python 3

De Wikicima
(Diferencias entre revisiones)
Saltar a: navegación, buscar
(Abrir un archivo)
(Abrir un archivo)
Línea 996: Línea 996:
 
ds
 
ds
   
<xarray.Dataset>
+
<xarray.Dataset>
Dimensions: (lat: 25, time: 2920, lon: 53)
+
Dimensions: (lat: 25, time: 2920, lon: 53)
Coordinates:
+
Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
+
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
* lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
+
* lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
* time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00
+
* time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00
Data variables:
+
Data variables:
air (time, lat, lon) float32 ...
+
air (time, lat, lon) float32 ...
Attributes:
+
Attributes:
Conventions: COARDS
+
Conventions: COARDS
title: 4x daily NMC reanalysis (1948)
+
title: 4x daily NMC reanalysis (1948)
description: Data is from NMC initialized reanalysis\n(4x/day). These a...
+
description: Data is from NMC initialized reanalysis\n(4x/day). These a...
platform: Model
+
platform: Model
references: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly...
+
references: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly...
  +
 
</code>
 
</code>
   

Revisión de 14:33 29 mayo 2024

Autor: Marisol OSMAN (a partir del trabajo de Anthony SCHRAPFFER)
Año: 2024
Contacto: osman@cima.fcen.uba.ar

Si tienen sugerencias, correcciones o comentarios, no duden en contactarse !


En las Ciencias de la Tierra se suele trabajar con muchos datos (observaciones, salidas de modelo, etc.) y para analizar estos datos y comunicar resultados vía gráficos o mapas uno necesita una herramienta adecuada. Al buen trabajador, las buenas herramientas: esta página les presenta Python.

Esta guía intenta darles un entendimiento básico de Python, y algunas herramientas prácticas para las áreas de las Ciencias de la Tierra para facilitar un primer uso de este lenguaje de programación. Para ir más allá, pueden ir a buscar soluciones a sus problemas en la comunidad de usuarios cercanos o en línea.


Contenido

Introducción

Presentaciones

Presentación

Ejemplos python

Ejemplo xarray

Paquete a instalar

Paquetes basicos:

sudo apt-get install python3 python3-scipy python3-numpy

Instalador de paquete pip:

sudo apt-get install python3-pip

Mas paquetes:

pip3 install netcdf4 matplotlib pandas
pip3 install xarray cartopy pooch

Historia

Python es un lenguaje de programación iniciado por Guido van Rossum. Tiene su nombre por la famosa serie de televisión Monty Python's Flying Circus, pero la serpiente marcó más su imaginación y por esta razón el lenguaje termina adoptándola como logo.

El lenguaje python es un lenguaje interpretado muy versátil y cada vez más utilizado en actividades de Ciencias de la Tierra y muchas otras disciplinas. Existen dos versiones del lenguaje (2.x y 3.x) las cuáles no son compatibles. Los cambios son menores (ej.: print 'Hola' --> print('Hola')), pero requiere una recodificación de los scripts. En este curso vamos por lo más moderno, python 3 ya que la versión 2 no es actualizada desde 2020.

Python es un lenguaje muy rico, porque está constituido por aportes de usuarixs de todo el mundo en forma de paquetes fáciles de instalar.

Por qué elegir Python ?

  • Por el diseño del lenguaje:

su simplicidad facilita la implementación de ideas

  • Por la facilidad de uso:

es un lenguaje interpretado, no necesita ser compilado solo basta ejecutar el código

  • Por la facilidad de lectura:

para poder compartirlo con otras personas, con la comunidad científica

  • Por la alta compatibilidad:

puede funcionar con otros tipos de lenguajes de programación (C con cython, Fortran con f2py, en los cuales está basado)

  • Por la estructura de los datos:

numerosos tipos de objetos disponibles (ya integrado o en librerías) y posibilidad de crear clases

  • Por la gran comunidad que lo usa:

mucha información en internet, libros, librerías disponibles y actualizadas

Para empezar

A saber antes de empezar

  • Python es un Lenguaje de alto nivel por lo que no hay necesidad de definir todo lo que hacemos, interpreta mucho pero CUIDADO, hay que estar atento con lo que estamos manipulando. Si dejamos a Python interpretar el tipo de una variable, puede influir en las operaciones que podremos aplicar a esta variable.
  • El lenguaje reconoce minúsculas y MAYÚSCULAS
  • Python empieza a contar desde 0, así el primer elemento de una lista, arreglo, etc. es el elemento 0 !
  • Los espacios a principio de línea cuentan para definir los bloques
  • Se puede ("se debe") comentar con :
 # para que el resto de la línea sea considerada como comentario  

"""
Esto permite
Comentar sobre varias líneas
"""

  • Si queremos cortar una línea de código en varias se puede usar \ y empezar la línea siguiente a un nivel más alto (recuerdan que los espacios a principio de linea permiten definir los bloques)
  • Para imprimir en pantalla una o más variables se usa la función print(variable) . Se pueden imprimir en pantalla diferentes variables en una sola llamada con : print(variable1, variable2)
  • Cada tipo de elemento tiene sus propias características y métodos.
  • Se pueden escribir varios comandos en una sola linea, solo hace falta separarlas con el símbolo  ;
  • Cuando se usa un comando como un for, if, while etc. la línea llamando a este comando se termina por : y los comandos utilizados adentro de esta condición se definen en un bloque de nivel más alto, para que quede más claro esta noción de bloque siguen dos ejemplos :

i = 0
while i < 3:
    i = i+1 # bloque del while
print(i) # Después del bloque del while

out:
>>> 3 

i = 0
while i < 3:
   i = i+1 # bloque del while
   print(i) # Adentro del bloque del while

out:
>>> 1
>>> 2
>>> 3 

  • Otra noción importante es la diferencia entre función y método, ambas pueden retornar o no números, listas etc. pero :
    • Una función puede tener entre 0 y lo que se desea de variables / parámetros en input :
  • - sum(a,b) # función retornando la suma de a y b
    • Un método se aplica a un objeto, mismo si puede tener parámetros en input

Lista = []      # creo una lista vacía
Lista.append(1) # agrego 1 a la Lista

Como usarlo

En la terminal

Se puede llamar a python desde la terminal

 user@cima:~$ python3 

Para después hacer las operaciones que queremos :

 
>>> 1+2 
 3

Y para salir basta con un

 
exit()
# o un 
quit() 

Trabajar en la terminal permite probar algunas lineas de códigos, funciones ... Pero para poder trabajar de manera mas eficiente podemos usar los scripts.

En script

Un script de python es un documento texto con el formato : name_script.py

Es importante empezar el documento especificando con que entorno python lo queremos leer :

 #!/usr/bin/env python3 

También se puede especificar el formato de codificación de caracteres, por ejemplo

 # -*- coding: utf-8 -*- 

Después se tienen que importar las librerías que usamos en el script (si es que usamos): import this

Y finalmente viene el código !

Se puede agregar al final del documento lo siguiente

if __name__ == "__main__": 
    Código a interpretar si este script es el script principal, no un script importado
    # Sirve para dar un ejemplo de uso, probar las funciones (debug)


Ayudándose de un IDE

Los IDE (Integrated Development Environment a.k.a. Entorno de desarrollo integrado) son muy útiles para facilitar el desarrollo de un script, contienen en general:

  • una parte con múltiples pestañas para poder navegar entre los diferentes scripts
  • un terminal para ir probando comandos
  • la posibilidad de leer todo o parte del script, visualizando los output en la terminal
  • opciones para visualizar ciertas variables, tablas etc.

Algunos ejemplos de IDE son :

  • Jupyter
  • pycharm
  • Spyder

En los servidores

Se puede usar en los servidores, se recomienda instalar Python y las librerías que les interesan desde anaconda, para más detalles se recomiende ver a la pagina siguiente de la Wiki :

anaconda

Por otro lado, si quieren usar diferentes configuraciones de las versiones de librerías utilizadas con linux pueden investigar en el artículo siguiente los entornos Python :

entornos_python

Basic Python

Tipos de Objetos

Existen varios tipos de objetos ya incluidos en python, cada tipo de objeto es una clase con su propio tipo de datos, sus propios métodos, funciones y operaciones para interactuar entre objetos similares o de otro tipo.

Para conocer la clase de un objeto python, se puede utilizar la función siguiente que retorna la informacion deseada para el objeto obj : type(obj)

Números

Python considera dos tipos de números :

  • los números enteros (int) que se pueden definir utilizando el numero directamente sin "."
  • los números flotantes (float) que se pueden definir poniendo un "." entre enteros y decimales; y si el número no tiene decimales se puede definirlo como float agragandole un "." al final.

a = 5    # a es un entero
b = 2.   # b es un flotante
c = 4.5  # c es claramente un flotante
# Para convertir los números
float(a) # retorna un número flotante valiendo 5.
int(c)   # retorna la parte entera de c, en este caso 4
# Operaciones entre flotante y enteros
a+b
> 7.
a-b
> 3.
a*b
> 10.
a/b
> 2.5
a//b # parte entera de la división
> 2
a%b # resto de la división
> 1
# Para hacer simplificaciones por ej. para la impresión en pantalla
round(4.5578945, 3) # reduce a 3 numero decimales el flotante
> 4.557

Condiciones y Boolean

Los boolean (o tipo de dato lógico) son True y False, y también pueden ser representados respectivamente como 1 y 0.

Se puede evaluar una expresión utilizando diferentes símbolos de comparación, lo que nos retorna un boolean :

<
>
==
!=
in / not in 
is / is not

Funciones verificando otros aspectos pueden retornar un boolean.

Se puede evaluar matrices gracias a Numpy (más detalles en otra parte), lo que nos devuelve una matriz de boolean, o un solo boolean si especificamos : .any() o .all()

A = np.array([1,2,3,4,5,6])
c = A < 3

print(c)
> [True, True, False, False, False, False]

print(c.any())
> True

print(c.all())
> False

String : Cadenas de caracteres

El formato de datos que contiene caracteres se llama String. Se puede definir un string de dos maneras : 'string' o "string".

# Para trabajar con un ejemplo
word1 = "Hola"
word2 = "Mundo"

  • Se pueden agregar varios string gracias al +

print(word1 + "_" + word2)
> output : "Hola Mundo"

  • Pueden ser vistos como una lista de caracteres simples

print(word1[0])
> output : "H"

  • word.upper(), word.lower() devuelven una copia de word en mayúscula / minúscula
  • Varios métodos permiten verificar ciertas características del string, devuelven un boolean:
    • word1.isalnum() : True si solamente caracteres son alfanuméricos
    • word1.isalpha() : True si solo caracteres alfabetices
    • word1.islower() : True si todo en minúscula
    • word1.isnumeric() : True si todos son caracteres numéricos
    • word1.isupper() : True si todo en mayúscula
    • ...
  • separador.join(Lista_de-string) : devuelve un string con los elementos de las lista separado por el separador

print("-".joint([word1, word2]))
> output : "Hola-Mundo"

  • string.split(separador) : devuelve una lista con los elementos de string entre cada separador, " " es utilizado si no hay separador especificado:

print("Ahora-podemos-probar".split("-"))
> output : ["Ahora", "podemos", "probar"]

  • frase.replace(str1, str2)  : devuelve un string que corresponde a frase en el cual str2 replaza a str1

Los otros tipos de variables pueden ser convertido en string gracias a la función str() :

a = 2+3
Resultado = "La suma es " + str(a)+"."
print(Resultado)
> output : La suma es 5.

Containers : Listas, Tuples, Diccionarios

Los containers ("contenedores") son objetos muy importantes, pueden contener otros objetos y así facilitan su uso. Básicamente, existen 3 grandes tipos de containers :

  • las listas
  • los tuple
  • los diccionarios

Listas

Las listas se definen gracias a los símbolos "[" y "]". La listas son contenedores referenciados gracias a un indice numérico.

# para definir una lista vacía
L = []
# para inicializar una lista, los elementos son separados por ","
L0 = [1, 2, 3]
# puede ser hecho con diferentes tipos de objetos, mismo otras listas
L = [1, 1.2, "Ritmo", L0]
# para agregar un objeto se utiliza el método append
L= ["A", "B"]
L.append("C")
print(L)
> output : 
 ["A", "B", "C"]
# la función list permite facilitar la generación de lista : 
L = list("abcdef")
print(L)
> output : 
 ["a", "b", "c", "d", "e", "f"]
# la función len permite conocer el número de elementos
print(len(L))
> output : 
  6

Se puede hacer fácilmente loop con las listas :

L = ["file1", "file2", "file3"]
for element in L:
   print(f)
> output : 
 "file1"
 "file2"
 "file3"

Se puede acortar una lista a una o más elementos :

# L1 una lista 1D
L1[0] # primer elemento de L1
L1[-1] # Ultimo elemento de L1
L1[1] # secundo elemento de L1
L1[:4] # todos los elementos hasta el cuarto (python empieza a contar a 0)
L1[2:] # todos los elementos a partir del tercero
L1[0::2] # todos los elementos a partir del 1ero, cada 2 elementos

Recuerden que un string puede ser considerado como una lista.

Tuple

Los tuples son listas que no pueden ser modificadas, se definen entre paréntesis.

t = ()
t = ("hola")
t = ("hola", "mundo")
# Extraer la información en t
word1, word2 = t
# Mismo acceso con índice como las listas
print(t[0])
> output : 
 "hola"

La principal diferencia es que los elementos no pueden ser modificados ni se pueden agregar nuevos elementos, hay que redefinir la lista si se quiere cambiar sus elementos.

Diccionarios

En los diccionarios, los elementos no son referenciados por su índice sino por un identificador, no es un contenedor ordenado como las listas o los tuples. Los diccionarios se crean con los símbolos "{" y "}". Los identificadores pueden ser diferentes tipos de objetos, por ejemplo string o enteros.

# Diccionario vacío
D = {}
# Inicialización de un diccionario
# se pone id : valor
D = {'Manzana': 3, 'Naranja': 10}
# se pueden definir uno a uno
D["Palta"] = 4
# Suprimir un elemento del diccionario
del D["Manzana"]

D.keys() devuelve la lista de los identificadores

D.values() devuelve la lista de los diferentes valores

D.items() devuelve un tuples con los diferentes items

Por ejemplo :

for cle, value in D.items():
   print(cle, value)
> output : 
 "Manzana" 3
 "Naranja" 10

Loops: bucles

for x in

Para recorrer una lista de elementos se puede usar el comando for

for x in List:
   instrucciones utilizando x

El loop va a recorrer la lista utilizando sus elementos uno a uno refiriéndose a ellos como x.

Construyendo lista de enteros fácilmente con la función range podemos escribir :

for i in range(0,10,2): # para los enteros i entre 0 y 10 (excluido), cada 2
   print(i)
> output : 
 0
 2
 4
 6
 8

También se puede recorrer dos listas en simultaneo utilizando la función zip  :

for i, name in zip(range(3), ["To", "Ti", "To"]): # para los enteros i entre 0 y 10 (excluido), cada 2
   print(i, name)
> output :
 0, "To"
 1, "Ti"
 2, "To"

while

Se puede también utilizar una condición para hacer un loop, mientras la condición siga siendo válida se sigue ejecutando el comando del loop :

while 'condition':
    instrucción

Tener cuidado con poder siempre salir del loop, sino el script seguirá corriendo sin fin. Hay que verificar que por lo menos un elemento de la función llega a cambiar y que llega a no cumplir la condición para salir del bucle.

Parar una loop

Se puede parar una loop con el uso de break .

while 'condición':
   instrucciones
   if 'condición de stop':
       break

Más herramientas

Manipular estos diferentes objetos es esencial, pero para trabajar de manera eficiente hay otras herramientas disponibles.

Funciones

Las funciones son una herramienta indispensable para trabajar con Python. Permiten no repetir partes del código y además permiten gestionar mejor la memoria en Python.

Python guarda todas las variables en memoria, pero cuando utilizamos una función sólo los elementos retornados quedan guardados en memoria.
Una vez que la función termina de ejecutarse, las variables locales son borradas.

La estructura básica de una función es :

def nombre_función(variables_entrantes):
   # Noten que termino la linea anterior con ":"
   # Noten que paso a otro nivel de código
   código
   return output 

Se pueden retornar entre entre ninguna y varias variables. Si no retornamos variables, el return es opcional. Se pueden entrar entre ninguna y varias variables, es posible dar un valor por defecto a las variables entrantes :

def mi_funcion(a, b=1):
   c = a+b
   return c
c = mi_funcion(2)
print(c)
> 3
# Se puede indicar las variables entrantes si queremos ser más prolijos : 
c = mi_funcion(a = 1, b = 3)
print(c)
> 4 

Clases

Python ofrece la posibilidad de crear sus propios tipos de objetos via las clases. Permite tener una versión operacional y muy personalizada para gestionar los datos que manipulamos. Se crea una clase de la manera siguiente :

class name_class:
   def __init__(self, input):
       #Initialization method
       self.parameter_a = "hola"
       self.additional_method_1()

   def additional_method_1(self, input1):
       operations

   def additional_method_2(self, input2):
       operations

Para utilizarla se puede iniciar un objeto de la manera siguiente :

mi_obj = name_class(input = mi_input)
# Para utilizar un método de la clase : 
mi_obj.additional_method_1(input = mi_input1)

Mejorar sus scripts

Para mejorar sus scripts y gestionar mejor los errores se puede usar 'try' y 'except'.

Funciona de la manera siguiente :

try:
   'Codigo'
except:
   'En cualquier caso de error, corro estas instrucciones'

Por ejemplo :

print(a)
> output : Error porque no defini a

try:
   print(a)
except:
   print("imposible de imprimir la variable en la pantalla")
   print("verificar si esta definida")
> output : 
 "imposible de imprimir la variable en la pantalla"
 "verificar si esta definida"

Permitió correr el código sin que éste se detenga por el error.

Librerías

Instalar Librerías

  • En Debian :

En general las librerías se encuentran con el nombre python3-nombre.

Primero, entrar al modo superuser (su)

su root
Entrar contraseña para acceder al modo superuser

Buscar la libreria para conocer el nombre exacto :

apt-get search LIBRARY
Encontrar el nombre exacto de la librería buscada

Instalar la libreria :

apt-get install LIBRARY_NAME

  • En anaconda :

conda search LIBRARY
conda install LIBRARY_NAME

  • Con pip :

pip es un gestionador de paquetes para python

pip3 search LIBRARY
pip3 install LIBRARY_NAME

CUIDADO !!

  • Debian no tiene siempre las últimas versiones, pero siempre son compatibles.
  • Anaconda puede tener problemas de compatibilidad entre versiones, se resuelve buscando versiones compatibles especificando numero de versiones, puede convenir utilizar diferentes entornos_python. Se recomienda instalar todas las librerías deseadas de una vez en el mismo comando conda install LYBRARY1 LYBRARY2 LIBRARY3 para evitar conflictos de versiones
  • En general, se instalan automáticamente los paquetes necesarios para el funcionamiento de la librería que queremos instalar, pero a veces hay que instalarlo aparte.

Numpy

Numpy es la librería más usada para gestionar matrices. Un elemento de numpy es una matriz que contiene elementos del mismo tipo, contrariamente a las listas en las cuales se pueden mezclar los tipos de datos. En función del tipo de dato y del número de dimensiones, diferentes métodos y funciones estarán disponibles.

En vez de recorrer los elementos de las matrices uno a uno para hacer operaciones, las funciones están optimizadas para que todo se haga más rápido, por eso antes de hacer una operación sobre matrices por si solo, mejor verificar si no existe en numpy.

Básico

import numpy as np
# Convertir una lista en numpy array, los elementos tienen que ser del mismo tipo
A = np.array(List)
# Crear una matriz llena de 0 con una cierta estructura
shape = (10,5) # en este caso una matriz 10*5
A = np.zeros(shape)
# full permite crear una matriz llena del número que indicamos, en esta caso 5 
A = np.full(shape, 5) 
# Obtener la estructura de una matriz 
A.shape
# Obtener el número de elementos
A.size

Funciones

Existen numerosas funciones, si buscan algo en particular ver : https://docs.scipy.org/doc/numpy/reference/

Entre otras :

  • mean
  • multiply
  • true_divide
  • ...

matrices enmascaradas

Otro aspecto interesante de las matrices en numpy son las matrices "enmascaradas". Permiten gestionar elementos enmascarados y realizar las operaciones ignorando estos elementos. Una matriz enmascarada se define por una matriz numpy con los valores no enmascarados y una matriz numpy de booleans indicando cuáles son los elementos enmascarados

<code>

import numpy as np
import numpy.ma as ma
A = np.random((4,3))
A_masked = ma.masked_where(A <0.5, A)
# ver el promedio de los elementos de A que son superiores a 0.5 : 
print(ma.mean(A))

Pandas

Pandas es una librería que facilita el trabajo con datos.

Series

Un tipo de datos en pandas son las series, indexada por números enteros por defecto, pero se puede especificar indices personalizados.

import numpy as np
import pandas as pd
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s) 
> output : 
  0    1.0
  1    3.0
  2    5.0
  3    NaN
  4    6.0
  5    8.0
  dtype: float64

Dataframe

Otro tipo de datos son los dataframe, se pueden considerar como una tabla con diferentes columnas (datos) y distintos index.

# Por si queremos un index siendo fechas 
dates = pd.date_range(start="1/1/2018", periods=8, freq="D")
var = ["ET", "T", "Q", "W"]

# Creación de un dataset con números aleatorios, con las fechas entre el 01/01/2018 y el 08/01/2018 y con las variables de var en columnas
df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=var)
print(df)
> output : 
                    ET         T         Q         W
  2018-01-01 -0.303859  1.541625 -0.158655 -0.106934
  2018-01-02 -0.614769 -1.461621 -0.516678 -0.239503
  2018-01-03 -0.678116  1.538130 -0.799381  0.610648
  2018-01-04  0.356464  0.320538  0.941156  0.303474
  2018-01-05 -1.138584 -0.001179  0.386963 -0.882730
  2018-01-06  0.318615  0.743327  0.401269  2.555924
  2018-01-07 -0.659930  0.925570 -1.514493  0.709833
  2018-01-08 -0.231210  1.592285 -0.055710 -1.201247
  • Las columnas pueden tener diferentes tipos de data (string, date, enteros..)
  • Para definir un dataframe manualmente se usa diccionarios

df2 =  pd.DataFrame({"A" : [1.], "B": ["hola"]})
print(df2)
> output:
       A  B
  0  1.0  a


Visualización

  • Para ver las primeras lineas : df.head()
  • Para las ultimas : df.tail()
  • Para el index : df.index
  • Para las columnas : df.columns
  • Para convertir en un array numpy (se pierde el index y las columnas): df.to_numpy()
  • Para tener un resumen estadísticos rapido : df.describe()

              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

  • Para transponer datos : df.T
  • Para ordenar según las valores de un axis (index) : df.sort_index(axis = 1, ascending = False )
  • Para ordenar por valores de una columna, por ejemplo si quiero ordenar por los valores de la columna referenciada como "B" : df.sort_values(by="B")
  • Selección :
    • Para seleccionar la columna "A" : df["A"]
    • Para el axis (index) número 1 : df.loc[0] , si los index son fechas, tengo que poner a la fecha en indice.
    • df.loc[0, "A"]  : devuelve el valor de la columna "A" para el axis.
  • Datos faltantes
    • Para dejar las lineas con datos faltantes : df.
    • Para rellenar los datos faltantes :
  • Operaciones
    • Existen todo tipo de operaciones matemáticas y estadísticas (promedio, standard deviation) que se pueden aplicar sobre una o varias columnas/lineas.

Graficar

  • Time Series

# Se puede realizar el time serie simple via : 
ts.plot() # Para una serie de datos
df.plot() # Para un dataframe

  • Se pueden explicitar en la función plot el tipo de gráfico que queremos realizar via kind : el valor puede ser  ‘bar’,’barh’,’pie’,’scatter’,’kde’ etc
  • color  para definir los colores
  • linestyle  para definir el estilo de linea ‘solid’, ‘dotted’, ‘dashed’
  • xlim, ylim  son tuple para definir los limites del axis x y del axis y
  • legend Boolean para mostrar o no la leyenda (nombre de cada columna con el color correspondiente)
  • title  Titulo del gráfico

Se combina también con funciones de matplotlib porque está basado en matplotlib.

Importar/Exportar

  • CSV

# Para leer un CSV
df = pandas.read_csv("/home/direccion/documento.csv")
# para guardar el dataframe df como un csv, definiendo el separador
df.to_csv('foo.csv', sep = ";")

  • Excel

# Para leer un Excel
pandas.read_excel("/home/direccion/documento.xlsx")
# Para guardar un dataframe df como documento excel
df.to_excel('foo.xlsx', sheet_name='Sheet1')

NetCDF

NetCDF es un formato de almacenamiento de datos muy común en Ciencias de la Tierra. Para más detalle ver : netCDF

En python se puede trabajar directamente con los archivos netcdf, para leerlos, escribirlos, o modificarlos gracias a esta librería.

Leer un NetCDF desde python

# Importar la clase Dataset de netCDF4 bajo el nombre de NetCDFFile
from netCDF4 import Dataset as NetCDFFile
# Abrir el arquivo foo.nc, r de "reading"
ncfile = NetCDFFile("/home/anthony/foo.nc", "r")

# Este archivo contiene varios diccionarios: uno para las variable, otro para las dimensiones, y también los atributos generales 
ncfile.dimensions.keys() # permite ver las dimensiones
ncfile.variables.keys()
# si temp es una variable: 
temp = ncfile.variables["temp"] #me permite acceder a esta variable y visualizar sus atributos y datos
# Pero sus datos no están cargados en la memoria
# Pero para acceder a sus datos necesito utilizar, por ejemplo si temp tiene dos dimensiones : 
temp_data = ncfile.variables["temp"][:,:]
# Para ahorar memoria puedo decidir cargar unicamente la informacion que me es util : 
temp_data = ncfile.variables["temp"][3:10,:]
# Para leer los atributos de una variable : 
print dataset.variables['tcc']
 > output : 
   <type 'netCDF4.Variable'>
   float32 tcc(time, latitude, longitude
      missing_value: 9.999e+20
      name: tcc
      title: Total cloud cover ((0-1))
   unlimited dimensions: time
   current shape = (1, 181, 360)
   filling off

Finalmente para cerrar el archivo :

ncfile.close()

Para modificar un NetCDF

# Cargo el archivo en modo r+ que lee y abre la posibilidad a hacer modificaciones
ncfile = NetCDFFile("/home/anthony/foo.nc", "r+")
# Cargo la variable (no sus datos)
ncvar = ncfile.variables["var"]
# Cambio las valores que me interesan
ncvar[0,2] = 10.
# Sincronizo
ncfile.sync()
# Cierro
ncfile.close()

Para escribir un NetCDF

from netcdf4 import Dataset as NetCDFFile
import numpy as np

Empezar a escribir el archivo netcdf al lugar indicado, "w" es para writing. CUIDADO Si ya existía un archivo en esta dirección, sera sobrescrito !

foo = NetCDFFile('data/test.nc','w')

Para crear las dimensiones, con el nombre de las dimensiones y la dimensión. En caso de ser una variable ilimitada, se inscribe None.

level = foo.createDimension('level', 10)
lat = foo.createDimension('lat', 73)
lon = foo.createDimension('lon', 144)
time = foo.createDimension('time', None)

Para crear las variables, con el nombre, el tipo de datos y las dimensiones relacionadas. Agregando zlib = True al final autoriza la compresión del archivo, es decir que los espacios sin datos no ocupan espacio.

Primero no agregar las variables detallando las dimensiones, agrego un 's' a sus nombres para no confundirlas con las dimensiones. times = foo.createVariable('time', np.float64, ('time',), zlib = True) levels = foo.createVariable('level', np.int32, ('level',)) latitudes = foo.createVariable('latitude', np.float32,('lat',)) longitudes = foo.createVariable('longitude', np.float32,('lon',))

Después se puede crear las variables que queremos guardar :

 temp = dataset.createVariable('temp', np.float32,('time','level','lat','lon'))

Para ponerles valores es muy simple, por ejemplo :

lats = np.arange(-90,91,2.5)
lons = np.arange(-180,180,2.5)
latitudes[:] = lats
longitudes[:] = lons

# Y si tengo T un array a 4 dimensiones con las buenos dimensiones, en el buen orden (time, level, lat, lon) : 
temp[:,:,:,:] = T

Después es importante describir las variables y el archivo via los atributos.

Para los atributos globales :

foo.description = 'Mean temperature datasets'
foo.history = 'Created 13/06/2019'
foo.source = 'netCDF4 python example'

Para las variables :

latitudes.units = 'degree_north'
longitudes.units = 'degree_east'
levels.units = 'hPa'
temp.units = 'K'
times.units = 'seconds since 1900-01-01 00:00:00'
times.calendar = 'gregorian'

Una dificuldad para describir el tiempo, hay que convertir las fechas en un formato compatible (en general secundos desde una cierta fecha, cf ejemplo). Nos ayudara la función siguiente para convertir estas fechas :

from netcdf4 import date2num
from datetime import datetime, timedelta

Para el ejemplo, creo una lista de fechas :

Dates = [datetime(2001, 3, 1)+n*timedelta(hours=12) for n in range(10)]
times[:] = date2num(Dates, units = times.units)


Para terminar, no olvidar sincronizar y cerrar :

foo.sync()
foo.close()

En el caso de que una variable sea ilimitada, se puede ir agregando nuevos datos. No olviden definir nueva descripción de los pasos temporales en la variable asociada con el tiempo.

xarray

xarray es un paquete de Python pensado para trabajar fácilmente con arreglos multidimensionales con etiquetas en forma de dimensiones, coordenadas y atributos. Es especialmente útil para trabajar con datos grillados georeferenciados, particularmente archivos netCDF.

xarray toma funciones de Numpy y Pandas para trabajar fácil y eficientemente e integra la librería Dask para computación en paralelo y manejo de grandes archivos.

Sitio web: http://xarray.pydata.org

¿A qué nos referimos con todo esto?

xarray es capaz de leer la metadata incluída en los archivos netCDF y posee poderosas herramientas para fácilmente seleccionar variables, recortar dimensiones y hacer cálculos básicos pero laboriosos en una sola línea, entre otras cosas.


Ejemplo

Se puede ver un tutorial en formato html (abrir con el navegador) o de manera interactiva en Jupyter Notebook usando los archivos del siguiente link: Introducción a xarray en html y Jupyter Notebook

Comandos básicos

Abrir un archivo

# Cargamos los paquetes
import xarray as xr

# Abrimos un archivo
data_xr = xr.open_dataset('archivo.nc', engine='netcdf4')

# Si es un .grib: (debemos tener los paquetes cfgrib y eccodes instalados)
data_grib = xr.open_dataset('example.grib', engine='cfgrib')
# en este tutorial abrimos un dataset que xarray tiene de ejemplo
ds = xr.tutorial.load_dataset("air_temperature")

# Vemos la metadata
ds
<xarray.Dataset>
Dimensions:  (lat: 25, time: 2920, lon: 53)
Coordinates:
  * lat      (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
  * lon      (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
  * time     (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00
Data variables:
    air      (time, lat, lon) float32 ...
Attributes:
    Conventions:  COARDS
    title:        4x daily NMC reanalysis (1948)
    description:  Data is from NMC initialized reanalysis\n(4x/day).  These a...
    platform:     Model
    references:   http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly...

# Podemos extraer la variable y sus dimensiones de esta forma
tas = ds['air'] 

lon = ds['lon']
lat = ds['lat']

# También se puede convertir, por ejemplo, un numpy array a un xarray usando:
import numpy as np
data_xrnp = xr.DataArray(np.random.randn(2, 3), coords={'x': ['a', 'b']}, dims=('x', 'y'))

Cómo recortar un dominio espacial o temporal

# Recortamos el dominio
tp_cut = tp.loc[{'time':slice('1980-03-01','1980-07-01'), 'latitude':slice(-30,0,-1), 'longitude':slice(-60,-40)}]
# También se puede usar el método .sel() de manera similar
tp_cut = tp.sel({time=slice('1980-03-01','1980-07-01'), latitude=slice(-30,0,-1), longitude=slice(-60,-40)})

Al usar slice(a,b) le estamos indicando que tome todos los valores comprendidos entre a y b. Si, además, le agregamos "-1", slice(a,b,-1), le indicamos que nos de vuelta esa coordenada. En estos datos de ERA5 vemos que la latitud viene por defecto de mayor a menor (como se vio en la metadata más arriba). Le agrego el -1 para dar vuelta la coordenada latitud y quede de menor a mayor, al igual que la longitud. Hacer esto es lo recomendado si al momento de graficar no queremos las figuras con el norte abajo. Lo hacemos al principio y nos olvidamos del problema.

Cálculos básicos

Los arreglos de xarray funcionan de manera similar a los de numpy, sumado a que ciertas operaciones se pueden hacer especificando los nombres de las dimensiones en lugar de sus índices.

# Podemos calcular la media total en el tiempo de estas dos maneras:
tp_mean = tp.mean(axis=0) # Porque sabemos que 'time' es la primer coordenada, es decir la coordenada 0
tp_mean = tp.mean(dim='time')

# Graficamos directamente desde xarray (gráficos básicos para visualizar rápido)
tp_mean.plot.pcolormesh(vmax=1, cmap='YlGnBu') # vmax es el máximo de la colorbar, cmap el mapa de colores

xarray plot1.png

# También podemos hacer otras operaciones como suma
tp_sum = tp.sum(dim='time')*1000

groupby y resample

xarray ya tiene manejo de dimensiones tipo calendario y nos brinda útiles herramientas para hacer cálculos en una sola línea

# Calcular el ciclo diurno medio:
tp_hour_means = tp.groupby('time.hour').mean(axis=0)

# Pasar a datos diarios
tp_daily = tp.resample(time='1D').sum(axis=0) # o time='24H'

# Pasar a datos estacionales
tp_seas = tp.resample(time='QS').mean(axis=0)  # QS : quarter start

Guardar en un netCDF

# Para guardar en un archivo netCDF:
tp_seas.to_netcdf('tp_seas.nc')

Cómo cargar múltiples archivos y/o usar Dask

Lo que hace Dask es dividir en bloques nuestro dataset y realizar los cálculos de manera paralela, es decir, envía a cada núcleo del procesador uno de estos bloques y va calculando en simultáneo. Luego une el resultado final. Esto permite que sea mucho más rápido en sus cálculos al dividir el trabajo entre los múltiples núcleos del procesador. Se recomienda usarlo siempre que sus archivos sean pesados, ya que las funciones y métodos aplican de la misma forma que si uno no tuviera Dask activo y ganará en rendimiento al hacer cálculos.

Bloques.png

Para activar dask usar la opción 'chunks' dentro de .open_dataset().

El método .open_mfdataset() abre múltiples archivos y ya activa Dask asignando por defecto un bloque = un archivo, pero conviene especificar 'chunks' para que sea más eficiente al calcular. En el sitio de xarray recomiendan que cada bloque contenga aproximadamente un millón de elementos.

Al abrir una serie de archivos con .open_mfdataset() automáticamente se concatenan a lo largo de las dimensiones posibles.

# Abrir un dataset de múltiples archivos (poner * como wildcard)
data_mf = xr.open_mfdataset('total_precipitation_year_198*.nc', chunks={'time':20})

xarray con Dask activado funciona de forma "perezosa" o "lazy", quiere decir que no hace ningún cómputo hasta que le pedimos los datos explícitamente (al graficar, guardar en un archivo o con .compute())

# De esta forma no se hace el cómputo todavía
tp_mfmean = data_mf['tp'].loc[{'latitude':slice(-30,0,-1), 'longitude':slice(-60,-40)}].mean(axis=0)

# Si especifico .compute() sí hace el cáculo:
tp_mfmean = data_mf['tp'].loc[{'latitude':slice(-30,0,-1), 'longitude':slice(-60,-40)}].mean(axis=0).compute()

Otros

Eso es todo por ahora! Hay muchas otras herramientas para hacer selecciones de los datos, transformar los arreglos, mover o modificar las coordenadas, etc. Por ejemplo:

Concatenar, unir, combinar:

Para combinar datasets o data arrays a lo largo de una dimensión: xr.concat()  
Para combinar datasets con distintas variables: xr.merge()  
Para combinar datasets o data arrays con diferentes índices o valores faltantes: xr.combine()  
http://xarray.pydata.org/en/stable/combining.html  

Interpolar:

Con el método .interp() podemos interpolar un DataArray a una nueva grilla, mientras que con .interp_like() podemos interpolar un DataArray a las coordenadas de otro DataArray. Este método utiliza los métodos de interpolación del paquete Scipy, los cuales son métodos simples (lineal, cúbica).

Matplotlib

Es LA librería gráfica de python, indispensable para graficar. Otras librerías integran funciones de gráficos (seaborn, numpy..) pero en general están basadas en matplotlib.

Existen una infinidad de posibilidades con matplotlib, el objetivo de esta parte es dejar unas bases para que cada uno después busque como personalizar a su gusto su gráfico.

Empezar una figura

# para importar la librería
import matplotlib.pyplot as plt
# Para empezar la figura definiendo su tamaño, largo y alto en pulgadas
plt.figure(figsize=(20,10))

# Se puede hacer subplot (poner varios gráfico en una sola figura)
# Por ejemplo el subplot 2 de una grilla de 2x2
# los números de los subplot van aumentando de la izquierda a la derecha y de arriba hacia abajo, acá el número dos sería el subplot arriba a la derecha
plt.subplot(2, 2, 1)  

Este comando me ubica en este subplot para después graficar lo que especificare después.

Para graficar

Gráficos 1D

Para graficar una serie de punto, x son los valores del eje horizontal y y del eje vertical : x = np.arange(10) y = x**2

  1. (Opcional) Se pueden especificar varios parámetros, como el color, el estilo de linea ...

plt.plot(x, y, color = ‘green’ , linewidth = 2, linestyle = “-”)


Para graficar una nube de puntos : plt.scatter(x, y, marker = ‘o’, color = ‘red’)

Gráficos 2D

Para graficar datos 2D, existen varias funciones : contour, contourf, scatterplot, imshow... Estas funciones toman por parámetro X, Y y C :

  • X y Y son array 2D con las diferentes coordenadas horizontal y vertical
  • C es un array 2D que contiene los datos correspondiente

Si solo se usa C, matplotlib puede dar una previsualización del gráfico en el cual consideró una grilla regular.

Por ejemplo :

# Colormap es para especificar la mapa de color
cs = plt.contourf(X, Y, C, colormap = "rainbow")
# Se puede después mostrar la escala de color con 
plt.colorbar(cs)


Personalización

Si se especifica en la función que usé para graficar un parámetro label, puedo mostrar la leyenda del gráfico con :

plt.legend()

Se puede definir un label para los diferentes axis con :

plt.ylabel('Precipitación', fontsize = 15) #for y label
plt.xlabel('Time', fontsize = 15) #for x label

Se puede definir los diferentes xticks, y hasta cambiar sus nombres

# Definición de los yticks
plt.yticks([0,2,4,6,7,10])
# Definición de los xticks y cambio de nombre
plt.xticks([0,1,2,3,4,5], [“0”, “1oz”, "2oz”, “3oz”, “4oz”])

# definir los limites de los axis y y x
plt.ylim(-1.0,1.0) #for y axis
plt.xlim(0, 50) #for x axis


Para guardar la figura :

plt.savefig('plot1.jpg')

Finalmente para cerrar :

plt.close()

Para más

Ejemplo de código python disponible para todo tipo de gráficos en : https://www.data-to-viz.com/

También se puede ver la págino oficial de la libreria : https://matplotlib.org/examples/

Otras librerías basadas en Matplotlib están disponible, como seaborn.

Cartopy

Cartopy es la librería para trabajar con mapas. La librería anterior es Basemap, utilizada en muchos scripts, pero ya no será actualizada y entonces porque no empezar directamente con cartopy??

Cartopy funciona con Matplotlib pero agrega la posibilidad de trabajar con datos geo-espaciales.


Por ejemplo si tengo un array numpy de datos de temperatura de 2 dimensiones llamado Temp de dos dimensiones, con sus respectivo lon y lat cada uno de una dimensión

import cartopy
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import numpy.ma as ma
from netCDF4 import Dataset as NetCDFFile
ncfile = NetCDFFile(ncdir, "r")
# Suponemos que temp tiene por variable (time, lat, lon)
# Promedio temporal de la temperatura : 
temp = ma.mean(ncfile.variables["Temp"][:,:,:], axis = 0) 
# Para obtener las longitudes, latitudes
lon = ncfile.variables["lon"][:]
lat = ncfile.variables["lat"][:]
# Empezar la figura
fig = plt.figure(figsize= (20,10))
# Empezar con la proyección deseada
ax = plt.axes(projection=ccrs.PlateCarree())
# Por si queremos trabajar con subplot
ax1 = plt.subplot(2, 1, 1, projection=ccrs.PlateCarree())
# Si queremos poner color a la superficie terrestre
ax.add_feature(cartopy.feature.LAND)
# Si queremos poner color a los oceanos
ax.add_feature(cartopy.feature.OCEAN)
# Para graficar las costas
ax.add_feature(cartopy.feature.COASTLINE)
# Para graficar los datos, es posible que tengan que usar la opción "transform" si sus datos no están en la misma proyección. 
ax.contourf(lons, lats, temp)
plt.show()
plt.close()

Para graficas las longitudes / latitudes :

from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import matplotlib.ticker as mticker
# Armo la grilla con los detalles que me gustan
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
     linewidth=1, color='k', alpha=0.7, linestyle='--')
# Preparo las locaciones de longitud / latitud
gl.ylocator = mticker.FixedLocator(np.arange(-90,90,10))
gl.xlocator = mticker.FixedLocator(np.arange(-180,0,10))
# Por si quiero o no latitud a la izq./der.
# Si puse True a draw_labels, todo están puesto directamente a True
gl.ylabels_right = False
gl.ylabels_left = True
gl.yformatter = LATITUDE_FORMATTER
# Lo mismo para la longitud
gl.xlabels_top = False
gl.xlabels_bottom = True
gl.xformatter = LONGITUDE_FORMATTER

Cartopy facilita la lectura de los datos GIS (shapefile ..), por ejemplo integra directamente la gestion de shapfile de Natural_earth

import cartopy.io.shapereader as shpreader
# Abrir la categoría deseada, con la resolución deseada
geo_reg_shp = shpreader.natural_earth(resolution='50m', category='physical',
                                       name='geography_regions_polys')
# Abrirlo
geo_reg = shpreader.Reader(geo_reg_shp)
# ax es el eje en uso, para graficar
ax = plt.gca()
# graficar todos los elementos, se puede seleccionar ciertos elementos con un if
# si queremos solo borde poner edgecolor = color de borde deseado y facecolor = 'none'
# hacer el contrario si solo queremos rellenar la forma
for rec in geo_reg.records():
   ax.add_geometries( [rec.geometry], ccrs.PlateCarree(), edgecolor="r", facecolor='none')

Para ir más lejos

Para desarollar funciones con más potencial se puede trabajar en languaje de más bajo nivel (recuerde que python es de alto nivel, es bastante flexible con la estructura de los códigos) como Fortran o Cython. Es muy útil a la hora de recorrer indices, cosa por la cual python es bastante lento (terminado los loops for i in range(1000) que duran una eternidad).

Sirve también a paralelizar ciertas funciones manualmente.

f2py3

f2py3 es la libreria para utilizar funciones de fortran en python.

Primero compilar con f2py3 algún modulo fortran con las subroutinas que nos interesen. Por ejemplo : MODULE_one.f90

module one
contains
subroutine func(x,y, z)
    real(8), intent(in) :: x,y
    real(8), intent(out) ::z
    z = x*y
end subroutine
end module

Es importante explicitar las variables de entrada y de salida con intent(in), intent(out). La compilación nos da un archivo en .so

Después se puede importar el modulo desde python para utilizarla directamente como : from MODULE_one import *

result = one.func(x = 2, y = 3)

cython

cython es la librería para utilizar funciones de C en python.

Algunos tips

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Ejercicios

Herramientas personales