3) on a dual-core Intel Xeon 5150 (Woodcrest
2.66 GHz) PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00006 4128.46 0.00006 4128.80 0.00006 4141.40
213 0.00014 3912.61 0.00014 3900.81 0.00014 3925.46
214 0.00028 4030.83 0.00029 4020.14 0.00028 4036.37
215 0.00060 4121.60 0.00060 4113.43 0.00060 4106.24
216 0.00143 3676.79 0.00141 3713.05 0.00141 3717.98
217 0.00500 2228.17 0.00380 2931.55 0.00226 4921.67
218 0.01340 1761.12 0.00747 3159.97 0.00472 4995.93
219 0.02989 1666.54 0.01678 2968.24 0.01341 3715.39
220 0.06675 1570.84 0.03735 2807.18 0.03003 3491.69

Table 7. Performance of FFTE 4.0 (x87) on a dual-core Intel Xeon 5150 (Woodcrest
2.66 GHz) PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00010 2414.28 0.00010 2414.04 0.00010 2413.01
213 0.00022 2475.71 0.00021 2480.89 0.00021 2480.22
214 0.00047 2463.42 0.00047 2464.68 0.00047 2465.73
215 0.00099 2470.15 0.00100 2463.51 0.00099 2472.63
216 0.00237 2214.24 0.00237 2214.47 0.00237 2212.98
217 0.00741 1503.71 0.00486 2290.17 0.00275 4053.13
218 0.01848 1276.75 0.00977 2415.99 0.00591 3992.05
219 0.03901 1276.83 0.02123 2346.35 0.01546 3222.04
220 0.08344 1256.70 0.04492 2334.48 0.03344 3135.95

Table 8. Performance of FFTW 3.1.2 on a dual-core Intel Xeon 5150 (Woodcrest
2.66 GHz) PC

n
1CPU, 1 core 1 CPU, 2 cores 2CPUs, 4 cores

Time MFLOPS Time MFLOPS Time MFLOPS
212 0.00005 5340.65 0.00005 5324.67 0.00005 5370.66
213 0.00010 5246.95 0.00010 5250.29 0.00010 5321.29
214 0.00022 5288.20 0.00022 5238.77 0.00022 5331.34
215 0.00050 4959.85 0.00050 4955.32 0.00049 4971.35
216 0.00111 4722.97 0.00110 4782.46 0.00119 4405.83
217 0.00376 2963.07 0.00400 2785.17 0.00396 2811.49
218 0.00997 2366.58 0.01011 2333.85 0.01000 2358.56
219 0.02351 2118.26 0.02288 2177.28 0.02166 2299.11
220 0.05060 2072.33 0.04003 2619.43 0.03698 2835.30
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5.1 Performance Results on a Dual-Core Intel Xeon PC

Tables 3, 4 and 5 compare the FFTE (SSE3 and x87) and the FFTW in terms
of their run times and MFLOPS. The first column shows the number of points
of FFTs. The next six columns indicate the average elapsed times in seconds
and the average execution performances in MFLOPS. The MFLOPS values are
each based on 5n log2 n for a transform of size of n = 2m.

Tables 3 and 4 show that the SSE3 instructions provide performance enhance-
ment for the FFTE.

On the other hand, the FFTE (SSE3) is slower than the FFTW except for
the cases of n = 216 and n = 217 (two CPUs, four cores), as shown in Tables
3 and 5. This is because the L2 cache size of the Intel Xeon processor is 2 MB
and it holds a low cache-miss ratio up to size 215 points. Moreover, the FFTW
works well when the data sets fit into the cache. These are two reasons why for
n ≤ 215 the FFTE (SSE3) is slower than the FFTW.

We found that the dual-core Intel Xeon 2.8GHz PC does not have good
scalability continuing up to two CPUs (four cores). This is mainly because the
memory bandwidth of the Intel E7525 Chipset is still 6.4GB/s.

5.2 Performance Results on a Dual-Core Intel Xeon 5150 PC

Tables 6, 7 and 8 compare the FFTE (SSE3 and x87) and the FFTW in terms
of their run times and MFLOPS. The first column shows the number of points
of FFTs. The next six columns indicate the average elapsed times in seconds
and the average execution performances in MFLOPS. The MFLOPS values are
each based on 5n log2 n for a transform of size of n = 2m.

The FFTE (SSE3) is faster than the FFTW except for the cases of n ≤ 220

(one CPU, one core) and n ≤ 216 (two CPUs, four cores), as shown in Tables 6
and 8. The speedup of the FFTE is better than that of the FFTW.

The performance of the implemented parallel one-dimensional FFT remains
at a high level, even for the larger problem size, because of cache blocking. The
FFTE exploits the SSE3 new instructions (addsubpd and movddup). These are
two reasons why the FFTE is more advantageous than the FFTW.

6 Conclusion

In the present paper, the implementation of a parallel one-dimensional FFT
using SSE3 instructions on dual-core processors was proposed. In addition, FFT
kernels were vectorized using the SSE3 instructions, and the block six-step FFT
was parallelized using OpenMP.

As a result of cache blocking, the performance of the implemented parallel
one-dimensional FFT remains high even for larger problems. The speedup of the
FFTE is better than that of the FFTW.

These results demonstrate that the implemented FFT utilizes cache mem-
ory effectively. We successfully achieved performance of approximately 2006
MFLOPS on a dual-core Intel Xeon PC (2.8GHz, two CPUs, four cores) and
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approximately 3492MFLOPS on a dual-core Intel Xeon 5150 PC (2.66GHz, two
CPUs, four cores) for a 220-point FFT.
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